Research Project Primus

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

October 31, 2018

1 Theorems and Conjectures

Theorem 1.1. A natural number n > 2 is a prime iff $\prod_{k=1}^{n-1} k \equiv n-1 \pmod{\sum_{k=1}^{n-1} k}$.

Theorem 1.2. Let $p \equiv 5 \pmod{6}$ be prime then, 2p + 1 is prime iff $2p + 1 \mid 3^p - 1$.

Theorem 1.3. Let p_n be the *n*th prime, then

$$p_n = 1 + \sum_{k=1}^{2 \cdot \left\lfloor \lfloor n \ln(n) \rfloor + 1 \right\rfloor} \left(1 - \left\lfloor \frac{1}{n} \cdot \sum_{j=2}^k \left\lfloor \frac{3 - \sum_{i=1}^j \left\lfloor \frac{\lfloor i \rfloor}{\lceil i \rceil} \right\rfloor}{j} \right\rfloor \right) \right)$$

Theorem 1.4. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^j + \left(x + \sqrt{x^2 - 4} \right)^j \right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m - 1$ such that m > 2, $3 \mid k$, $0 < k < 2^m$ and

 $\begin{cases} k \equiv 1 \pmod{10} \text{ with } m \equiv 2,3 \pmod{4} \\ k \equiv 3 \pmod{10} \text{ with } m \equiv 0,3 \pmod{4} \\ k \equiv 7 \pmod{10} \text{ with } m \equiv 1,2 \pmod{4} \\ k \equiv 9 \pmod{10} \text{ with } m \equiv 0,1 \pmod{4} \\ \text{Let } S_i = S_{i-1}^2 - 2 \text{ with } S_0 = P_k(3) \text{, then } N \text{ is prime iff } S_{m-2} \equiv 0 \pmod{N} \end{cases}$

Theorem 1.5. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^j + \left(x + \sqrt{x^2 - 4} \right)^j \right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m - 1$ such that m > 2, $3 \mid k$, $0 < k < 2^m$ and $k = 3 \pmod{42}$ with $m = 0, 2 \pmod{3}$

$$\begin{cases} k \equiv 3 \pmod{42} \text{ with } m \equiv 0, 2 \pmod{3} \\ k \equiv 9 \pmod{42} \text{ with } m \equiv 0 \pmod{3} \\ k \equiv 15 \pmod{42} \text{ with } m \equiv 1 \pmod{3} \\ k \equiv 27 \pmod{42} \text{ with } m \equiv 1, 2 \pmod{3} \\ k \equiv 33 \pmod{42} \text{ with } m \equiv 0, 1 \pmod{3} \\ k \equiv 39 \pmod{42} \text{ with } m \equiv 2 \pmod{3} \\ \text{Let } S_i = S_{i-1}^2 - 2 \text{ with } S_0 = P_k(5) \text{, then } N \text{ is prime iff } S_{m-2} \equiv 0 \pmod{N} \end{cases}$$

Theorem 1.6. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j \right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m + 1$ such that m > 2, $0 < k < 2^m$ and

 $\begin{cases} k \equiv 1 \pmod{42} \text{ with } m \equiv 2, 4 \pmod{6} \\ k \equiv 5 \pmod{42} \text{ with } m \equiv 3 \pmod{6} \\ k \equiv 11 \pmod{42} \text{ with } m \equiv 3, 5 \pmod{6} \\ k \equiv 11 \pmod{42} \text{ with } m \equiv 4 \pmod{6} \\ k \equiv 13 \pmod{42} \text{ with } m \equiv 4 \pmod{6} \\ k \equiv 17 \pmod{42} \text{ with } m \equiv 5 \pmod{6} \\ k \equiv 19 \pmod{42} \text{ with } m \equiv 0 \pmod{6} \\ k \equiv 23 \pmod{42} \text{ with } m \equiv 0, 2 \pmod{6} \\ k \equiv 25 \pmod{42} \text{ with } m \equiv 1, 3 \pmod{6} \\ k \equiv 29 \pmod{42} \text{ with } m \equiv 1, 5 \pmod{6} \\ k \equiv 31 \pmod{42} \text{ with } m \equiv 2 \pmod{6} \\ k \equiv 37 \pmod{42} \text{ with } m \equiv 1, (\mod{6}) \\ k \equiv 41 \pmod{42} \text{ with } m \equiv 1 \pmod{6} \\ \text{Let } S_i = S_{i-1}^2 - 2 \text{ with } S_0 = P_k(5) \text{ , then } N \text{ is prime iff } S_{m-2} \equiv 0 \pmod{N} \text{ .} \end{cases}$ **Theorem 1.7.** Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j \right) \text{ , where } j \text{ and } x \text{ are nonnegative integers . Let } N = k \cdot 2^m + 1 \text{ such that } m > 2, 0 < k < 2^m \text{ and} \\ k \equiv 1 \pmod{6} \text{ and } k \equiv 1, 7 \pmod{10} \text{ with } m \equiv 0 \pmod{4}$ $k \equiv 1 \pmod{42}$ with $m \equiv 2, 4 \pmod{6}$

 $k \equiv 1 \pmod{6}$ and $k \equiv 1, 7 \pmod{10}$ with $m \equiv 0 \pmod{4}$ $\begin{cases} k \equiv 1 \pmod{6} \text{ and } k \equiv 1, 1 \pmod{10} \text{ with } m \equiv 0 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 1, 3 \pmod{10} \text{ with } m \equiv 1 \pmod{4} \\ k \equiv 1 \pmod{6} \text{ and } k \equiv 3, 9 \pmod{10} \text{ with } m \equiv 2 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 7, 9 \pmod{10} \text{ with } m \equiv 3 \pmod{4} \\ \text{Let } S_i = S_{i-1}^2 - 2 \text{ with } S_0 = P_k(8) \text{, then } N \text{ is prime iff } S_{m-2} \equiv 0 \pmod{N} \text{.}$

Theorem 1.8. Let $N = k \cdot 2^n + 1$ with n > 1, k is odd, $0 < k < 2^n$, $3 \mid k$ and

 $k \equiv 3 \pmod{30},$ with $n \equiv 1, 2 \pmod{4}$ $\begin{cases} k \equiv 9 \pmod{30}, & \text{with } n \equiv 1, 2 \pmod{4} \\ k \equiv 9 \pmod{30}, & \text{with } n \equiv 2, 3 \pmod{4} \\ k \equiv 21 \pmod{30}, & \text{with } n \equiv 0, 1 \pmod{4} \\ k \equiv 27 \pmod{30}, & \text{with } n \equiv 0, 3 \pmod{4} \end{cases}$ then N is prime iff $5^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Theorem 1.9. Let $N = k \cdot 2^n + 1$ with n > 1 , k is odd , $0 < k < 2^n$, $3 \mid k$ and

 $k \equiv 3 \pmod{42}$, with $n \equiv 2 \pmod{3}$ $\begin{cases} k \equiv 3 \pmod{42}, & \text{with } n \equiv 2 \pmod{3} \\ k \equiv 9 \pmod{42}, & \text{with } n \equiv 0, 1 \pmod{3} \\ k \equiv 15 \pmod{42}, & \text{with } n \equiv 1, 2 \pmod{3} \\ k \equiv 27 \pmod{42}, & \text{with } n \equiv 1 \pmod{3} \\ k \equiv 33 \pmod{42}, & \text{with } n \equiv 0 \pmod{3} \\ k \equiv 39 \pmod{42}, & \text{with } n \equiv 0, 2 \pmod{3} \end{cases}$ then N is prime iff $7^{\frac{N-1}{2}} \equiv -1 \pmod{N}$.

Theorem 1.10. Let $N = k \cdot 2^n + 1$ with n > 1, k is odd, $0 < k < 2^n$, $3 \mid k$ and

$$\begin{cases} k \equiv 3 \pmod{66}, & \text{with } n \equiv 1, 2, 6, 8, 9 \pmod{10} \\ k \equiv 9 \pmod{66}, & \text{with } n \equiv 0, 1, 3, 4, 8 \pmod{10} \\ k \equiv 15 \pmod{66}, & \text{with } n \equiv 2, 4, 5, 7, 8 \pmod{10} \\ k \equiv 21 \pmod{66}, & \text{with } n \equiv 1, 2, 4, 5, 9 \pmod{10} \\ k \equiv 27 \pmod{66}, & \text{with } n \equiv 0, 2, 3, 5, 6 \pmod{10} \\ k \equiv 39 \pmod{66}, & \text{with } n \equiv 0, 1, 5, 7, 8 \pmod{10} \\ k \equiv 45 \pmod{66}, & \text{with } n \equiv 0, 4, 6, 7, 9 \pmod{10} \\ k \equiv 51 \pmod{66}, & \text{with } n \equiv 0, 2, 3, 7, 9 \pmod{10} \\ k \equiv 57 \pmod{66}, & \text{with } n \equiv 3, 5, 6, 8, 9 \pmod{10} \\ k \equiv 63 \pmod{66}, & \text{with } n \equiv 1, 3, 4, 6, 7 \pmod{10} \\ \text{then } N \text{ is prime iff } 11^{\frac{N-1}{2}} \equiv -1 \pmod{N} . \end{cases}$$

Theorem 1.11. A positive integer n is prime iff $\varphi(n)! \equiv -1 \pmod{n}$

Theorem 1.12. For
$$m \ge 1$$
 number n greater than one is prime iff
 $(n^m - 1)! \equiv (n - 1)^{\left\lceil \frac{(-1)^{m+1}}{2} \right\rceil} \cdot n^{\frac{n^m - mn + m - 1}{n-1}} \pmod{n^{\frac{n^m - mn + m + n - 2}{n-1}}}$

Theorem 1.13. Sequence S_i is defined as $S_i = \begin{cases} 8 & \text{if } i = 0; \\ (S_{i-1}^2 - 2)^2 - 2 & \text{otherwise} \end{cases}$ then, $F_n = 2^{2^n} + 1, (n \ge 2)$ is a prime if and only if F_n divides $S_{2^{n-1}-1}$.

Theorem 1.14. Let $p \equiv 1 \pmod{6}$ be prime and let $5 \nmid 4p + 1$, then 4p + 1 is prime iff $4p + 1 \mid 2^{2p} + 1$.

Theorem 1.15. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $F_n(b) = b^{2^n} + 1$ such that $n \ge 2$ and *b* is even number. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(6)$, thus If $F_n(b)$ is prime, then $S_{2^n-1} \equiv 2 \pmod{F_n(b)}$.

Theorem 1.16. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $E_n(b) = \frac{b^{2^n} + 1}{2}$ such that n > 1, *b* is odd number greater than one. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(6)$, thus If $E_n(b)$ is prime, then $S_{2^n-1} \equiv 6 \pmod{E_n(b)}$.

Theorem 1.17. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$.

Let $N_p(b) = \frac{b^p+1}{b+1}$, where p is an odd prime and b is an odd natural number greater than one. CASE(1). $b \equiv 1,9 \pmod{12}$, or $b \equiv 3,7 \pmod{12}$ and $p \equiv 1 \pmod{4}$, or $b \equiv 5 \pmod{12}$ and $p \equiv 1,7 \pmod{12}$, or $b \equiv 11 \pmod{12}$ and $p \equiv 1,11 \pmod{12}$.

CASE(2). $b \equiv 3,7 \pmod{12}$ and $p \equiv 3 \pmod{4}$, or $b \equiv 5 \pmod{12}$ and $p \equiv 5,11 \pmod{12}$, or $b \equiv 11 \pmod{12}$ and $p \equiv 5,7 \pmod{12}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(4)$. Suppose $N_p(b)$ is prime, then:

- $S_{p-1} \equiv P_b(4) \pmod{N_p(b)}$ if Case(1) holds;
- $S_{p-1} \equiv P_{b+2}(4) \pmod{N_p(b)}$ if Case(2) holds;

Theorem 1.18. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$.

Let $M_p(a) = \frac{a^p-1}{a-1}$, where p is an odd prime and a is an odd natural number greater than one CASE(1). $a \equiv 3, 11 \pmod{12}$, or $a \equiv 5, 9 \pmod{12}$ and $p \equiv 1 \pmod{4}$, or $a \equiv 7 \pmod{12}$ and $p \equiv 1, 7 \pmod{12}$, or $a \equiv 1 \pmod{12}$ and $p \equiv 1, 11 \pmod{12}$.

CASE(2). $a \equiv 5,9 \pmod{12}$ and $p \equiv 3 \pmod{4}$, or $a \equiv 7 \pmod{12}$ and $p \equiv 5,11 \pmod{12}$, or $a \equiv 1 \pmod{12}$ and $p \equiv 5,7 \pmod{12}$.

Let $S_i = P_a(S_{i-1})$ with $S_0 = P_a(4)$. Suppose $M_p(a)$ is prime, then :

•
$$S_{p-1} \equiv P_a(4) \pmod{M_p(a)}$$
 if Case(1) holds;

•
$$S_{p-1} \equiv P_{a-2}(4) \pmod{M_p(a)}$$
 if Case(2) holds;

Conjecture 1.1. Let $b_n = b_{n-2} + lcm(n-1, b_{n-2})$ with $b_1 = 2$, $b_2 = 2$ and n > 2. Let $a_n = b_{n+2}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every odd prime number is member of this sequence. 3. Every new prime in sequence is a next prime from the largest prime already listed.

Conjecture 1.2. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{n^3} \rfloor, b_{n-1})$ with $b_1 = 2$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every odd prime of the form $\lfloor \sqrt{n^3} \rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor \sqrt{n^3} \rfloor$ in sequence is a next prime from the largest prime already listed.

Conjecture 1.3. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{2} \cdot n \rfloor, b_{n-1})$ with $b_1 = 2$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor \sqrt{2} \cdot n \rfloor$ in sequence is a next prime from the largest prime already listed.

Conjecture 1.4. Let $b_n = b_{n-1} + lcm(\lfloor \sqrt{3} \cdot n \rfloor, b_{n-1})$ with $b_1 = 3$ and n > 1. Let $a_n = b_{n+1}/b_n - 1$, then

1. Every term of this sequence a_i is either prime or 1. 2. Every prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor \sqrt{3} \cdot n \rfloor$ in sequence is a next prime from the largest prime already listed.

Conjecture 1.5. Let *b* and *n* be a natural numbers, $b \ge 2$, n > 2 and $n \ne 9$. Then *n* is prime if and only if $\sum_{k=1}^{n-1} (b^k - 1)^{n-1} \equiv n \pmod{\frac{b^n - 1}{b-1}}$

Conjecture 1.6. Let a, b and n be a natural numbers, b > a > 1, n > 2 and $n \notin \{4, 9, 25\}$. Then n is prime iff $\prod_{k=1}^{n-1} (b^k - a) \equiv \frac{a^n - 1}{a - 1} \pmod{\frac{b^n - 1}{b - 1}}$

Conjecture 1.7. Let a, b and n be a natural numbers, b > a > 0, n > 2 and $n \notin \{4, 9, 25\}$. Then n is prime iff $\prod_{k=1}^{n-1} (b^k + a) \equiv \frac{a^n + 1}{a+1} \pmod{\frac{b^n - 1}{b-1}}$ **Conjecture 1.8.** Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - 1$ such that k > 0, $3 \nmid k$, $k < 2^n$, b > 0, *b* is even number, $3 \nmid b$ and n > 2. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{kb/2}(P_{b/2}(4))$, then *N* is prime iff $S_{n-2} \equiv 0 \pmod{N}$.

Conjecture 1.9. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^j + \left(x + \sqrt{x^2 - 4}\right)^j \right)$, where j and x are nonnegative integers. Let $N = k \cdot 2^m + 1$ with k odd, $0 < k < 2^m$ and m > 2. Let F_n be the nth Fibonacci number and let $S_i = S_{i-1}^2 - 2$ with $S_0 = P_k(F_n)$, then N is prime iff there exists F_n for which $S_{m-2} \equiv 0 \pmod{N}$.

Conjecture 1.10. Let $P_j(x) = 2^{-j} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^j + \left(x + \sqrt{x^2 - 4} \right)^j \right)$, where j and x are nonnegative integers. Let $F_m(b) = b^{2^m} + 1$ with b even , b > 0 and $m \ge 2$. Let F_n be the nth Fibonacci number and let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(P_{b/2}(F_n))$, then $F_m(b)$ is prime iff there exists F_n for which $S_{m-2} \equiv 0 \pmod{F_m(b)}$.

Conjecture 1.11. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n - b - 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$.

Conjecture 1.12. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n - b - 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.

Conjecture 1.13. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.

Conjecture 1.14. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$.

Conjecture 1.15. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n - b + 1$ such that n > 3, $b \equiv 0, 2 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$.

Conjecture 1.16. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n - b + 1$ such that n > 3, $b \equiv 4, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 1.17. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n + b - 1$ such that n > 3, $b \equiv 0, 2 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b-2)/2}(6) \pmod{N}$.

Conjecture 1.18. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = b^n + b - 1$ such that n > 3, $b \equiv 4, 6 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus if N is prime, then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$.

Conjecture 1.19. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$

Let $N = k \cdot 3^n - 2$ such that n > 3, $k \equiv 1, 3 \pmod{8}$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If N is prime then $S_{n-1} \equiv P_3(6) \pmod{N}$

Conjecture 1.20. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$ Let $N = k \cdot 3^n - 2$ such that n > 3, $k \equiv 5, 7 \pmod{8}$ and k > 0. Let $S_i = P_3(S_{i-1})$ with

Let $N \equiv k \cdot 3^n - 2$ such that n > 3, $k \equiv 5$, $l \pmod{8}$ and k > 0. Let $S_i \equiv P_3(S_{i-1})$ with $S_0 \equiv P_{3k}(6)$, thus If N is prime then $S_{n-1} \equiv P_1(6) \pmod{N}$

Conjecture 1.21. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot 3^n + 2$ such that n > 2, $k \equiv 1, 3 \pmod{8}$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If *N* is prime then $S_{n-1} \equiv P_3(6) \pmod{N}$

Conjecture 1.22. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot 3^n + 2$ such that n > 2, $k \equiv 5, 7 \pmod{8}$ and k > 0. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{3k}(6)$, thus If *N* is prime then $S_{n-1} \equiv P_1(6) \pmod{N}$

Conjecture 1.23. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - c$ such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$ Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If *N* is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lceil c/2 \rceil}(6) \pmod{N}$

Conjecture 1.24. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - c$ such that $b \equiv 0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If *N* is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$

Conjecture 1.25. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n - c$ such that $b \equiv 2, 6, 10 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv -P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$

Conjecture 1.26. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n + c$ such that $b \equiv 0 \pmod{2}, n > bc, k > 0, c > 0$ and $c \equiv 1, 7 \pmod{8}$ Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If *N* is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lfloor c/2 \rfloor}(6) \pmod{N}$

Conjecture 1.27. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n + c$ such that $b \equiv 0, 4, 8 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv P_{(b/2) \cdot \lceil c/2 \rceil}(6) \pmod{N}$

Conjecture 1.28. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where m and x are nonnegative integers. Let $N = k \cdot b^n + c$ such that $b \equiv 2, 6, 10 \pmod{12}, n > bc, k > 0, c > 0$ and $c \equiv 3, 5 \pmod{8}$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(6))$, thus If N is prime then $S_{n-1} \equiv -P_{(b/2) \cdot \lceil c/2 \rceil}(6) \pmod{N}$

Conjecture 1.29. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = 2 \cdot 3^n - 1$ such that n > 1. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_3(a)$

, where $a = \begin{cases} 6, & \text{if } n \equiv 0 \pmod{2} \\ 8, & \text{if } n \equiv 1 \pmod{2} \end{cases}$ thus, N is prime iff $S_{n-1} \equiv a \pmod{N}$

Conjecture 1.30. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = 8 \cdot 3^n - 1$ such that n > 1. Let $S_i = P_3(S_{i-1})$ with $S_0 = P_{12}(4)$ thus, *N* is prime iff $S_{n-1} \equiv 4 \pmod{N}$

Conjecture 1.31. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m\right)$, where m and x are nonnegative integers. Let $N = k \cdot 6^n - 1$ such that n > 2, k > 0, $k \equiv 2, 5 \pmod{7}$ and $k < 6^n$ Let $S_i = P_6(S_{i-1})$ with $S_0 = P_{3k}(P_3(5))$, thus N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 1.32. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot 6^n - 1$ such that n > 2, k > 0, $k \equiv 3, 4 \pmod{5}$ and $k < 6^n$ Let $S_i = P_6(S_{i-1})$ with $S_0 = P_{3k}(P_3(3))$, thus *N* is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 1.33. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - 1$ such that n > 2, $k < 2^n$ and

 $\begin{cases} k \equiv 3 \pmod{30} \text{ with } b \equiv 2 \pmod{10} \text{ and } n \equiv 0, 3 \pmod{4} \\ k \equiv 3 \pmod{30} \text{ with } b \equiv 4 \pmod{10} \text{ and } n \equiv 0, 2 \pmod{4} \\ k \equiv 3 \pmod{30} \text{ with } b \equiv 6 \pmod{10} \text{ and } n \equiv 0, 1, 2, 3 \pmod{4} \\ k \equiv 3 \pmod{30} \text{ with } b \equiv 8 \pmod{10} \text{ and } n \equiv 0, 1 \pmod{4} \\ Let S_i = P_b(S_{i-1}) \text{ with } S_0 = P_{bk/2}(P_{b/2}(18)) \text{, then } N \text{ is prime iff } S_{n-2} \equiv 0 \pmod{N} \end{cases}$

Conjecture 1.34. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - 1$ such that n > 2, $k < 2^n$ and

 $\begin{cases} k \equiv 9 \pmod{30} \text{ with } b \equiv 2 \pmod{10} \text{ and } n \equiv 0, 1 \pmod{4} \\ k \equiv 9 \pmod{30} \text{ with } b \equiv 4 \pmod{10} \text{ and } n \equiv 0, 2 \pmod{4} \\ k \equiv 9 \pmod{30} \text{ with } b \equiv 6 \pmod{10} \text{ and } n \equiv 0, 1, 2, 3 \pmod{4} \\ k \equiv 9 \pmod{30} \text{ with } b \equiv 8 \pmod{10} \text{ and } n \equiv 0, 3 \pmod{4} \\ \text{Let } S_i = P_b(S_{i-1}) \text{ with } S_0 = P_{bk/2}(P_{b/2}(18)) \text{ , then } N \text{ is prime iff } S_{n-2} \equiv 0 \pmod{N} \end{cases}$

Conjecture 1.35. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^m + \left(x + \sqrt{x^2 - 4}\right)^m \right)$, where *m* and *x* are nonnegative integers. Let $N = k \cdot b^n - 1$ such that n > 2, $k < 2^n$ and

 $\begin{cases} k \equiv 21 \pmod{30} \text{ with } b \equiv 2 \pmod{10} \text{ and } n \equiv 2,3 \pmod{4} \\ k \equiv 21 \pmod{30} \text{ with } b \equiv 4 \pmod{10} \text{ and } n \equiv 1,3 \pmod{4} \\ k \equiv 21 \pmod{30} \text{ with } b \equiv 8 \pmod{10} \text{ and } n \equiv 1,2 \pmod{4} \\ \text{Let } S_i = P_b(S_{i-1}) \text{ with } S_0 = P_{bk/2}(P_{b/2}(3)) \text{ , then } N \text{ is prime iff } S_{n-2} \equiv 0 \pmod{N} \end{cases}$

Conjecture 1.36. Let F_p be the pth Fibonacci number . If p is prime, not 5, and $M \ge 2$ then $M^{F_p} \equiv M^{(p-1)^{(1-\binom{p}{5})/2}} \pmod{\frac{M^p-1}{M-1}}$

Conjecture 1.37. Let b and n be a natural numbers, $b \ge 2$, n > 1 and $n \notin \{4, 8, 9\}$. Then n is prime if and only if $\sum_{k=1}^{n} (b^k + 1)^{n-1} \equiv n \pmod{\frac{b^n - 1}{b-1}}$

Conjecture 1.38. If q is the smallest prime greater than $\prod_{i=1}^{n} C_i + 1$, where $\prod_{i=1}^{n} C_i$ is the product of the first n composite numbers, then $q - \prod_{i=1}^{n} C_i$ is prime.

Conjecture 1.39. If q is the greatest prime less than $\prod_{i=1}^{n} C_i - 1$, where $\prod_{i=1}^{n} C_i$ is the product of the first n composite numbers, then $\prod_{i=1}^{n} C_i - q$ is prime.

Conjecture 1.40. Let n be an odd number and n > 1. Let $T_n(x)$ be Chebyshev polynomial of the first kind and let $P_n(x)$ be Legendre polynomial, then n is a prime number if and only if the following congruences hold simultaneously $\bullet T_n(3) \equiv 3 \pmod{n} \bullet P_n(3) \equiv 3 \pmod{n}$

Conjecture 1.41. Let *n* be a natural number greater than two. Let *r* be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $T_n(x)$ be Chebyshev polynomial of the first kind, then *n* is a prime number if and only if $T_n(x) \equiv x^n \pmod{x^r - 1}$.

Conjecture 1.42. Let n be a natural number greater than two and $n \neq 5$. Let $T_n(x)$ be Chebyshev polynomial of the first kind. If there exists an integer a, 1 < a < n, such that $T_{n-1}(a) \equiv 1$ (mod n) and for every prime factor q of n - 1, $T_{(n-1)/q}(a) \not\equiv 1 \pmod{n}$ then n is prime. If no such number a exists then n is composite.

Conjecture 1.43. Let $P_a(x) = 2^{-a} \cdot \left(\left(x - \sqrt{x^2 - 4}\right)^a + \left(x + \sqrt{x^2 - 4}\right)^a \right)$. Let $N = k \cdot b^m \pm 1$ with b an even positive integer, $0 < k < b^m$ and m > 2. Let F_n be the nth Fibonacci number and let $S_i = P_b(S_{i-1})$ with $S_0 = P_{kb/2}(P_{b/2}(F_n))$, then N is prime iff there exists F_n for which $S_{m-2} \equiv 0 \pmod{N}$.

Conjecture 1.44. Let *n* be a natural number greater than one. Let *r* be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $L_n(x)$ be Lucas polynomial, then *n* is a prime number if and only if $L_n(x) \equiv x^n \pmod{x^r - 1}$.

Conjecture 1.45. Let b and n be a natural numbers, $b \ge 2$, then $\frac{b^n-1}{b-1} \cdot \frac{b^{\sigma(n)}-1}{b-1} \equiv b+1 \pmod{\frac{b^{\varphi(n)}-1}{b-1}}$ for all primes and no composite with the exception of 4 and 6.

Conjecture 1.46. Let b and n be a natural numbers, $b \ge 2$, then $\frac{b^{\varphi(n)}-1}{b-1}(b^{\tau(n)}-1)+b \equiv b^{n-1}$ (mod $\frac{b^n-1}{b-1}$) for all primes and no composite with the exception of 4.

Conjecture 1.47. Let p be prime number greater than three and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(2) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 11 \pmod{12}$.

Conjecture 1.48. Let p be prime number greater than two and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(3) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 7 \pmod{8}$.

Conjecture 1.49. Let p be prime number greater than three and let $T_n(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(5) \equiv 1 \pmod{p}$ if and only if $p \equiv 1, 5, 19, 23 \pmod{24}$

Conjecture 1.50. Let *n* be an odd natural number greater than one, let *k* be a natural number such that $k \le n$, then *n* is prime if and only if: $\sum_{i=0}^{k-1} i^{n-1} + \sum_{j=0}^{n-k} j^{n-1} \equiv -1 \pmod{n}$

Conjecture 1.51. Let *n* be a natural number greater than one and let $T_n(x)$ be Chebyshev polynomial of the first kind, then *n* is prime if and only if $:\sum_{k=0}^{n-1} 2T_{n-1}\left(\frac{k}{2}\right) \equiv -1 \pmod{n}$.

Conjecture 1.52. Let n be a natural number greater than one and let $L_n(x)$ be Lucas polynomial , then n is prime if and only if $:\sum_{k=0}^{n-1} L_{n-1}(k) \equiv -1 \pmod{n}$.

Conjecture 1.53. Let p be an odd prime number, let $R_p(3) = \frac{3^p-1}{2}$ and let $S_i = S_{i-1}^3 + 3S_{i-1}$ with $S_0 = 36$, then $R_p(3)$ is prime number iff $S_{p-1} \equiv 36 \pmod{R_p(3)}$.

Conjecture 1.54. Let p be an odd prime number greater than three, let $R_p(-3) = \frac{3^p+1}{4}$ and let $S_i = S_{i-1}^3 + 3S_{i-1}$ with $S_0 = 36$, then $R_p(-3)$ is prime number iff $S_{p-1} \equiv 36 \pmod{R_p(-3)}$.

Conjecture 1.55. Let $P_n^{(a)}(x) = \left(\frac{1}{2}\right) \cdot \left(\left(x - \sqrt{x^2 + a}\right)^n + \left(x + \sqrt{x^2 + a}\right)^n\right)$. Given an odd integer $n \ (\geq 3)$ and integer a coprime to n, n is prime if and only if $P_n^{(a)}(x) \equiv x^n \pmod{n}$ holds.

Conjecture 1.56. Let n be an odd natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $P_n(x)$ be Legendre polynomial, then n is a prime number if and only if $P_n(x) \equiv x^n \pmod{x^r - 1}$.

Conjecture 1.57. Let *n* be a natural number greater than one and let $F_n(x)$ be Fibonacci polynomial, then *n* is prime if and only if $:\sum_{k=0}^{n-1} F_n(k) \equiv -1 \pmod{n}$.

Conjecture 1.58. Let a_n be the least unused prime greater than 3 such that $(a_n + a_{n-1})/2$ is prime, with $a_0 = 13$, then :

- 1. Every term of this sequence a_i is prime of the form 12k + 1.
- 2. Every prime of the form 12k + 1 is a member of this sequence.

Conjecture 1.59. Let m and n be a natural numbers, $m \ge 1$, n > 2, $n \ne 9$ and gcd(m, n) = 1. . Then n is prime if and only if $\sum_{k=1}^{n-1} (2^{mk} - 1)^{n-1} \equiv n \pmod{2^n - 1}$

Conjecture 1.60. Let p, q, r be three consecutive prime numbers such that $p \ge 11$ and p < q < r, then $\frac{1}{p^2} < \frac{1}{q^2} + \frac{1}{r^2}$.

Conjecture 1.61. Let p and q be consecutive prime numbers such that $p \ge 5$ and p < q, then $\left|\frac{q}{p} - \frac{p}{q}\right| = 0$.

Conjecture 1.62. Let a, n, k be natural numbers greater than 0. If n is a prime number then $\sum_{d|n} (\sigma_k(d) \cdot a^{n/d}) \equiv 2a \pmod{n}$

Conjecture 1.63. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $F_n(b) = b^{2^n} + 1$ where *b* is an even integer, $3 \nmid b, 5 \nmid b$ and $n \ge 2$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(P_{b/2}(8))$, then $F_n(b)$ is prime iff $S_{2^n-2} \equiv 0 \pmod{F_n(b)}$.

Conjecture 1.64. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $F_n(b) = b^{2^n} + 1$ where *b* is an even integer, $3 \nmid b$, $b \equiv 2, 4, 10, 12 \pmod{14}$ and $n \ge 2$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(P_{b/2}(5))$, then $F_n(b)$ is prime iff $S_{2^n-2} \equiv 0 \pmod{F_n(b)}$.

Conjecture 1.65. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $F_n(b) = b^{2^n} + 1$ where *b* is an even integer, $5 \nmid b$, $b \equiv 2, 4, 10, 12 \pmod{14}$ and $n \ge 2$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(P_{b/2}(12))$, then $F_n(b)$ is prime iff $S_{2^n-2} \equiv 0 \pmod{F_n(b)}$.

Conjecture 1.66. Let $a_n = 62a_{n-1} - a_{n-2}$ with $a_1 = 8$ and $a_2 = 488$, let $b_n = 482b_{n-1} - b_{n-2}$ with $b_1 = 22$ and $b_2 = 10582$, then each member of the sequences $\{a_n\}$ and $\{b_n\}$ can be used as an initial value for Inkeri's primality test for Fermat numbers.

 $\begin{array}{l} \textbf{Conjecture 1.67. Let } P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right) \\ Let \ N = k \cdot b^n - 1 \ such \ that \ n > 2 \ , \ k < 2^n \ and \\ \begin{cases} k \equiv 27 \pmod{30} \ with \ b \equiv 2 \pmod{10} \ and \ n \equiv 1, 2 \pmod{4} \\ k \equiv 27 \pmod{30} \ with \ b \equiv 4 \pmod{10} \ and \ n \equiv 1, 3 \pmod{4} \\ k \equiv 27 \pmod{30} \ with \ b \equiv 8 \pmod{10} \ and \ n \equiv 2, 3 \pmod{4} \\ Let \ S_i = P_b(S_{i-1}) \ with \ S_0 = P_{bk/2}(P_{b/2}(3)) \ , \ then \ N \ is \ prime \ iff \ S_{n-2} \equiv 0 \pmod{N} \end{array}$

Conjecture 1.68. Let n be a natural number greater than two. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $H_n(x)$ be Hermite polynomial, then n is either a prime number or Fermat pseudoprime to base 2 if and only if $H_n(x) \equiv 2x^n \pmod{x^r - 1}$.

Conjecture 1.69. Let n be an odd natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $P_n^{(\alpha,\beta)}(x)$ be Jacobi polynomial such that α , β are natural numbers and $\alpha + \beta < n$, then n is a prime number if and only if $P_n^{(\alpha,\beta)}(x) \equiv x^n \pmod{x^r - 1}$.

Conjecture 1.70. Let n be an odd natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^2 \not\equiv 1 \pmod{r}$. Let $F_n(x)$ be Fibonacci polynomial, then n is prime if and only if $F_n(2x) \equiv (1+x^2)^{\frac{n-1}{2}} \pmod{x^r-1}$.

Conjecture 1.71. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $F_n(b) = b^{2^n} + 1$ where *b* is an even natural number and $n \ge 2$. Let *a* be a natural number greater than two such that $\left(\frac{a-2}{F_n(b)}\right) = -1$ and $\left(\frac{a+2}{F_n(b)}\right) = -1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{b/2}(P_{b/2}(a)) \mod F_n(b)$. Then $F_n(b)$ is prime if and only if $S_{2^n-2} \equiv 0 \pmod{F_n(b)}$. **Conjecture 1.72.** Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $N = k \cdot b^n + 1$ where k is positive natural number, $k < 2^n$, b is an even positive natural number and $n \ge 3$. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right) = -1$ and $\left(\frac{a+2}{N}\right) = -1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb/2}(P_{b/2}(a)) \mod N$. Then N is prime if and only if $S_{n-2} \equiv 0 \pmod{N}$.

Conjecture 1.73. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $M = k \cdot b^n - 1$ where k is positive natural number, $k < 2^n$, b is an even positive natural number and $n \ge 3$. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right) = 1$ and $\left(\frac{a+2}{M}\right) = -1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb/2}(P_{b/2}(a)) \mod M$. Then M is prime if and only if $S_{n-2} \equiv 0 \pmod{M}$.

Conjecture 1.74. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $N = k \cdot b^n + 1$ where k is an even positive natural number, $k < 2^n$, b is an odd positive natural number greater than one and $n \ge 2$. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right) = -1$ and $\left(\frac{a+2}{N}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb/2}(a) \mod N$. Then, if N is prime then $S_{n-1} \equiv a \pmod{N}$.

Conjecture 1.75. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $M = k \cdot b^n - 1$ where k is an even positive natural number, $k < 2^n$, b is an odd positive natural number greater than one and $n \ge 2$. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right) = 1$ and $\left(\frac{a+2}{M}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb/2}(a) \mod M$. Then, if M is prime then $S_{n-1} \equiv a \pmod{M}$.

Conjecture 1.76. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $M_p(a) = \frac{a^p - 1}{a - 1}$ where a is a natural number greater than one and p is an odd prime number. Let c be a natural number greater than two such that $\left(\frac{c-2}{M_p(a)}\right) = \left(\frac{c+2}{M_p(a)}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_a(S_{i-1})$ with $S_0 = P_a(c)$. Then, if $M_p(a)$ is prime then $S_{p-1} \equiv P_a(c) \pmod{M_p(a)}$.

Conjecture 1.77. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $N_p(b) = \frac{b^{p+1}}{b+1}$ where *b* is a natural number greater than one and *p* is an odd prime number. Let *c* be a natural number greater than two such that $\left(\frac{c-2}{N_p(b)}\right) = \left(\frac{c+2}{N_p(b)}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(c)$. Then, if $N_p(b)$ is prime then $S_{p-1} \equiv P_b(c) \pmod{N_p(b)}$.

Conjecture 1.78. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $M = k \cdot b^n - c$ where k, b, n, c are natural numbers such that k > 0, b > 1, n > 1 and c > 0. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right) = -1$ and $\left(\frac{a+2}{M}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb}(a) \mod M$. Then, if M is prime then $S_{n-1} \equiv P_{c-1}(a) \pmod{M}$.

Conjecture 1.79. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $N = k \cdot b^n + c$ where k, b, n, c are natural numbers such that k > 0, b > 1, n > 1 and c > 0. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right) = 1$ and $\left(\frac{a+2}{N}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with S_0 equal to the modular $P_{kb}(a) \mod N$. Then, if N is prime then $S_{n-1} \equiv P_{c-1}(a) \pmod{N}$. **Conjecture 1.80.** Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $M_p(a) = \frac{a^{p-1}}{a-1}$ where a is a natural number greater than one and p is an odd prime number . Let c be a natural number greater than two such that $\left(\frac{c-2}{M_p(a)}\right) = -1$ and $\left(\frac{c+2}{M_p(a)}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_a(S_{i-1})$ with $S_0 = P_a(c)$. Then , if $M_p(a)$ is prime then $S_{p-1} \equiv P_{a-2}(c) \pmod{M_p(a)}$.

Conjecture 1.81. Let $P_m(x) = 2^{-m} \cdot ((x - \sqrt{x^2 - 4})^m + (x + \sqrt{x^2 - 4})^m)$. Let $N_p(b) = \frac{b^p + 1}{b + 1}$ where *b* is a natural number greater than one and *p* is an odd prime number. Let *c* be a natural number greater than two such that $\left(\frac{c-2}{N_p(b)}\right) = -1$ and $\left(\frac{c+2}{N_p(b)}\right) = 1$ where () denotes Jacobi symbol. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_b(c)$. Then , if $N_p(b)$ is prime then $S_{p-1} \equiv P_{b+2}(c)$ (mod $N_p(b)$).

Conjecture 1.82. Let $n_1, n_2, ..., n_k$ be a sequence of k consecutive odd composite numbers. Let $gpf(n_i)$ be the greatest prime factor of n_i . Then, all $gpf(n_i)$, $1 \le i \le k$ are mutually different.