Research Project Primus

Predrag Terzić

Podgorica, Montenegro

e-mail: pedja.terzic@hotmail.com

October 31, 2018

1 Theorems and Conjectures

Theorem 1.1. A natural number $n>2$ is a prime iff $\prod_{k=1}^{n-1} k \equiv n-1\left(\bmod \sum_{k=1}^{n-1} k\right)$.
Theorem 1.2. Let $p \equiv 5(\bmod 6)$ be prime then , $2 p+1$ is prime iff $2 p+1 \mid 3^{p}-1$.
Theorem 1.3. Let p_{n} be the nth prime, then

$$
p_{n}=1+\sum_{k=1}^{2 \cdot(\lfloor n \ln (n)\rfloor+1)}\left(1-\left\lfloor\frac{1}{n} \cdot \sum_{j=2}^{k}\left[\frac{3-\sum_{i=1}^{j}\left\lfloor\frac{\left\lfloor\frac{j}{i}\right\rfloor}{\left\lceil\frac{j}{i}\right\rceil}\right\rfloor}{j}\right\rfloor\right\rfloor\right)
$$

Theorem 1.4. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k \cdot 2^{m}-1$ such that $m>2,3 \mid k, 0<k<2^{m}$ and
$\left\{\begin{array}{l}k \equiv 1(\bmod 10) \text { with } m \equiv 2,3(\bmod 4) \\ k \equiv 3(\bmod 10) \text { with } m \equiv 0,3(\bmod 4) \\ k \equiv 7(\bmod 10) \text { with } m \equiv 1,2(\bmod 4) \\ k \equiv 9(\bmod 10) \text { with } m \equiv 0,1(\bmod 4)\end{array}\right.$

$$
\text { Let } S_{i}=S_{i-1}^{2}-2 \text { with } S_{0}=P_{k}(3), \text { then } N \text { is prime iff } S_{m-2} \equiv 0(\bmod N)
$$

Theorem 1.5. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k \cdot 2^{m}-1$ such that $m>2,3 \mid k, 0<k<2^{m}$ and
$\left\{\begin{array}{l}k \equiv 3(\bmod 42) \text { with } m \equiv 0,2(\bmod 3) \\ k \equiv 9(\bmod 42) \text { with } m \equiv 0(\bmod 3) \\ k \equiv 15(\bmod 42) \text { with } m \equiv 1(\bmod 3) \\ k \equiv 27(\bmod 42) \text { with } m \equiv 1,2(\bmod 3) \\ k \equiv 33(\bmod 42) \text { with } m \equiv 0,1(\bmod 3) \\ k \equiv 39(\bmod 42) \text { with } m \equiv 2(\bmod 3)\end{array}\right.$
Let $S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}(5)$, then N is prime iff $S_{m-2} \equiv 0(\bmod N)$

Theorem 1.6. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k \cdot 2^{m}+1$ such that $m>2,0<k<2^{m}$ and
$\left\{\begin{array}{l}k \equiv 1(\bmod 42) \text { with } m \equiv 2,4(\bmod 6) \\ k \equiv 5(\bmod 42) \text { with } m \equiv 3(\bmod 6) \\ k \equiv 11(\bmod 42) \text { with } m \equiv 3,5(\bmod 6) \\ k \equiv 13(\bmod 42) \text { with } m \equiv 4(\bmod 6) \\ k \equiv 17(\bmod 42) \text { with } m \equiv 5(\bmod 6) \\ k \equiv 19(\bmod 42) \text { with } m \equiv 0(\bmod 6) \\ k \equiv 23(\bmod 42) \text { with } m \equiv 1,3(\bmod 6) \\ k \equiv 25(\bmod 42) \text { with } m \equiv 0,2(\bmod 6) \\ k \equiv 29(\bmod 42) \text { with } m \equiv 1,5(\bmod 6) \\ k \equiv 31(\bmod 42) \text { with } m \equiv 2(\bmod 6) \\ k \equiv 37(\bmod 42) \text { with } m \equiv 0,4(\bmod 6) \\ k \equiv 41(\bmod 42) \text { with } m \equiv 1(\bmod 6)\end{array}\right.$
Let $S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}(5)$, then N is prime iff $S_{m-2} \equiv 0(\bmod N)$.
Theorem 1.7. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k \cdot 2^{m}+1$ such that $m>2,0<k<2^{m}$ and
$\left\{\begin{array}{l}k \equiv 1(\bmod 6) \text { and } k \equiv 1,7(\bmod 10) \text { with } m \equiv 0(\bmod 4) \\ k \equiv 5(\bmod 6) \text { and } k \equiv 1,3(\bmod 10) \text { with } m \equiv 1(\bmod 4) \\ k \equiv 1(\bmod 6) \text { and } k \equiv 3,9(\bmod 10) \text { with } m \equiv 2(\bmod 4) \\ k \equiv 5(\bmod 6) \text { and } k \equiv 7,9(\bmod 10) \text { with } m \equiv 3(\bmod 4)\end{array}\right.$
Let $S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}(8)$, then N is prime iff $S_{m-2} \equiv 0(\bmod N)$.
Theorem 1.8. Let $N=k \cdot 2^{n}+1$ with $n>1, k$ is odd $, 0<k<2^{n}, 3 \mid k$ and
$\begin{cases}k \equiv 3(\bmod 30), & \text { with } n \equiv 1,2(\bmod 4) \\ k \equiv 9(\bmod 30), & \text { with } n \equiv 2,3(\bmod 4) \\ k \equiv 21(\bmod 30), & \text { with } n \equiv 0,1(\bmod 4) \\ k \equiv 27(\bmod 30), & \text { with } n \equiv 0,3(\bmod 4)\end{cases}$
then N is prime iff $5^{\frac{N-1}{2}} \equiv-1(\bmod N)$.
Theorem 1.9. Let $N=k \cdot 2^{n}+1$ with $n>1, k$ is odd $, 0<k<2^{n}, 3 \mid k$ and
$\begin{cases}k \equiv 3(\bmod 42), & \text { with } n \equiv 2(\bmod 3) \\ k \equiv 9(\bmod 42), & \text { with } n \equiv 0,1(\bmod 3) \\ k \equiv 15(\bmod 42), & \text { with } n \equiv 1,2(\bmod 3) \\ k \equiv 27(\bmod 42), & \text { with } n \equiv 1(\bmod 3) \\ k \equiv 33(\bmod 42), & \text { with } n \equiv 0(\bmod 3) \\ k \equiv 39(\bmod 42), & \text { with } n \equiv 0,2(\bmod 3)\end{cases}$
then N is prime iff $7^{\frac{N-1}{2}} \equiv-1(\bmod N)$.

Theorem 1.10. Let $N=k \cdot 2^{n}+1$ with $n>1, k$ is odd, $0<k<2^{n}, 3 \mid k$ and

$$
\begin{aligned}
& \left\{\begin{array}{l}
k \equiv 3(\bmod 66), \quad \text { with } n \equiv 1,2,6,8,9(\bmod 10) \\
k \equiv 9(\bmod 66), \quad \text { with } n \equiv 0,1,3,4,8(\bmod 10) \\
k \equiv 15(\bmod 66), \quad \text { with } n \equiv 2,4,5,7,8(\bmod 10) \\
k \equiv 21(\bmod 66), \quad \text { with } n \equiv 1,2,4,5,9(\bmod 10) \\
k \equiv 27(\bmod 66), \quad \text { with } n \equiv 0,2,3,5,6(\bmod 10) \\
k \equiv 39(\bmod 66), \quad \text { with } n \equiv 0,1,5,7,8(\bmod 10) \\
k \equiv 45(\bmod 66), \quad \text { with } n \equiv 0,4,6,7,9(\bmod 10) \\
k \equiv 51(\bmod 66), \quad \text { with } n \equiv 0,2,3,7,9(\bmod 10) \\
k \equiv 57(\bmod 66), \quad \text { with } n \equiv 3,5,6,8,9(\bmod 10) \\
k \equiv 63(\bmod 66), \quad \text { with } n \equiv 1,3,4,6,7(\bmod 10)
\end{array}\right. \\
& \text { then } N \text { is prime iff } 11^{\frac{N-1}{2}} \equiv-1(\bmod N) \text {. }
\end{aligned}
$$

Theorem 1.11. A positive integer n is prime iff $\varphi(n)!\equiv-1(\bmod n)$
Theorem 1.12. For $m \geq 1$ number n greater than one is prime iff

$$
\left(n^{m}-1\right)!\equiv(n-1)^{\left\lceil\frac{(-1)^{m+1}}{2}\right\rceil} \cdot n^{\frac{n^{m}-m n+m-1}{n-1}}\left(\bmod n^{\frac{n^{m}-m n+m+n-2}{n-1}}\right)
$$

Theorem 1.13. Sequence S_{i} is defined as $S_{i}=\left\{\begin{array}{ll}8 & \text { if } i=0 ; \\ \left(S_{i-1}^{2}-2\right)^{2}-2 & \text { otherwise } .\end{array}\right.$ then, $F_{n}=$ $2^{2^{n}}+1,(n \geq 2)$ is a prime if and only if F_{n} divides $S_{2^{n-1}-1}$.

Theorem 1.14. Let $p \equiv 1(\bmod 6)$ be prime and let $5 \nmid 4 p+1$, then $4 p+1$ is prime iff $4 p+1 \mid 2^{2 p}+1$.

Theorem 1.15. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $F_{n}(b)=b^{2^{n}}+1$ such that $n \geq 2$ and b is even number. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b}(6)$, thus If $F_{n}(b)$ is prime, then $S_{2^{n}-1} \equiv 2\left(\bmod F_{n}(b)\right)$.
Theorem 1.16. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $E_{n}(b)=\frac{b^{2^{n}}+1}{2}$ such that $n>1$, b is odd number greater than one. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b}(6)$, thus If $E_{n}(b)$ is prime, then $S_{2^{n}-1} \equiv 6\left(\bmod E_{n}(b)\right)$.

Theorem 1.17. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$.
Let $N_{p}(b)=\frac{b^{p}+1}{b+1}$, where p is an odd prime and b is an odd natural number greater than one.
$\operatorname{CASE}(1) . \quad b \equiv 1,9(\bmod 12)$, or $b \equiv 3,7(\bmod 12)$ and $p \equiv 1(\bmod 4)$, or $b \equiv 5$ $(\bmod 12)$ and $p \equiv 1,7(\bmod 12)$, or $b \equiv 11(\bmod 12)$ and $p \equiv 1,11(\bmod 12)$.
$\operatorname{CASE}(2) . b \equiv 3,7(\bmod 12)$ and $p \equiv 3(\bmod 4)$, or $b \equiv 5(\bmod 12)$ and $p \equiv 5,11$ $(\bmod 12)$, or $b \equiv 11(\bmod 12)$ and $p \equiv 5,7(\bmod 12)$.

Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b}(4)$. Suppose $N_{p}(b)$ is prime , then :

- $S_{p-1} \equiv P_{b}(4)\left(\bmod N_{p}(b)\right)$ if Case(1) holds;
- $S_{p-1} \equiv P_{b+2}(4)\left(\bmod N_{p}(b)\right)$ if Case(2) holds ;

Theorem 1.18. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$.
Let $M_{p}(a)=\frac{a^{p}-1}{a-1}$, where p is an odd prime and a is an odd natural number greater than one
$\operatorname{CASE}(1) . a \equiv 3,11(\bmod 12)$, or $a \equiv 5,9(\bmod 12)$ and $p \equiv 1(\bmod 4)$, or $a \equiv 7$ $(\bmod 12)$ and $p \equiv 1,7(\bmod 12)$, or $a \equiv 1(\bmod 12)$ and $p \equiv 1,11(\bmod 12)$.
$\operatorname{CASE}(2) . a \equiv 5,9(\bmod 12)$ and $p \equiv 3(\bmod 4)$, or $a \equiv 7(\bmod 12)$ and $p \equiv 5,11$ $(\bmod 12)$, or $a \equiv 1(\bmod 12)$ and $p \equiv 5,7(\bmod 12)$.

Let $S_{i}=P_{a}\left(S_{i-1}\right)$ with $S_{0}=P_{a}(4)$. Suppose $M_{p}(a)$ is prime, then :

- $S_{p-1} \equiv P_{a}(4)\left(\bmod M_{p}(a)\right)$ if Case(1) holds;
- $S_{p-1} \equiv P_{a-2}(4)\left(\bmod M_{p}(a)\right)$ if Case(2) holds ;

Conjecture 1.1. Let $b_{n}=b_{n-2}+\operatorname{lcm}\left(n-1, b_{n-2}\right)$ with $b_{1}=2, b_{2}=2$ and $n>2$. Let $a_{n}=b_{n+2} / b_{n}-1$, then

1. Every term of this sequence a_{i} is either prime or 1.2. Every odd prime number is member of this sequence . 3. Every new prime in sequence is a next prime from the largest prime already listed.

Conjecture 1.2. Let $b_{n}=b_{n-1}+\operatorname{lcm}\left(\left\lfloor\sqrt{n^{3}}\right\rfloor, b_{n-1}\right)$ with $b_{1}=2$ and $n>1$. Let $a_{n}=b_{n+1} / b_{n}-1$, then

1. Every term of this sequence a_{i} is either prime or 1. 2. Every odd prime of the form $\left\lfloor\sqrt{n^{3}}\right\rfloor$ is member of this sequence. 3. Every new prime of the form $\left\lfloor\sqrt{n^{3}}\right\rfloor$ in sequence is a next prime from the largest prime already listed .

Conjecture 1.3. Let $b_{n}=b_{n-1}+\operatorname{lcm}\left(\lfloor\sqrt{2} \cdot n\rfloor, b_{n-1}\right)$ with $b_{1}=2$ and $n>1$. Let $a_{n}=b_{n+1} / b_{n}-1$, then

1. Every term of this sequence a_{i} is either prime or 1.2. Every prime of the form $\lfloor\sqrt{2} \cdot n\rfloor$ is member of this sequence . 3. Every new prime of the form $\lfloor\sqrt{2} \cdot n\rfloor$ in sequence is a next prime from the largest prime already listed .

Conjecture 1.4. Let $b_{n}=b_{n-1}+\operatorname{lcm}\left(\lfloor\sqrt{3} \cdot n\rfloor, b_{n-1}\right)$ with $b_{1}=3$ and $n>1$. Let $a_{n}=b_{n+1} / b_{n}-1$, then

1. Every term of this sequence a_{i} is either prime or 1.2. Every prime of the form $\lfloor\sqrt{3} \cdot n\rfloor$ is member of this sequence. 3. Every new prime of the form $\lfloor\sqrt{3} \cdot n\rfloor$ in sequence is a next prime from the largest prime already listed .

Conjecture 1.5. Let b and n be a natural numbers, $b \geq 2, n>2$ and $n \neq 9$. Then n is prime if and only if $\sum_{k=1}^{n-1}\left(b^{k}-1\right)^{n-1} \equiv n\left(\bmod \frac{b^{n}-1}{b-1}\right)$

Conjecture 1.6. Let a, b and n be a natural numbers, $b>a>1, n>2$ and $n \notin\{4,9,25\}$. Then n is prime iff $\prod_{k=1}^{n-1}\left(b^{k}-a\right) \equiv \frac{a^{n}-1}{a-1}\left(\bmod \frac{b^{n}-1}{b-1}\right)$

Conjecture 1.7. Let a, b and n be a natural numbers, $b>a>0, n>2$ and $n \notin\{4,9,25\}$. Then n is prime iff $\prod_{k=1}^{n-1}\left(b^{k}+a\right) \equiv \frac{a^{n}+1}{a+1}\left(\bmod \frac{b^{n}-1}{b-1}\right)$

Conjecture 1.8. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-1$ such that $k>0,3 \nmid k, k<2^{n}, b>0, b$ is even number, $3 \nmid b$ and $n>2$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{k b / 2}\left(P_{b / 2}(4)\right)$, then N is prime iff $S_{n-2} \equiv 0$ $(\bmod N)$.
Conjecture 1.9. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $N=k \cdot 2^{m}+1$ with k odd, $0<k<2^{m}$ and $m>2$. Let F_{n} be the nth Fibonacci number and let $S_{i}=S_{i-1}^{2}-2$ with $S_{0}=P_{k}\left(F_{n}\right)$, then N is prime iff there exists F_{n} for which $S_{m-2} \equiv 0(\bmod N)$.
Conjecture 1.10. Let $P_{j}(x)=2^{-j} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{j}+\left(x+\sqrt{x^{2}-4}\right)^{j}\right)$, where j and x are nonnegative integers. Let $F_{m}(b)=b^{2^{m}}+1$ with b even, $b>0$ and $m \geq 2$. Let F_{n} be the nth Fibonacci number and let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}\left(P_{b / 2}\left(F_{n}\right)\right)$, then $F_{m}(b)$ is prime iff there exists F_{n} for which $S_{m-2} \equiv 0\left(\bmod F_{m}(b)\right)$.
Conjecture 1.11. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 0,6(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b+2) / 2}(6)(\bmod N)$.
Conjecture 1.12. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 2,4(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv-P_{b / 2}(6)(\bmod N)$.
Conjecture 1.13. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 0,6(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b / 2}(6)(\bmod N)$.

Conjecture 1.14. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 2,4(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv-P_{(b+2) / 2}(6)(\bmod N)$.

Conjecture 1.15. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}-b+1$ such that $n>3, b \equiv 0,2(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{b / 2}(6)(\bmod N)$.

Conjecture 1.16. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}-b+1$ such that $n>3, b \equiv 4,6(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv-P_{(b-2) / 2}(6)(\bmod N)$.
Conjecture 1.17. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}+b-1$ such that $n>3, b \equiv 0,2(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv P_{(b-2) / 2}(6)(\bmod N)$.
Conjecture 1.18. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=b^{n}+b-1$ such that $n>3, b \equiv 4,6(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus if N is prime, then $S_{n-1} \equiv-P_{b / 2}(6)(\bmod N)$.

Conjecture 1.19. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+{\left.\left.\sqrt{x^{2}-4}\right)^{m}\right)}^{m}\right.\right.$
Let $N=k \cdot 3^{n}-2$ such that $n>3, k \equiv 1,3(\bmod 8)$ and $k>0$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus If N is prime then $S_{n-1} \equiv P_{3}(6)(\bmod N)$

Conjecture 1.20. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$
Let $N=k \cdot 3^{n}-2$ such that $n>3, k \equiv 5,7(\bmod 8)$ and $k>0$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus If N is prime then $S_{n-1} \equiv P_{1}(6)(\bmod N)$
Conjecture 1.21. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 1,3(\bmod 8)$ and $k>0$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus If N is prime then $S_{n-1} \equiv P_{3}(6)(\bmod N)$
Conjecture 1.22. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 5,7(\bmod 8)$ and $k>0$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus If N is prime then $S_{n-1} \equiv P_{1}(6)(\bmod N)$
Conjecture 1.23. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-c$ such that $b \equiv 0(\bmod 2), n>b c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$ Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $P_{(b / 2) \cdot\lceil c / 27}(6)(\bmod N)$
Conjecture 1.24. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-c$ such that $b \equiv 0,4,8(\bmod 12), n>b c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $P_{(b / 2) \cdot[c / 2\rfloor}(6)(\bmod N)$
Conjecture 1.25. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-c$ such that $b \equiv 2,6,10(\bmod 12), n>b c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $-P_{(b / 2) \cdot\lfloor c / 2\rfloor}(6)(\bmod N)$
Conjecture 1.26. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}+c$ such that $b \equiv 0(\bmod 2), n>b c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$ Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $P_{(b / 2) \cdot[c / 2\rfloor}(6)(\bmod N)$

Conjecture 1.27. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}+c$ such that $b \equiv 0,4,8(\bmod 12), n>b c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $P_{(b / 2) \cdot[c / 27}(6)(\bmod N)$
Conjecture 1.28. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}+c$ such that $b \equiv 2,6,10(\bmod 12), n>b c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(6)\right)$, thus If N is prime then $S_{n-1} \equiv$ $-P_{(b / 2) \cdot\lceil c / 2\rceil}(6)(\bmod N)$

Conjecture 1.29. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=2 \cdot 3^{n}-1$ such that $n>1$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3}(a)$, where $a=\left\{\begin{array}{ll}6, & \text { if } n \equiv 0(\bmod 2) \\ 8, & \text { if } n \equiv 1(\bmod 2)\end{array}\right.$ thus, N is prime iff $S_{n-1} \equiv a(\bmod N)$

Conjecture 1.30. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=8 \cdot 3^{n}-1$ such that $n>1$. Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{12}(4)$ thus, N is prime iff $S_{n-1} \equiv 4(\bmod N)$

Conjecture 1.31. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot 6^{n}-1$ such that $n>2, k>0, k \equiv 2,5(\bmod 7)$ and $k<6^{n}$ Let $S_{i}=P_{6}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}\left(P_{3}(5)\right)$, thus N is prime iff $S_{n-2} \equiv 0(\bmod N)$

Conjecture 1.32. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot 6^{n}-1$ such that $n>2, k>0, k \equiv 3,4(\bmod 5)$ and $k<6^{n}$ Let $S_{i}=P_{6}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}\left(P_{3}(3)\right)$, thus N is prime iff $S_{n-2} \equiv 0(\bmod N)$

Conjecture 1.33. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-1$ such that $n>2, k<2^{n}$ and
$\left\{\begin{array}{l}k \equiv 3(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,3(\bmod 4) \\ k \equiv 3(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\ k \equiv 3(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\ k \equiv 3(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,1(\bmod 4)\end{array}\right.$
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(18)\right)$, then N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 1.34. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-1$ such that $n>2, k<2^{n}$ and

$$
\left\{\begin{array}{l}
k \equiv 9(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,1(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(18)\right)$, then N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 1.35. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers. Let $N=k \cdot b^{n}-1$ such that $n>2, k<2^{n}$ and
$\left\{\begin{array}{l}k \equiv 21(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 2,3(\bmod 4) \\ k \equiv 21(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 1,3(\bmod 4) \\ k \equiv 21(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 1,2(\bmod 4)\end{array}\right.$
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(3)\right)$, then N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 1.36. Let F_{p} be the pth Fibonacci number.If p is prime, not 5 , and $M \geq 2$ then $M^{F_{p}} \equiv M^{(p-1)^{\left(1-\left(\frac{p}{5}\right)\right) / 2}}\left(\bmod \frac{M^{p}-1}{M-1}\right)$

Conjecture 1.37. Let b and n be a natural numbers, $b \geq 2, n>1$ and $n \notin\{4,8,9\}$. Then n is prime if and only if $\sum_{k=1}^{n}\left(b^{k}+1\right)^{n-1} \equiv n\left(\bmod \frac{b^{n}-1}{b-1}\right)$

Conjecture 1.38. If q is the smallest prime greater than $\prod_{i=1}^{n} C_{i}+1$, where $\prod_{i=1}^{n} C_{i}$ is the product of the first n composite numbers, then $q-\prod_{i=1}^{n} C_{i}$ is prime.
Conjecture 1.39. If q is the greatest prime less than $\prod_{i=1}^{n} C_{i}-1$, where $\prod_{i=1}^{n} C_{i}$ is the product of the first n composite numbers, then $\prod_{i=1}^{n} C_{i}-q$ is prime.

Conjecture 1.40. Let n be an odd number and $n>1$. Let $T_{n}(x)$ be Chebyshev polynomial of the first kind and let $P_{n}(x)$ be Legendre polynomial, then n is a prime number if and only if the following congruences hold simultaneously $\bullet T_{n}(3) \equiv 3(\bmod n) \bullet P_{n}(3) \equiv 3(\bmod n)$

Conjecture 1.41. Let n be a natural number greater than two. Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $T_{n}(x)$ be Chebyshev polynomial of the first kind, then n is a prime number if and only if $T_{n}(x) \equiv x^{n}\left(\bmod x^{r}-1, n\right)$.

Conjecture 1.42. Let n be a natural number greater than two and $n \neq 5$. Let $T_{n}(x)$ be Chebyshev polynomial of the first kind. If there exists an integer $a, 1<a<n$, such that $T_{n-1}(a) \equiv 1$ $(\bmod n)$ and for every prime factor q of $n-1, T_{(n-1) / q}(a) \not \equiv 1(\bmod n)$ then n is prime. If no such number a exists then n is composite.
Conjecture 1.43. Let $P_{a}(x)=2^{-a} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{a}+\left(x+\sqrt{x^{2}-4}\right)^{a}\right)$. Let $N=k \cdot b^{m} \pm 1$ with b an even positive integer, $0<k<b^{m}$ and $m>2$. Let F_{n} be the nth Fibonacci number and let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{k b / 2}\left(P_{b / 2}\left(F_{n}\right)\right)$, then N is prime iff there exists F_{n} for which $S_{m-2} \equiv 0(\bmod N)$.

Conjecture 1.44. Let n be a natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $L_{n}(x)$ be Lucas polynomial, then n is a prime number if and only if $L_{n}(x) \equiv x^{n}\left(\bmod x^{r}-1, n\right)$.

Conjecture 1.45. Let b and n be a natural numbers, $b \geq 2$, then $\frac{b^{n}-1}{b-1} \cdot \frac{b^{\sigma(n)}-1}{b-1} \equiv b+1$ $\left(\bmod \frac{b^{\varphi(n)}-1}{b-1}\right)$ for all primes and no composite with the exception of 4 and 6 .
Conjecture 1.46. Let b and n be a natural numbers, $b \geq 2$, then $\frac{b^{6 \varphi(n)}-1}{b-1}\left(b^{\tau(n)}-1\right)+b \equiv b^{n-1}$ $\left(\bmod \frac{b^{n}-1}{b-1}\right)$ for all primes and no composite with the exception of 4 .

Conjecture 1.47. Let p be prime number greater than three and let $T_{n}(x)$ be Chebyshev polynomial of the first kind , then $T_{p-1}(2) \equiv 1(\bmod p)$ if and only if $p \equiv 1,11(\bmod 12)$.

Conjecture 1.48. Let p be prime number greater than two and let $T_{n}(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(3) \equiv 1(\bmod p)$ if and only if $p \equiv 1,7(\bmod 8)$.

Conjecture 1.49. Let p be prime number greater than three and let $T_{n}(x)$ be Chebyshev polynomial of the first kind, then $T_{p-1}(5) \equiv 1(\bmod p)$ if and only if $p \equiv 1,5,19,23(\bmod 24)$

Conjecture 1.50. Let n be an odd natural number greater than one, let k be a natural number such that $k \leq n$, then n is prime if and only if $: \sum_{i=0}^{k-1} i^{n-1}+\sum_{j=0}^{n-k} j^{n-1} \equiv-1(\bmod n)$

Conjecture 1.51. Let n be a natural number greater than one and let $T_{n}(x)$ be Chebyshev polynomial of the first kind, then n is prime if and only if : $\sum_{k=0}^{n-1} 2 T_{n-1}\left(\frac{k}{2}\right) \equiv-1(\bmod n)$.

Conjecture 1.52. Let n be a natural number greater than one and let $L_{n}(x)$ be Lucas polynomial , then n is prime if and only if : $\sum_{k=0}^{n-1} L_{n-1}(k) \equiv-1(\bmod n)$.

Conjecture 1.53. Let p be an odd prime number, let $R_{p}(3)=\frac{3^{p}-1}{2}$ and let $S_{i}=S_{i-1}^{3}+3 S_{i-1}$ with $S_{0}=36$, then $R_{p}(3)$ is prime number iff $S_{p-1} \equiv 36\left(\bmod R_{p}(3)\right)$.

Conjecture 1.54. Let p be an odd prime number greater than three, let $R_{p}(-3)=\frac{3^{p}+1}{4}$ and let $S_{i}=S_{i-1}^{3}+3 S_{i-1}$ with $S_{0}=36$, then $R_{p}(-3)$ is prime number iff $S_{p-1} \equiv 36\left(\bmod R_{p}(-3)\right)$.

Conjecture 1.55. Let $P_{n}^{(a)}(x)=\left(\frac{1}{2}\right) \cdot\left(\left(x-\sqrt{x^{2}+a}\right)^{n}+\left(x+\sqrt{x^{2}+a}\right)^{n}\right)$. Given an odd integer $n(\geq 3)$ and integer a coprime to n, n is prime if and only if $P_{n}^{(a)}(x) \equiv x^{n}(\bmod n)$ holds.

Conjecture 1.56. Let n be an odd natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $P_{n}(x)$ be Legendre polynomial, then n is a prime number if and only if $P_{n}(x) \equiv x^{n}\left(\bmod x^{r}-1, n\right)$.

Conjecture 1.57. Let n be a natural number greater than one and let $F_{n}(x)$ be Fibonacci polynomial, then n is prime if and only if : $\sum_{k=0}^{n-1} F_{n}(k) \equiv-1(\bmod n)$.

Conjecture 1.58. Let a_{n} be the least unused prime greater than 3 such that $\left(a_{n}+a_{n-1}\right) / 2$ is prime, with $a_{0}=13$, then:

1. Every term of this sequence a_{i} is prime of the form $12 k+1$.
2. Every prime of the form $12 k+1$ is a member of this sequence .

Conjecture 1.59. Let m and n be a natural numbers, $m \geq 1, n>2, n \neq 9$ and $\operatorname{gcd}(m, n)=1$. Then n is prime if and only if $\sum_{k=1}^{n-1}\left(2^{m k}-1\right)^{n-1} \equiv n\left(\bmod 2^{n}-1\right)$

Conjecture 1.60. Let p, q, r be three consecutive prime numbers such that $p \geq 11$ and $p<q<r$, then $\frac{1}{p^{2}}<\frac{1}{q^{2}}+\frac{1}{r^{2}}$.

Conjecture 1.61. Let p and q be consecutive prime numbers such that $p \geq 5$ and $p<q$, then $\left\lfloor\frac{q}{p}-\frac{p}{q}\right\rfloor=0$.
Conjecture 1.62. Let a, n, k be natural numbers greater than 0 . If n is a prime number then $\sum_{d \mid n}\left(\sigma_{k}(d) \cdot a^{n / d}\right) \equiv 2 a(\bmod n)$
Conjecture 1.63. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $F_{n}(b)=b^{2^{n}}+1$ where b is an even integer, $3 \nmid b, 5 \nmid b$ and $n \geq 2$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}\left(P_{b / 2}(8)\right)$, then $F_{n}(b)$ is prime iff $S_{2^{n}-2} \equiv 0\left(\bmod F_{n}(b)\right)$.
Conjecture 1.64. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $F_{n}(b)=b^{2^{n}}+1$ where b is an even integer $, 3 \nmid b, b \equiv 2,4,10,12(\bmod 14)$ and $n \geq 2$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}\left(P_{b / 2}(5)\right)$, then $F_{n}(b)$ is prime iff $S_{2^{n}-2} \equiv 0\left(\bmod F_{n}(b)\right)$.

Conjecture 1.65. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $F_{n}(b)=b^{2^{n}}+1$ where b is an even integer, $5 \nmid b, b \equiv 2,4,10,12(\bmod 14)$ and $n \geq 2$. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}\left(P_{b / 2}(12)\right)$, then $F_{n}(b)$ is prime iff $S_{2^{n}-2} \equiv 0\left(\bmod F_{n}(b)\right)$.

Conjecture 1.66. Let $a_{n}=62 a_{n-1}-a_{n-2}$ with $a_{1}=8$ and $a_{2}=488$, let $b_{n}=482 b_{n-1}-b_{n-2}$ with $b_{1}=22$ and $b_{2}=10582$, then each member of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ can be used as an initial value for Inkeri's primality test for Fermat numbers .
Conjecture 1.67. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+{\sqrt{x^{2}-4}}^{m}\right)\right.$
Let $N=k \cdot b^{n}-1$ such that $n>2, k<2^{n}$ and
$\left\{\begin{array}{l}k \equiv 27(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 1,2(\bmod 4) \\ k \equiv 27(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 1,3(\bmod 4) \\ k \equiv 27(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 2,3(\bmod 4)\end{array}\right.$
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(3)\right)$, then N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 1.68. Let n be a natural number greater than two. Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $H_{n}(x)$ be Hermite polynomial, then n is either a prime number or Fermat pseudoprime to base 2 if and only if $H_{n}(x) \equiv 2 x^{n}\left(\bmod x^{r}-1, n\right)$.

Conjecture 1.69. Let n be an odd natural number greater than one . Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $P_{n}^{(\alpha, \beta)}(x)$ be Jacobi polynomial such that α, β are natural numbers and $\alpha+\beta<n$, then n is a prime number if and only if $P_{n}^{(\alpha, \beta)}(x) \equiv x^{n}$ $\left(\bmod x^{r}-1, n\right)$.
Conjecture 1.70. Let n be an odd natural number greater than one. Let r be the smallest odd prime number such that $r \nmid n$ and $n^{2} \not \equiv 1(\bmod r)$. Let $F_{n}(x)$ be Fibonacci polynomial, then n is prime if and only if $F_{n}(2 x) \equiv\left(1+x^{2}\right)^{\frac{n-1}{2}}\left(\bmod x^{r}-1, n\right)$.
Conjecture 1.71. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $F_{n}(b)=b^{2^{n}}+1$ where b is an even natural number and $n \geq 2$. Let a be a natural number greater than two such that $\left(\frac{a-2}{F_{n}(b)}\right)=-1$ and $\left(\frac{a+2}{F_{n}(b)}\right)=-1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{b / 2}\left(P_{b / 2}(a)\right)$ mod $F_{n}(b)$. Then $F_{n}(b)$ is prime if and only if $S_{2^{n}-2} \equiv 0$ $\left(\bmod F_{n}(b)\right)$.

Conjecture 1.72. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $N=k \cdot b^{n}+1$ where k is positive natural number, $k<2^{n}$, b is an even positive natural number and $n \geq 3$. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right)=-1$ and $\left(\frac{a+2}{N}\right)=-1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b / 2}\left(P_{b / 2}(a)\right) \bmod N$. Then N is prime if and only if $S_{n-2} \equiv 0(\bmod N)$.

Conjecture 1.73. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $M=k \cdot b^{n}-1$ where k is positive natural number, $k<2^{n}$, b is an even positive natural number and $n \geq 3$. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right)=1$ and $\left(\frac{a+2}{M}\right)=-1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b / 2}\left(P_{b / 2}(a)\right)$ mod M. Then M is prime if and only if $S_{n-2} \equiv 0(\bmod M)$.

Conjecture 1.74. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $N=k \cdot b^{n}+1$ where k is an even positive natural number, $k<2^{n}$, b is an odd positive natural number greater than one and $n \geq 2$. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right)=-1$ and $\left(\frac{a+2}{N}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b / 2}(a) \bmod N$. Then, if N is prime then $S_{n-1} \equiv a(\bmod N)$.

Conjecture 1.75. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $M=k \cdot b^{n}-1$ where k is an even positive natural number, $k<2^{n}$, b is an odd positive natural number greater than one and $n \geq 2$. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right)=1$ and $\left(\frac{a+2}{M}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b / 2}(a) \bmod M$. Then, if M is prime then $S_{n-1} \equiv a(\bmod M)$.

Conjecture 1.76. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $M_{p}(a)=\frac{a^{p}-1}{a-1}$ where a is a natural number greater than one and p is an odd prime number. Let c be a natural number greater than two such that $\left(\frac{c-2}{M_{p}(a)}\right)=\left(\frac{c+2}{M_{p}(a)}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{a}\left(S_{i-1}\right)$ with $S_{0}=P_{a}(c)$. Then, if $M_{p}(a)$ is prime then $S_{p-1} \equiv P_{a}(c)\left(\bmod M_{p}(a)\right)$.
Conjecture 1.77. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $N_{p}(b)=\frac{b^{p}+1}{b+1}$ where b is a natural number greater than one and p is an odd prime number. Let c be a natural number greater than two such that $\left(\frac{c-2}{N_{p}(b)}\right)=\left(\frac{c+2}{N_{p}(b)}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b}(c)$. Then, if $N_{p}(b)$ is prime then $S_{p-1} \equiv P_{b}(c)\left(\bmod N_{p}(b)\right)$.

Conjecture 1.78. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $M=k \cdot b^{n}-c$ where k, b, n, c are natural numbers such that $k>0, b>1, n>1$ and $c>0$. Let a be a natural number greater than two such that $\left(\frac{a-2}{M}\right)=-1$ and $\left(\frac{a+2}{M}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b}(a) \bmod M$. Then, if M is prime then $S_{n-1} \equiv P_{c-1}(a)(\bmod M)$.

Conjecture 1.79. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $N=k \cdot b^{n}+c$ where k, b, n, c are natural numbers such that $k>0, b>1, n>1$ and $c>0$. Let a be a natural number greater than two such that $\left(\frac{a-2}{N}\right)=1$ and $\left(\frac{a+2}{N}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with S_{0} equal to the modular $P_{k b}(a)$ mod N. Then, if N is prime then $S_{n-1} \equiv P_{c-1}(a)(\bmod N)$.

Conjecture 1.80. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $M_{p}(a)=\frac{a^{p}-1}{a-1}$ where a is a natural number greater than one and p is an odd prime number. Let c be a natural number greater than two such that $\left(\frac{c-2}{M_{p}(a)}\right)=-1$ and $\left(\frac{c+2}{M_{p}(a)}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{a}\left(S_{i-1}\right)$ with $S_{0}=P_{a}(c)$. Then, if $M_{p}(a)$ is prime then $S_{p-1} \equiv P_{a-2}(c)$ $\left(\bmod M_{p}(a)\right)$.

Conjecture 1.81. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$. Let $N_{p}(b)=\frac{b^{p}+1}{b+1}$ where b is a natural number greater than one and p is an odd prime number. Let c be a natural number greater than two such that $\left(\frac{c-2}{N_{p}(b)}\right)=-1$ and $\left(\frac{c+2}{N_{p}(b)}\right)=1$ where () denotes Jacobi symbol. Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b}(c)$. Then, if $N_{p}(b)$ is prime then $S_{p-1} \equiv P_{b+2}(c)$ $\left(\bmod N_{p}(b)\right)$.

Conjecture 1.82. Let $n_{1}, n_{2}, \ldots, n_{k}$ be a sequence of k consecutive odd composite numbers . Let $\operatorname{gpf}\left(n_{i}\right)$ be the greatest prime factor of n_{i}. Then, all $\operatorname{gpf}\left(n_{i}\right), 1 \leq i \leq k$ are mutually different .

