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Abstract. Reviewing Laplace’s equation of gravitation from the perspec-
tive of D. Bernoulli, known as Poisson-equation, it will be shown that
Laplace’s equation tacitly assumes the temperature 7' of the mass sys-
tem to be approximately 0° K. For temperatures greater zero, the grav-
itational field will have to be given an additive correctional field. Now,
temperature is intimately related to the heat, and heat is known to
be radiated as an electromagnetic field. It is shown to take two things
in order to get at the gravitational field in the low temperature limit:
the total square energy density of the source in space-time and a (mass-
less) field, which defines interaction as quadratic, Lorentz-invariant, and
U (4)-symmetric form, that restates the equivalence of inert and gravi-
tational energy/mass in terms of absolute squares. This field not only
necessarily must include electromagnetic interaction, it also will be seen
to behave like it.

1. Problem Statement

A system of N particles in spacetime in Newtonian mechanics is a system
that is to be defined by 3V location coordinates g as well as a common time
coordinate and their associated 3N momentum coodinates p; as a function
of time. Mostly these systems are stably confined to a fixed region in space
over time like a drop of water or a stone. So, there will be many equations
of confinement, and to simplify the mathematical model, Bernoulli changed
that model by replacing the particles’ position with a spatial mass density
p(t) : R3 > T+ p(£(t)) > 0. Laplace then took over that model and showed
that the gravitational force of a mass density p could be expressed as Poisson
equation A® = 47 Gp of a potential function @, the gravitational field and
the gravitational constant G, A := 07 + 05 + 93 being the Laplace operator.
That marked the introduction of field as a concept into physics. What made
it both bold and dubious, was that it said that the field was to be the sheer
equivalent of the mass distribution. It was soon found out that the field was
to be an harmonic function of the space coordinates, which led to the famous
Laplace demon problem, and another problem then showed to be the lack
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of Lorentz covariance, giving evidence that the Laplace field of gravitation
cannot be correct.
However, there is much more to it:

Both, Bernoulli and Laplace took it as evident that a (smooth) mass dis-
tribution p(z) of N particles, which is confined to a bounded region K € R3
(for all times t), could be resolved at each given time ¢ into N disjoint bounded
regions K, ..., Ky, containing a unique particle, if only the particles would
stay apart from eachother. With that, it should be possible to replace p with
the sum ), pi of smooth, non-negative functions py, of disjoint support and
compact support, each (which means, they all vanish outside a bounded set,
e.g. K, and if one is greater zero at some point z, then all the others must
vanish at this point z). If so, the above Poisson equation could be rewritten
as a sum y_, Ad®, = > 4nGp; of N independent gravitational equations
for each and every particle.

And indeed, mathematics proved this to be possible, now known as the par-
tion of unity (see e.g. [2, Ch.16]). That, on one side, means that even if all
particles are pointwise in nature, we can approximate these particles through
Bernoulli’s ingenious replacement of mass position by smooth mass densities.
On the downside, that shows that Laplace’s theory of gravitation must lack
generality, because in it, all the particles of a body are independent from
eachother: they just add up individually!

And this is incorrect, because it totally disregards the body’s kinetic energy:

The mass m of a body B at rest is to be defined to be equal to the total
energy of B. Now, if B was simply the sum of N individual oscillating particles,
then the total energy E is to be the square root of Zlgng mict + (emyvg)?,
where c is the speed of light, mj are the individual masses, and the vy are
the mean speeds of these masses, so that kinetic energy, a.k.a. "temperature”,
always will add to the the total mass of B!

At the same time, this shows, that Bernoulli’s notion of expressing the
masses in terms of space-time densities j(t,Z) = (po(t, Z), po¥(t, &)) is inap-
propriate: Instead, j is to become necessarily the 4-vector of the square root
density of energy and momentum of the composed system, such that

<qiz=lil= [ |+ + B ato
R

equates (locally) to the square of energy, which then becomes the square
of the total energy of B, i.e. up to ¢? is equal to the square of the inert mass m
of B. (So, j can be conceived as the macroscopically composed superposition
of local quantum states, which approximates the system’s particles.)

Could we leave out an integration over time t7 - Not at all: Because,
given such a 4-vector j = j(t, %) that extends over a compact space region
K € R? of radius r > 0, we loose control over the eigentime of the particles
within that region. All we know is that the particles’ eigentimes must be
within the interval of our observing eigentime tg, plus or minus the bounds
At = +er!
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In all, the appropriate model for discussing gravity of particle systems
is that of time curves Q : R 3 ¢t — Q(t) := j; := (Jot,---,Js,), Wwhere the
Ju,t are to be smooth functions with compact support in space-time R* for
each p and t, such that their absolute squares, | jmt{z, are the intensities of
smooth, local energy-momentum packages of the particles in space and time,

as sketched below:

/1
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Having Q : ¢+ j; € L2(R*)? in place, we can state:

Proposition 1.1. The total energy square of a system ) : t — j; at time to,
which is at rest at tgy is given by E? =< jy,, jt, >= > ™ |jmt0 (x)|2 d*z.

2. Deriving gravity

It now shows up that there is nothing else than this notion of {2 needed to
discuss gravity:

If instead of inert masses my, the system was made of electric charges, or
even hadronic baryons, or whatever could be idealistically thought of to re-
sult in massy particles, the energy-momentum distribution is already put as
a quadruple j; of complex-valued states, the absolute squares being their in-
tensities. (We’ll shortly see, why this is the case, but for the moment you
might look that up from any standard text on quantum field theory.)

So, whatever there might be in a bounded box B C R* as observed from

an external system at some time ¢y assumed to be at rest, E? =< j;,, jz, >
turns out to be ¢* times of the square of its (inert) rest mass!
With this, we then deduce by equivalence principle, that this inert square of
mass must be proportional to the square of gravitational mass, and to get
at the corresponding gravitational field, we just need to compare with the
covariant Maxwell equations, which readily rewrites into:

< jto, A >= Const < ji,, ji, >= Const E?, (2.1)

where [0 := 93 —- - - — 03 is the wave operator, A the electromagnetic 4-vector
field, and Const a constant, which in Gaussian units is identically 1 along
with c.
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Let’s now choose that constant differently, to be Const = —4nw(G, where
G is the positive gravitational constant, such that
Y <julx), DA, (x) >= —AnGE>. (2.2)
N

Equation 2.2 then states nothing but the equivalence principle: It says
that Q : ¢ — j; has included into the j; a gravitational interaction potential,
which, when squared and summed up, is to be proportional to E? and is
contracting (due to negative sign of —47G).

Theorem 2.1 (U(4)-Invariance). We now are in the position to explain, why
Q :t — j; suffices to describe gravitational interaction:

Because equation 2.2 becomes U (4)-invariant, with U(4) being the group of
unitary 4 X 4-matrices, just by letting the bra vector < ji| be the complex
adjoint of its ket vector |j; >. (This is also how we get at the non-negative
square E? =< ji,j; >.) And, as is basic group theory knowledge, U(4) is
reducible and decomposes into a product of subgroups U(4) = U(2) x U(2) x
SU(3), where in turn U(2) = U(1) x SU(2) is the product of the phase
symmetry group U(1) and the spin group SU(2).

And the fact that the current standard model is a gauge theory based on
the symmetry group U(1) x SU(2) x SU(3), makes that theory embedded part
of the gravity equation 2.2, assigning a well-defined mass to all of the particles
of that standard model: The mass of the body is to be defined by squaring and
adding up the absolute values of square energy of all of its constituents!

Let’s harvest its direct consequences:

3. Gravitational Interaction
An immediate implication of the theorem is:

Corollary 3.1 (Phase Symmetry). The j-vector streams S : t — j; and the
4-vector potential are U(1)-invariant, i.e. phase invariant. In particular, any
space-like vector  : t — j; is equivalent to its time-like counterpart i€ : t —
iji. Similarly, U(4)-symmetry allows to smoothly rotate elements contained
within the forward light cone into ones within the backward light cone, and
vice versa. In other words, it would to be an error to restrict consideration
of energy-momentum of the dynamic system to the positive-energetic time-
cone, only. Instead, we have to symetrically deal with the full set of space-time
elements of R* outside the light cone T := {(t,Z) € R* : t? — 32 = 0}.

Now, for 4 = 0,...,3 and j,,, which I recall is a smooth function of
compact support in space-time R*, let Fj,+(x) = Jra ﬁe‘i’("‘j#’t(,@)d‘lx
be the Fourier transform of j, ;, which exists as a well-defined analytic func-
tion, and is inverible by its inverse F~! to Ju,e again, so from equation 2.2
we deduce

1
FAX) = (—47G) —————5Fj:(X),
(x) = (—4m )x%—-~-—x§ Jt(x)



From Bernoulli to Laplace and Beyond 5

that is: j, — A is the linear mapping S2j; with S? being the Fourier trans-

formation of the multiplication operator S? := x2—1~~X3'
3

0
So, §%j; := (—47G)A is well-defined for each Q :+ j;, and therefore S :=
(>, Y,0,) (—47G)2 2 is well-defined for each Q : t — j,, where the 7, are
the 4 x 4-Dirac matrices, plus we get that S? becomes the square of S.

For the purpose of simplicity, let’s drop the external time index from j;.
Again, for each p, the mapping ©,, : j, — A, defines a linear mapping from
Ju € C(R*) to a functional which is defined "outside the support supp(jy,)
of 7,7
For z,y € R* let d(x —y) := (z —y)(z — y)* € R be the Minkowksi distance
of x and y, and with j, € C>°(R*) and z € R* let

p(x, supp(j)) : 0222396552£@#>““1’ y)| € 10,00),
which defines a seminorm on R*. With it, given j = (jo,...,j3) as above,
let 2(j) := {x € R*| p(x, supp(j)) > 0}, which is open in R%. Then © =
(B¢,...,03) maps j to a quadrupel of functionals on C°(Z(j)) (as shown
subsequently).
Let’s define the functional spaces above and see what the seemingly un-
defined term < j, A >=< j,52%j > gives in terms of distributions:

Let K C R* be the (compact) closure of a non-empty, open, and
bounded subset K° C R*, and let Z(K) as above be the set of all z € R?
with p(z, K) > 0, which is an open, non-empty subset of R*. Z(K) itself is
the union of a sequence X1, X, ... of compact regions of R*, which as K are
the closures of nontrivial, open sets X C R*. Given such a compact region
X, the set of all infinitely differentiable (complex-valued) functions with sup-
port in X is a vector space C°(X), which becomes a complete locally convex,
separable space, when equipping it with the sequence of supremum norms for
all its n-th order partial derivatives (where n > 0 is understood), see e.g. [2].
Then the space C°(X)? = C°(X) @+ --®C(X) of quadruples (ji,...,54) is
a (separable, complete) locally convex space, and so is its dual, C/>°(X)*, the
space of continuous linear functionals on C°(X)* (see again: [2]). This then
defines C/>°(E(K))* as the union |J;c C/>°(X;)?, giving it the finest locally
convex topology, for which the embeddings ¢ : C/>°(X;)* — C/*°*(Z(K))* are
continuous, which is called LF-space (see again: [2, Ch.13]).

Proposition 3.2. S and S? are well-defined as linear mappings on C2°(K)*
into C!>(Z(K))*, and < j,Sj >=< j,58%j >= 0 holds for each j € C(K)*.

Proof. Without loss of generality, let’s assume —47G = 1. Let 6 : C(R*) >
f = f(0) € C be the Dirac-distribution (in 4 dimensions). Then Of = ¢
is solved by f(z) = ﬁ Jra e”'fmd“f, so for x € Z(K) and j €
Ce(K)*,
) —1
it = b [ e
. (2m)* Jraxma (zo = y0)* — -+ — (x3 — y3)

53 (y)d yd*¢
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is a well-defined complex functional on C°(Z(K))*, since for g € C°(Z(K))*

g(x) - [ f(z —y)j(y)d'y is integrable in z, due to inf( )p(x, K) > 0. And,
rEsupp(g
since j is infinitely differentiable, S2j is infinitely differentable on Q(K).

(Because the 4 components j, of j satisfy [|j|d*y < Vol(K) supyeK‘jk(y)
S?% even defines a continuous mapping from C2°(K)* into C'*°(Z(K))%.)
Along with S2, all its partial derivatives are well-defined too.

Hence, S = (3 0<,<3 ¥,0,)5?% is a well-defined mapping from C2°(K)
e (2 ().

Lastly, < j,5%j >=< j,Sj >= 0 follows from the fact that every j, € C2°(K)
is equal to zero outside of K, so in particular vanishes on Z(K). O

9
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Remark 3.3. Physically, what the proposition tells, is that the field does not
interact with its own source.

With it, let Q: ¢ — jy =D <y Je(t) be the sum of N time-curves of
smooth vector functions t — ji(t),...,jin(t) € C®(R*)* of disjoint support
and of compact support at each instance of time as illustrated below:

That’s what an external observer would e.g. see, as he looks at our solar
system: at each time ¢ = zg, he sees planets and sun as chunks of energy-
momentum distributions spatially staying apart of eachother. Dropping the
external parameter t t again, equation 2.2 holds for the sum of energy mo-
mentum distributions j = >, jk, and as such it includes the interaction
between all the N chunks ji (at "retarded” times: note however, that the
composed system is distributed over space-time and the observer has no in-
formation on which particle point comes first). If instead the N chunks were
independently moving from eachother, we would see different distributions of
energy-momentum jfree 1,---,Jfreen, €ach moving in a straight line. What
we want is an interaction defining, non-positive, symmetric field operator
V < 0 on the energy momentum densities j capturing that interaction, i.e.
such that:

< J(0),4(t) >i= / et @) pre (b 7) P

=< jfree(t)ajfree(t) >+ < jfree(t)7‘7jfree(t) > .
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With W defined such that V = W2, then W* = —W, i.e. W is anti-

symmetric, and

< ](t)vj(t) >=< jfree(t)a (1 + W*)(l + W)jfree(t) >,
where W* denotes the adjoint of W, so

< J(t)a.](t) >=< (1 + W)jfree(t)v (1 + W).jfree(t) >

Next, note that S?, defined above, is a convolution operator with support
on the light cone. So, it is the sum of an operator Si with support on the
backwards light cone (the socalled retarded propagator) and an advanced
propagator S2 having its support on the forward light cone) (see e.g.: [1][Ch.
21-3]). With this, S? is positive, while S? is negative. And because W is
anti-symmetric, let’s set W := iS,, where S, w.r.t time is the symmetric,
positive square root of Si, which gives

< ](t)aj(t) >=< (1 + Z‘S+)jf7"ee(t)7 (1 + iS+)jfree(t) >
We get the gravitational equations from that by dropping the fluxes and
keeping only the first energy component,

< p(t), p(t) >=< psree(t), (1 — Si)pfree(t) >
(since gravity is to be independent from the particle speed), dropping the
integration over space, dropping p by taking the equation per unit mass, and
taking the non-relativistic limit ¢ — oc.

Remark 3.4. It appears to be awkward not to take (1 + ¢S4 )pfrec(t) as
square oot of < (1 + iSy)pfree, (1 + 451)pfree(t) >, but rather to divide
that square by the unit mass. However, that way the complexity of the term
(141454 )pfree(t) is avoided. I looks like that is cause of much of the puzzling
nature of gravity (and electromagnetism).

Technically, the obstacle is this: The partial derivatives 0, are anti-
symmetric, since a transposition (by partial integration) inverts these. We
may symmetrize them by 8, + 9, but then they square to (id,)? = —83,
rather than BZ.

What, if we chose S? instead of Si? Let’s see: As that is negative in
time, it is the square of an antisymmetric operator S_, i.e. S2 = S_S—,
where S* = —S_. Then

< (L +S2)pprees (L4 8S_)pprec(t) >=< fprees (14 S )jfree) >,

which, given §2 = —S2 leads to the same equation.
So, why is this?

Note, that the additive field V must be negative, since gravity is attrac-
tive such that we expect the interacting masses to be of lower energy than
the free ones. Also note that relativistically two spatially distant particles
cannot interact with eachother at their very same instantaneous eigentimes,
but one of the two interacting particles always is advanced w.r.t. the light
cone, while the other is retarded. When the advanced particle gets pulled by
the retarded particle, then the pull that the advanced particle itself exerts on
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the retarded particle must be time-reversed: in other words, the interaction
of the two particles is to be described as interaction between the retarded to
the advanced particle and the time-inverted advanced particle.

This leads to interpret the left factor, i.e. the bra-vector < j| of the
quadratic equations above as the time inverses of the ket-vectors |j > of the
right hand side, making the scalar product < j,7 > to become the product
of j with its time inverse. The symmetry of operators would therefore reflect
their reversibility in time. We only get into difficulties with a mixture of par-
ticles and time-inverted particles, so we must have a time-ordering notion
that allows us to avoid that situation. And we have: The sources of fields
always must be retarded (in the past) with respect to the targets.

There are then two open problems: Is it possible to derive irreversibility
from that? And: With the above, gravity is time-inversion invariant: it just
happens, because some particles get to be hit by radiation of other particles,
and when that happens, the particles begin to move according to the radia-
tion. Such a radiation is the radiation of heat, which in turn is known to be
electromagnetic by nature. So: can gravity be derived from electromagnetism?
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