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Abstract 
Physical reality has structure, and this structure has one or more foundations. These foundations are 

rather simple and easily comprehensible. The major foundation evolves like a seed into more 

complicated levels of the structure, such that after a series of steps a structure results that is like the 

structure of the physical reality that humans can partly observe. To show the power of this approach 

the paper explains the origin of gravitation and the fine structure of photons. 

1 Introduction 
The name physical reality is used to comprise the universe with everything that exists and moves 

therein. It does not matter whether the aspects of this reality are observable. It is even plausible that 

a large part of this reality is not in any way perceptible. The part that is observable, at the same time, 

shows an enormous complexity, and yet it demonstrates a peculiarly large coherence. The conclusion 

is that physical reality clearly has a structure. Moreover, this structure has a hierarchy. Higher layers 

are becoming more complicated. That means immediately that a dive into the deeper layers reveals 

an increasingly simpler structure.  

Eventually, we come to the foundation, and that structure must be easily understandable. The way 

back to higher structure layers delivers an interesting prospect. The foundation must force the 

development of reality in a predetermined direction. The evolution of reality resembles the evolution 

of a seed from which a specific plant can grow. The growth process provides restrictions so that only 

this type of plant can develop. This similarity, therefore, means that the fundamentals of physical 

reality can only develop the reality that we know.  

This philosophy means that the development of physics can occur in two different ways that meet 

each other at a certain point and then complement and correct each other. 

1.1 Conventional physics 
The first, already long in use mode uses the interpretation of perceptions of the behavior and the 

structure of the reality. This method provides descriptions that in practice are very useful. This fact is 

especially true if mathematical structures and formulas can capture the structure and the behavior. 

In that case, the result fits the description to not yet encountered situations. This effect has made the 

field of applied physics very successful. However, the method does not provide reliable explanations 

for the origins of the discovered structure and the discovered behavior. This situation gives rise to 

guesswork, that gambles for the discovery of a usable origin. So far, these efforts have not proved 

very fruitful. 

1.2 From the ground up  
The other way suggests the existence of a potential candidate for the foundation of physical reality. 

The method supposes that this foundation has such a simple structure that intelligent people have 

already added this structure as an interesting structure to the list of discovered structures. For them, 

there existed no need to seek the foundation of reality. We can assume that mathematics already 

includes the foundation of the structure of reality without this structure bearing the hallmark 

"Foundation of Reality." However, this structure will carry the property, which says that this simple 
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structure automatically passes into a more complicated structure, which in turn also emerges into a 

more complicated structure. After some evolutionary steps, it should become apparent that the 

successors of the initial structure increasingly contain the properties and support the behavior of the 

observed reality. In other words, the two approaches will move towards each other. 

2 Framework 
The quest for a suitable candidate for the major foundation seems almost impossible, but we are 

lucky. About eighty years ago, two scholars discovered a mathematical structure that seems to meet 

the conditions. It happened in a turbulent time when everyone was still looking for an explanation 

for the behavior of tiny objects. One of the two scholars, John Von Neumann, searched for a 

framework in which scientists can model quantum mechanics. The other scholar, Garrett Birkhoff, 

was a specialist in relational structures, which the mathematicians call lattices. Together they 

introduced the orthomodular lattice, and they decided to name this structure quantum logic. They 

chose this name because the lattice structure of the already known classical logic closely resembles 

the newly discovered quantum logic. This choice was an unfortunate naming because the discovered 

structure proves to be no logical system at all.  Its elements are not logical propositions. In the 

document, in which the duo introduced their discovery, they proved that a recently by David Hilbert 

discovered structure contains an orthomodular lattice as part of its structure. The discovery of David 

Hilbert is a vector space that can have a countable number of dimensions. Scientists called this new 

structure a Hilbert space. The elements of the orthomodular lattice correspond to the closed 

subspaces of the vector space. They are certainly not logical statements. Together they span the 

whole Hilbert space. The Hilbert space has as an additional feature that the internal product of two 

vectors produces a number that can be used to form linear combinations of vectors that become part 

of the vector space. In the number system that fits, must any number that is not equal to zero own a 

unique inverse. There are only three number systems that meet this requirement. These are the real 

numbers, the complex numbers, and the quaternions [1]. This requirement immediately imposes a 

firm restriction on extending the orthomodular lattice to a more complex structure. This kind of 

constraint is what we seek when the foundation evolves to a higher level.  

Mechanisms that map a Hilbert space onto itself are called operators. If the operator maps a 

normalized vector along itself, then the inner vector product of the vector pair produces an 

associated eigenvalue. The vector in question is the corresponding eigenvector. Quaternions prove to 

be an excellent repository for the combination of a time stamp and a three-dimensional location. The 

by Hilbert discovered structure proves to be a very flexible repository for dynamic geometric data of 

point-shaped objects. The operators are the administrators of these storage bins. 

The extension to the Hilbert space is only a first step. Quaternionic number systems exist in many 

versions that differ in the way that Cartesian and polar coordinate systems can organize these 

number systems. This fact means that in a single underlying vector space a whole range of Hilbert 

spaces can be applied, with the corresponding versions of the number systems floating over each 

other. Each Hilbert space has a parameter space with its own set of coordinates systems. The version 

of the number system fills the parameter space with its numbers. A reference operator manages the 

parameter space as its eigenspace. That eigenspace only contains the rational numbers. 

By using the parameter space and a quaternionic function, the model can define a new operator. This 

new operator uses the eigenvectors of the reference operator and utilizes the function values as the 

corresponding eigenvalues. This procedure connects the operator technology of the Hilbert space to 

the quaternionic function theory. This base model is a powerful tool to model quantum systems.  
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One of the platforms acts as a background and thus provides the background parameter space.  

It is possible to choose a real progression value and connect this value to the subspace corresponding 

to the background reference operator's eigenvectors whose real part of the eigenvalue corresponds 

to this progression value. The chosen progression value now divides the model into a historical part 

and a future part. The separated subspace represents the current status quo of the model. This result 

means that ordering the real parts of the eigenvalues of operators creates a dynamic model. 

The Hilbert spaces, which have a countable dimension, support only operators with a countable 

eigenspace. These eigenspaces can only contain sets of rational eigenvalues. This can be rational 

quaternions. Each infinite dimensional countable Hilbert space possesses a unique non-countable 

companion Hilbert space that embeds his countable partner. The non-countable Hilbert space 

contains operators that possess eigenspaces which are not countable.  These eigenspaces form 

continuums and are mathematically synonymous with fields. Quaternionic functions can describe 

these fields and continuums. The parameter spaces of these functions are flat continuums.   

This structure is starting to become quite complicated but still contains very little dynamism. Only 

platforms that can float over each other form the so far conceived dynamic objects. Still, the 

structure constitutes a powerful base platform for modeling the structure and the behavior of 

physical reality. 

3 Meeting 
In this base model arise already agreements with the structure that conventional physics has 

discovered. The base model acts as a storage space for dynamic geometric data. Dynamics can occur 

if this storage space contains data that after sorting the timestamps tells a dynamic story. The model 

then tells the tale of a creator that at the time of creation fills the countable Hilbert spaces with 

dynamic geometric properties of his creatures. However, after the creation, the creator leaves his 

creatures alone. This result is an astonishing conclusion. 

Conventional physics has discovered elementary particles. In fact, they are elementary modules 

because together they compile all the modules that occur in the universe and some modules form 

modular systems. The elementary modules appear to live on the floating platforms. They inherit the 

properties of their platform. The symmetry of the platform determines the intrinsic properties of the 

platform. At each new progression instant, the elementary particle gets a new location. How this 

exactly happens is not immediately clear, but the findings of conventional physics give a clue. The 

elementary particle possesses a wavefunction, which suggests that a stochastic process generates 

the locations. If this is true, then the elementary particle hops through a hopping path, and after 

some time, the landing locations form a landing location swarm. This swarm possesses a location 

density distribution, which is equal to the square of the modulus of the wavefunction. The 

elementary particle is thus represented by a private platform, by a stochastic process, by a hopping 

path, by a dense and coherent landing location swarm and by its wavefunction. 

As for the elementary particles, the two approaches, therefore, match well. Apart from that, the 

quaternionic differential theory proves to deliver a great agreement with the equations that Maxwell 

and others found through interpretations of the results of experiments. Apart from the Maxwell 

equations, other basic fields exist that obey the quaternionic field equations. An example is our living 

space. The quaternionic differential calculus explains in deep detail how the fields respond to point-

like artifacts. The artifacts are the hop landing locations. The field responds with a spherical shock 

front, which then integrates into a small volume. Mathematicians call the shape of this volume the 

Green’s function of the field.  Due to the dynamics of the shock front, the plop spreads all over the 
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field. In summary, each hop landing causes a small deformation that quickly fades away. The hop 

landing also expands the volume of the field a little bit. The stochastic process ensures that the plops 

partly overlap each other in space and in time. This story explains why the elementary particle 

constantly deforms its living space and why the particle possesses a quantity of mass. At the same 

time, the story explains the origin of gravitation and makes clear that the hop landings expand the 

universe. The Green’s function blurs the location density distribution, and the result equals the 

contribution of the elementary particle to the local gravitation potential. 

It appears that both approaches can complement or correct each other.  

Observations and measurements cannot uncover everything. Only the application of deduction 

can expose the parts of the physical reality that resist observation. The interplay of measurements 

and deduction can bring about the necessary confidence. The requirement put by some scientists 

that experiments must verify everything is sound-ready crap. Much of the physical reality is 

inaccessible to measurement. In that case, deduction remains the only way of approach. 
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4 How gravitation works 
By applying the sketched approach, this section explains in more detail how gravitation works. 

4.1 Quaternionic differential calculus 
The quaternionic nabla ∇ acts as a quaternionic multiplying operator. Quaternionic multiplication 

obeys the equation  

𝑐 = 𝑐𝑟 + 𝐜 = ab = (𝑎𝑟 + 𝐚)(𝑏𝑟 + 𝒃) = a𝑟 𝑏𝑟 − 〈𝐚, 𝒃〉 + a𝑟𝒃 + 𝐚𝑏𝑟 ± 𝐚 × 𝒃 

Thus, the first order partial differential follows from 

∇= {
𝜕

𝜕𝜏
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
} = ∇𝑟 + 𝛁 

𝜙 = ∇𝜓 = (
𝜕

𝜕𝜏
+ 𝛁) (𝜓𝑟 + 𝝍) = ∇𝑟 𝜓𝑟 − 〈𝛁, 𝝍〉 + ∇𝑟𝝍 + 𝛁𝜓𝑟 ± 𝛁 × 𝝍 

The differential ∇𝜓 describes the change of field 𝜓. The five separate terms in the first order partial 

differential have a separate physical meaning. All basic fields feature this decomposition. The terms 

represent new fields. 

𝜙𝑟 = ∇𝑟 𝜓𝑟 − 〈𝛁, 𝝍〉 

 

𝝓 = ∇𝑟𝝍 + 𝛁𝜓𝑟 ± 𝛁 × 𝝍 =  −𝑬 ± 𝑩 

 

4.2 Field excitation 
Gravitation is an interaction between a discrete object and a field that gets deformed by the 

interaction.  

First, we focus on the tiniest interaction. It is a pulse response [2]. These pulse responses are 

solutions of one of two quaternionic second order partial differential equations.  

𝜑 = (
𝜕2

𝜕𝜏2
− 〈𝛁, 𝛁〉) 𝜓 

𝜌 = (
𝜕2

𝜕𝜏2
+ 〈𝛁, 𝛁〉) 𝜓 

 

 

The first of the two second-order partial differential equations is the quaternionic equivalent of the 

well-known wave equation. The other second order partial differential equation divides into two first 

order partial differential equations. 

𝜌 = ∇∗∇𝜓 = ∇∗𝜙 = (∇𝑟 − 𝛁)(∇𝑟 + 𝛁)(𝜓𝑟 + 𝝍) = (
𝜕2

𝜕𝜏
+ 〈𝛁, 𝛁〉) 𝜓 

Integration over the time domain results in the Poisson equation 

𝜌 = 〈𝛁, 𝛁〉𝜓 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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A very special solution of this equation is the Green’s function 
1

𝒒−𝒒′ of the affected field  

𝛁
1

𝒒 − 𝒒′
= −

(𝒒 − 𝒒′)

|𝒒 − 𝒒′|𝟑
 

〈𝛁, 𝛁〉
1

|𝒒 − 𝒒′|
≡ 〈𝛁, 𝛁

1

𝒒 − 𝒒′
〉 = − 〈𝛁,

(𝒒 − 𝒒′)

|𝒒 − 𝒒′|𝟑
〉 = 4𝜋𝛿(𝒒 − 𝒒′) 

4.3 Isotropic actuator 
If a quaternion is embedded in a field, while its symmetry is incompatible with the symmetry of the 

embedding field, then the quaternion belongs to a different version of the quaternionic number 

system than the version that constitutes the background parameter space. A quaternionic function 

that applies the background parameter space defines the embedding field. Thus, the embedded 

quaternion breaks the symmetry of the embedding field. Therefore, the embedding will cause a 

pulse response of the affected field. Only versions of the quaternionic number system that cause an 

isotropic symmetry breaking can produce the trigger that will actuate a spherical pulse response. 

For an isotropic actuator, this Green’s function is the static pulse response of the field. It is the time 

integral over the corresponding single shot pulse response of the field. This dynamic pulse response 

is a solution of a homogeneous second order partial differential equation.  

𝜓 =
𝑓(𝑟 𝒊 ± 𝜏)

𝑟
 

For the wave equation, the imaginary vector 𝒊 reduces to unity. Otherwise it points along the radius 

𝒓. 

The Green’s function has some volume. The volume that the dynamic pulse adds to the field quickly 

spreads over the full extent of the field. Thus locally, the pulse deforms the field, and this 

deformation quickly fades away. However, globally the volume is added to the field. 

This solution is a spherical shock front. During travel, the shape 𝑓 of the front stays constant, but its 

amplitude diminishes as 1/r with distance r from the trigger location. 

4.4 Ensembles of spherical shock fronts 
Recurrently regenerated dense and coherent swarms of hop landing locations create the overlap 

conditions that cause persistent and significant deformation of the field that embeds the hop 

landings. A stochastic process that generates the subsequent hop landing locations in a hopping path 

of a point-like object can generate such condition. At every subsequent instant, the process 

generates a new hop landing location. This location together with its time stamp archives in an 

eigenvalue of a dedicated operator that resides in the separable Hilbert space. The swarm must be 

coherent. It contains a huge number of elements. These conditions can be ensured if the stochastic 

process owns a characteristic function. The characteristic function is the Fourier transform of the 

location density distribution that describes the swarm. If the characteristic function contains a gauge 

factor, then this factor can act as a displacement generator. It means that on the embedding field the 

hopping path is not closed. It is closed on the platform on which the elementary particle resides. 

Thus, in first approximation, the swarm including the platform on which it resides, moves coherently 

and smoothly as a single unit. With other words, the platform, the stochastic process with its 

characteristic function, the hopping path, the hop landing location swarm, and the location density 

distribution represent the point-like object that both hops around and moves smoothly as a single 

(10) 

(11) 

(12) 
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object. The object is an elementary particle. The squared modulus of its wavefunction equals the 

location density distribution of the swarm. The characteristic function acts as a wave package that is 

continuously regenerated. Usually moving wave packages disperse, but this one keeps being 

regenerated. Consequently, the object combines particle behavior with wave behavior. The hop 

landing location swarm can simulate interference patterns. The hop landing locations cause spherical 

shock fronts that integrate into a Green’s function. The Green’s function blurs the location density 

distribution. The result is the convolution of the Green’s function with the location density 

distribution. This result is the contribution of the elementary particle to the local gravitation 

potential. 

If, for example, the location density distribution of the swarm equals a Gaussian distribution, then 

ERF(r)/r describes the shape of the gravitation potential of the elementary module. This curve is a 

perfectly smooth function. At a small distance from the center, the gravitation potential gets the 

familiar 1/r shape. 

 

 

Back-reasoning explains that the spherical shock fronts possess a mass capacity. The degree of 

overlap determines the value of the mass capacity. The pulse responses contribute part of that 

capacity to the mass of the elementary particle. In other words, the mass of the elementary particle 

is proportional to the number of elements of the hop landing location swarm. The notion of mass 

capacity can be used to explain the existence of multiple generations of elementary particles. The 

exploited part of the capacity determines the generation. 

If the geometric center of the swarm and the geometric center of the platform coincides, then at 

some distance of the geometric center, apart from a multiplication factor, the gravitation potential of 

the swarm and the Green’s function of the symmetry related field will overlap. In that case the 

gravitation potential and the potential of the symmetry related field couple into a single simple 

equation. 

(∇ − 𝑒𝐴)𝜑 = 𝑚𝜑  

In atoms the geometric centers of the platforms of the electrons and the geometric center of their 

swarm do not coincide.  So there this simple equation does not fit. This is treated in section 8. 

4.5 One-dimensional actuator 
A one-dimensional single shot actuator generates a one-dimensional shock front. 

𝜓 = 𝑓(𝑥 𝒊 ± 𝜏) 

During travel, the front keeps its shape as well as its amplitude. The one-dimensional shock front 

does not integrate into a volume. Therefore, it does not deform the affected field. 

(13) 

(14) 
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These interactions are so tiny, and the deformation vanishes so quickly that no observer can ever 

perceive the effect of a separate pulse response.  This statement does not mean that huge 

ensembles of pulses cannot cause a noticeable effect. Elementary particles demonstrate it for 

spherical shock fronts. Photons prove it for one-dimensional pulse responses. 

4.6 Photons 
A long string of equidistant one-dimensional shock fronts can implement the functionality of a 

photon. The Einstein-Planck relation E = hν means that one-dimensional shock fronts represent a 

standard amount of energy. These shock fronts own an amount of energy, but they do not own mass. 

The string has a fixed emission duration. This duration relates to the Planck constant. 

 

 

 

 

 

Light beams are known to behave like wave packages. That does not mean that photons themselves 

are waves. Photons are discrete one-dimensional objects. They are strings with a fixed spatial length. 

They follow the deformation of their carrier. Their emitters constitute a probability wave of photons. 

That swarm behaves like a wave package. The photons behave as discrete objects. The probability 

distribution may cover detection location, angular direction and particle energy. 

  

In the animation of this left handed 

circular polarized photon, the black 

arrows represent the moving shock 

fronts. The red line connects the 

vectors that indicate the amplitudes 

of the separate shock fronts. Here 

the picture of an EM wave is 

borrowed to show the similarity 

with EM waves. However,  

photons are not EM waves! 

https://en.wikipedia.org/wiki/Circular_polarization


9 
 

5 Particle platform 
The description of elementary particles says nothing about the fact that several generations exist and 

that for every generation the number of elements of the swarm is fixed. The elementary particle 

inherits many properties of the platform on which it resides. Every elementary particle exploits a 

private separable Hilbert space, and this platform exploits a private version of the quaternionic 

number system. This version determines the symmetry-related properties of the platform. For that 

reason, the platform features symmetry related charges that locate at the geometric center of the 

platform. The charges correspond to contributions to a symmetry-related field. In free space, the 

geometric center of the platform couples the gravitation field and the symmetry-related fields.  

The stochastic processes apply a target center for the generated distribution. In atoms the target 

center of the hop landing location swarm of the electrons oscillates with respect to the geometric 

center of the platform of the electron. The average location of the target center coincides with the 

geometric center of the platform.  

5.1 Symmetry flavor 
The Cartesian ordering of its private parameter space determines the symmetry flavor of the 

platform, and then this result is compared with the reference symmetry flavor, which is the 

symmetry flavor of the background parameter space. Four arrows indicate the symmetry flavor of 

the platform. The background is represented by: 

 

Now the symmetry-related charge follows in three steps. 

1. Count the difference of the spatial part of the symmetry flavor of the platform with the 

spatial part of the symmetry flavor of the background parameter space. 

2. If the handedness changes from R to L, then switch the sign of the count. 

3. Switch the sign of the result for anti-particles. 

 

Symmetry flavor 
Ordering 

x   y   z    τ 

sequence Handedness 

Right/Left 

Color 

charge 

Electric 

charge * 3 

Symmetry type. 

 ⓪ R N +0 neutrino 

 ① L R −1 down quark 

 ② L G −1 down quark 

 ③ L B −1 down quark 

 ④ R B +2 up quark 

 ⑤ R G +2 up quark 

 ⑥ R R +2 up quark 

 ⑦ L N −3 electron 

 ⑧ R N +3 positron 

 ⑨ L R −2 anti-up quark 

 ⑩ L G −2 anti-up quark 

 ⑪ L B −2 anti-up quark 

 ⑫ R B +1 anti-down quark 

 ⑬ R R +1 anti-down quark 

 ⑭ R G +1 anti-down quark 

 ⑮ L N −0 anti-neutrino 

 

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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The suggested particle names that indicate the symmetry type are borrowed from the Standard 

Model. In the table, compared to the standard model, some differences exist with the selection of 

the anti-predicate. All considered particles are elementary fermions. The freedom of choice in the 

polar coordinate system might determine the spin. The azimuth range is 2π radians, and the polar 

angle range is π radians. 

 

6 Modules 
Elementary particles are elementary modules. Together the elementary modules configure all other 

modules, and some of the modules constitute the modular systems that occur in the universe. 

Like with elementary modules, a stochastic process generates the footprint of modules. The 

characteristic function of this process equals a dynamic superposition of the characteristic functions 

of the components of the module. The superposition coefficients act as internal displacement 

generators and determine the internal positions of the components. The characteristic function of 

the module also contains a gauge factor that acts as a displacement generator, such that the module 

moves as a single unit. Therefore, the stochastic process of the module binds the components of the 

module. The footprint generates a swarm of spherical shock fronts that together deform the 

embedding field. This deformation determines the contribution of the module to the local gravitation 

potential. The deformation supports the binding of the components. 

6.1 Symmetry breaking 
During embedding, electrons implement isotropic symmetry breaking. Thus, for electrons the 

embedded quaternions can easily create spherical shock fronts that pump volume into the field and 

deform this carrier.  

Neutrinos are formed by quaternions that may differ only by their handedness from the embedding 

field. They do not feature electric charge or color charge. 

Without extra measures quarks cannot deform their carrier. The quaternions that are generated by 

the stochastic processes of the quarks must first be turned into isotropic actuators before they can 

generate the deformation that helps bind the quarks into hadrons. This might explain the existence 

of color confinement. Inside hadrons, the quarks can obtain mass by causing swarms of spherical 

shock fronts that pump volume into the embedding field. The superposed quaternions constitute the 

isotropic actuators that trigger the spherical pulse responses.   

6.2 Bosons 
Elementary fermions fit well as elementary modules. However, elementary bosons, such as 𝑊+, 𝑊− 

and 𝑍 seem not well fit to compose higher level modules. Still, the embedded quaternions cause the 

spherical pulse responses that deform the embedding carrier field. 

7 The role of volume 
A local deformation corresponds to a local extension of the volume of the embedding field. A global 

extension of the volume corresponds to the expansion of the universe that the field represents. 

Deformations tend to fade away by spreading over the complete field. The stochastic processes must 

keep pumping new deformations to ensure that a deformation becomes persistent. 

The deformation volume increases faster than the overall volume. The space between the swarms 

becomes relatively smaller. As a result, the swarms seem to attract each other. 

https://en.wikipedia.org/wiki/Spherical_coordinate_system
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7.1 Mass inertia and gravity 

From a larger distance, the gravitational potential of a module has the form  
𝑚

|𝒓|
  of the Green’s 

function. If the module moves uniformly, then this scalar source function is seen as a vector function. 

If nothing else in the field changes, then an acceleration of the module means that a new term is 

added to the change of the field. This new term represents a new field that counteracts the 

acceleration. This explains the mass inertia of accelerating objects. Here's a more detailed 

explanation. 

Mathematically, the statement that in first approximation nothing in the field 𝜓 changes, indicates 

that locally, the first order partial differential ∇𝜓 will be equal to zero. 

𝜙 = ∇𝜓 = ∇𝑟 𝜓𝑟 − 〈𝛁, 𝝍〉 + ∇𝑟𝝍 + 𝛁𝜓𝑟 ± 𝛁 × 𝝍 = 0 

The terms that are still eligible for change must together be equal to zero. 

∇𝑟𝝍 + 𝛁𝜓𝑟 = 𝟎 

Here plays 𝝍 the role of the vector field and 𝜓𝑟 plays the role of the gravitational potential of the 

module. If the relative speed 𝒗 is constant, then both terms equal zero. In addition 

𝝍 = 𝒗 𝜓𝑟 

Uniform acceleration �̇� of the module gives a new vector field ∇𝑟𝝍 that shows the mass inertia of 

the module. According to equation (16), the new field terms obey: 

∇𝑟𝝍 =  �̇� 𝜓𝑟 = −𝛁𝜓𝑟 =
𝑚 𝒓

|𝒓|𝟑
 

Factor 𝑚 represents the mass of the module. When two modules move relative to each other with 

uniform velocity 𝒗 and then accelerate relative to each other, the mass inertia explains the gravity 

force that arises between the modules. 

𝑭(𝒓1 − 𝒓2) =
𝑚1𝑚2(𝒓1 − 𝒓2)

|𝒓1 − 𝒓2|𝟑
 

The perceived mutual acceleration takes place because the space deforms and expands. Without 

space expansion the force would not exist. This also holds for the Coulomb force. 

7.2 First inflation 
This explanation sheds an interesting light at the beginning of the history of the universe. On that 

instant, the stochastic processes still had no work done. The balloon of the universe was still empty, 

and the quaternionic function that describes the universe was equal to its parameter space. It took a 

full generation cycle of the elementary particles to pump some volume in the balloon. In advance the 

balloon was flat. The pump act of the first cycle raised the balloon over Its full extent. From that 

moment on, the volume grows almost isotropic. 

7.3 Black holes  
Black holes represent the densest packaging of entropy. This qualification might translate into the 

densest packaging of the pulses that generate spherical shock fronts. 

8 Stochastic control of the universe 
All elementary modules reside on a private platform that a private separable Hilbert space 

establishes. That Hilbert space applies a private parameter space that the elements of a version of 

(15) 

(16) 

(17) 

(18) 

(19) 
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the quaternionic number system constitute. This version determines the symmetry-related 

properties of the platform, and the elementary particle inherits these properties. At each subsequent 

instance, a private stochastic process generates a new hopping path location on this platform. A 

characteristic function ensures the coherence of the generated hop landing location swarm. The 

location density distribution of the swarm equals the Fourier transform of the characteristic function, 

and it equals the squared modulus of the wavefunction of the elementary module. The characteristic 

function includes a gauge factor that acts as a displacement generator. Consequently, at first 

approximation, the swarm moves as a single unit. This rather smooth movement implicates that the 

activity of the stochastic process can be described by a Lagrangian and the corresponding Hamilton 

equations [3]. 

The stochastic process is the combination of a genuine Poisson process and a binomial process. A 

spatial point spread function that equals the location density distribution of the swarm implements 

the binomial process. 

Together, the elementary modules constitute all modules that occur in the universe. Each composite 

module owns a stochastic process that possesses a characteristic function, which equals a 

superposition of the characteristic functions of the components of the module. The dynamic 

superposition coefficients act as displacement generators for the internal locations of the 

components. The overall characteristic function contains a gauge factor that acts as a displacement 

generator of the composite module. This fact means that the overall characteristic function binds the 

components of the module such that in a first approximation the module moves as a single unit. 

The superposition coefficients must be selected such that they keep the components together and 

such that the fermions do not take identical locations. This condition is ensured when the locations 

oscillate in distinct trajectories. For example, in atoms, the electrons oscillate as different solutions of 

the Helmholtz equation, which is a time-independent form of the wave equation [4].  

Inside the atom, the platforms of the electrons do not take part in the oscillations. Therefore, the 

electric charges of the electrons do not emit EM waves. Only the target centers of the swarms of the 

electrons follow the trajectories of the oscillations. The target center is the operational geometric 

center of the swarm that the statistical process is planning to produce. Thus, not the swarm is 

oscillating, but its planned center location oscillates.  

Only the switch to another oscillation trajectory of the planned swarm center causes the emission or 

absorption of a corresponding photon. This mode change concerns the behavior of the stochastic 

process and the change of the oscillation is a consequence. The location of the photon emission 

coincides with the geometric center of the atom. The absorption can be considered as a time reversal 

of an emission. Otherwise, the absorption requests an incredible aiming precision of the impinging 

photon. The creator's view supports time reversal. Observers cannot properly interpret the 

absorption. 

The nucleus is a conglomerate of elementary particles that locates at the geometric center of the 

atom. If oscillations regulate the coherence and the binding within the nucleus, then this will be a 

very complicated construct that controls a hierarchy of submodules. Nuclei constitute the nucleus 

and these nuclei are hadrons. Nuclei can be protons or neutrons. Hadrons can be baryons or mesons. 

Only baryons appear in the nucleus of an atom. The quarks constitute hadrons, and gluons play a role 

in the binding of quarks. Color confinement prohibits that quarks stay stable in isolation.  
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8.1 Color confinement 
The HBM does not offer a detailed explanation of the binding within the nucleus. However, color 

confinement may be due to the fact that a pulse that results in a spherical shock front can only be 

actuated by the embedding of quaternions that break the symmetry of the affected field in a purely 

isotropic way. Electrons do that automatically. Quarks must first be corrected by a mechanism that 

corrects their anisotropy. Special quaternion combinations can perform the conversion of a 

distribution of quaternions into a suitable symmetry flavor. Different types of quarks must be 

combined to achieve a colorless result. Contemporary physics applies gluons to explain the binding of 

quarks.  

8.2 Force carriers 
This description does not apply forces and force carriers. Instead, it applies stochastic processes that 

own characteristic functions. Explaining binding via force carriers requests explaining what generates 

these carriers. The Hilbert Book Model does not explain the origin of the stochastic processes. 

Similarly, contemporary physics does not explain the origin of the wavefunction. 

8.3 Entanglement 
The fact that the stochastic process of composite modules has a characteristic function, which is the 

superposition of the characteristic functions of the components is a generally valid principle. Further, 

the superposition excludes components that share the same state. Thus, the superposition principle 

cooperates with an exclusion principle. Objects that take part in the same superposition cannot share 

the same state. So, in the selection of the components only exclusive components are selected. Also, 

if one of the components changes its state, then the regeneration of the components must correct 

the exclusivity by adapting the state of a corresponding object that takes part in the superposition. 

The regeneration switch occurs at a single progression instant. The stochastic processes of the 

components perform the regeneration. Only properties that the stochastic processes determine are 

affected. Thus, electric charges and color charges are not affected. The platforms on which the 

generated location swarms reside determine these untouched properties. Platforms and fields are 

not regenerated.  

Usually, modules confine to a restricted spatial region. However, the superposition principle that is 

active between the characteristic functions of the private stochastic processes does not pose spatial 

restrictions in configuration space. Still, the exclusion of similar states acts over the full module. Thus, 

if the characteristic function determines properties that determine the state of the corresponding 

component, then changing the property affects the superposition of the module. Involved properties 

are spin, polarization, and momentum. 

The Hilbert Book Model signals that the superposition principle is active inside modules and that it 

goes together with an exclusion principle. However, the HBM does not explain why these principles 

reign. 

9 Discussion 
Everything that happens to discrete objects archives in the read-only repository. These objects can 

only interact via fields. The embedding field acts as the living space of the discrete objects. 

Embedding causes deformation of the living space. Also, may each elementary module give rise to 

interaction with the symmetry-related fields. The involved symmetry related charges reside at the 

geometric centers of their platform. The one-dimensional shock fronts transfer bits of energy 

between the modules. This act changes the potential energy or the kinetic energy of the module. 

Spherical shock fronts cause two effects. One is a temporary local deformation of the field. The other 
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is a persistent expansion of the volume of the field. Only in huge ensembles that are recurrently 

regenerated such that the spherical pulse responses at least partly overlap both in time and in space, 

the volume infusion can result in a persistent deformation. This insight differs crucially from the 

vision of contemporary physics. The universe must expand, otherwise temporary local deformations 

would not perceive as attractive. The same mechanism that locally pumps volume into the field, will 

expand that field. The local addition starts spreading over the field. Spherical pulse responses 

implement the result of the mechanism. The HBM makes stochastic processes responsible for the 

generation of the spherical symmetry breaking that can add volume to the field. These stochastic 

processes appear to create mass out of nothing. However, these stochastic processes take their 

cause from the embedding of a separable Hilbert space into a non-separable Hilbert space. The two 

Hilbert spaces apply different versions of the quaternionic number system. This results in the wanted 

symmetry breaking. The separable Hilbert spaces add their content to the embedding non-separable 

Hilbert space.  

The electrons are elementary particles that apply a platform that already owns the required spherical 

symmetry breaking when it is compared to the embedding platform. The same holds for the 

neutrinos. However, on embedding the electrons break the symmetry. Neutrinos only break chirality. 

Also, the quarks break the symmetry, but they don’t do that in an isotropic way.  

The Hilbert Book Model postulates that the only field excitation that pumps volume into the affected 

field is a spherical pulse response [2]. Only an isotropic breaking can trigger a spherical shock front 

and pumps volume into the embedding field. The fact that quarks feature mass means that a color 

confinement mechanism exist that turns combinations of quarks into a swarm that contains 

actuators, which cause spherical pulse responses. 

The characteristic function of the stochastic process of the component already implements 

coherence and component binding. Observers perceive the persistent deformation as an extra 

bonding effect. They can interpret the gravitational potential as the cause of an extra binding force. 

Observers travel with the subspace that is determined by the progression parameter. Observers can 

only retrieve data from storage bins that correspond to a historic time stamp. The embedding field 

transfers this data from the observed event to the observer. Consequently, the observers perceive 

the data that were archived in the Euclidean format in quaternionic eigenvalues, in spacetime 

format. The hyperbolic Lorentz transform describes the corresponding coordinate transform. The 

data is also affected by the deformation of the information path that runs through the embedding 

field that acts as the living space for the observers. Apart from the observer’s view, the model also 

provides a storage view, which is the view of the creator. The creator can access all archived dynamic 

geometric data. The view of the creator is a valid view. In that view creatures don’t possess a free 

will. The observer’s get the impression that they possess free choice. This impression is supported 

by the stochastic processes, whose result the read-only repository archives at the instant of 

creation. This predetermination is hidden from the observers. 
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