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Abstract. This paper investigates the characteristics of the zeros of the Riemann zeta function
(of s) in the critical strip by using the Dirichlet eta function, which has the same zeros. The
characteristics of the implicit functions for the real and imaginary components when those
components are equal are investigated and it is shown that the function describing the value of
the real component when the real and imaginary components are equal has a derivative that does
not change sign along any of its individual curves - meaning that each value of the imaginary
part of s produces at most one zero. Combined with the fact that the zeros of the Riemann xi
function are also the zeros of the zeta function and xi(s) = xi(1-s), this leads to the conclusion
that the Riemann Hypothesis is true.

1. Introduction
This paper investigates one of the key unresolved questions arising from Riemann’s original
1859 paper regarding the distribution of prime numbers (’Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse’[1, p. 145] - translation in Edwards [2, p. 299]) - the nature of the
roots of the Riemann xi function ( ’One finds in fact about this many real roots within these
bounds and it is very likely that all of the roots are real’ - referring to the roots of the Riemann
Xi function).

This paper starts in section 2 from Riemann’s original definition of ζ(s) and ξ(s) and notes the
implications of ξ(s) in power series form for the roots of ξ(s) and therefore of ζ(s).

Section 2 also highlights the characteristics of the real and imaginary components of ζ(s) and
investigates the behaviour of the function re(ζ(s))=im(ζ(s)) for a specific example, showing the
unlikely nature of there being two zeros of the entire function for a fixed value of the imaginary
part of s.

Section 3 looks more formally at the Dirichlet eta function (η(s)) which has the same zeros
as ζ(s). The implicit function described by the real component being equal to the imaginary
component of η(s) is established as a series and substituted into the function describing the



value of the real component when the real and imaginary components are equal (recognising
that a necessary condition for a zero of η(s) is a zero of the real component of η(s)). Using
the Harmonic Addition Theorem the derivative of the real component of η(s) when the real
component is equal to the imaginary component is shown not to change sign along any of its
individual curves. This leads to the conclusion that any fixed imaginary component of s can
produce at most one zero for the real component of η(s).

Section 4 develops the implications of the earlier investigations, leading to the conclusion that
the Riemann Hypothesis is true.

2. Preliminary - Observations of the characteristics of the real and imaginary
components of the Riemann Zeta function highlighting when they have the same
value.
2.1. Riemann zeta Function and Riemann xi function definitions
Riemann’s paper starts from the definition [1, p. 145]:

ζ(s) =
∑

n
1
ns =

∏
p

1
1−p−s (Absolutely convergent for Re(s) > 1).

Riemann then extends the zeta function analytically for all s and defines the xi function (which
has the same zeros as the zeta function) and shows that it can be written as a power series
(Edwards)[2, p. 17]:

ξ(s) =
∑∞

n=0 a2n(s− 1
2)2n where a2n=4

∫∞
1 (d/dx(x3/2ψ′(x))x−1/4 logx2n

22n(2n)!
)dx

Now, using Riemann’s s = 1/2+it and defining t=(a+bi), then (s-1
2) = it = (ai-b), and:

ξ(s)=
∑∞

n=0 a2n(ai− b)2n

Note that the functional equation of the zeta function is equivalent to ξ(s)=ξ(1-s) (Edwards)[2,
p. 16]. This, combined with the fact that any complex root of the power series will also have the
complex conjugate of that root as a root, means that if (b+ai) is a root of ξ(s), then so are all
of (b-ai), (-b+ai) and (-b-ai). This, in turn, means that (1/2+b +ai), (1/2+b -ai), (1/2-b +ai)
and (1/2-b -ai) are all roots of ζ(s).

For convenience, the real part of s (equivalent to (1/2 +/- b)) will be referred to as σ in the rest
of this paper.

2.2. Riemann zeta Function real and imaginary component characteristics observations.
Analytic extensions of the function valid for all s are well documented and have been used to
make useful (numerical) applications for calculating ζ(s). One of these numerical applications
(from matlab) was used to create the 2 figures following, before we look at a more formal ap-
proach.

Observing the characteristics of the real and imaginary parts of the ζ(s) for various values of σ
and a in figure 1 below, it is useful to note the following:

Firstly, the real component of ζ(s) is reflected across the vertical axis, while the imaginary com-
ponent is rotated by π around the origin, highlighting the fact that in general, ζ(s) does not



Figure 1. Riemann Zeta Function.

necessarily equal ζ(1-s) (contrasting with the Riemann xi function, where ξ(s)=ξ(1-s)).

Secondly, looking carefully at the points of intersection of the real and imaginary parts of ζ(s)
(ie where the real part of ζ(s) is equal to the imaginary part of ζ(s)), we can start to see the path
that the implicit function described by Re(ζ(s))=Im(ζ(s)) traces. This curve is the value of the
real (or imaginary) component when the real component is equal to the imaginary component.

Figure 2. Riemann Zeta Function Detail Around a Known Zero.

Focussing on the points where the real and imaginary parts intersect for various values of σ
around a known zero of the zeta function in figure 2, we can see that the intersection points
are at different values along an apparent single valued curve with an always positive derivative.
This already gives an indication that it is very unlikely that there can be more than one zero



along the curve depicting Re(ζ(s))=Im(ζ(s)) in the region of a specific value of a (ie that each
value of a can have at most one zero of the eta function).

The next step is to follow a more formal approach to showing that that there can be not be more
than one zero along the curve depicting the value of Re(ζ(s)) when (Re(ζ(s))=Im(ζ(s)) in the re-
gion of a specific value of a (ie that each value of a can have at most one zero of the zeta function).

3. Methodology - Formal approach to describing the path of the function
depicting the value of Re(ζ(s)) when (Re(ζ(s))=Im(ζ(s)) in the critical strip by
using the Dirichlet eta function.
For all that follows, we shall restrict the value of b between +1/2 to -1/2 (which means restrict-
ing σ between 0 and 1). Riemann proved in his original paper that all zeros of the Riemann
xi function have t with imaginary parts inside the region of +1

2 i to -1
2 i, which is equivalent to

restricting b and σ. This means that the zeta function only has zeros in this region.

3.1. Zeta function zeros for 0 < σ < 1.
In the well known Dirichlet η function [3, p. 25.2.3] (also known as the alternating zeta function,
which is continuous and continuously differentiable), which is related to the zeta function by
η(s)=(1-2(1−s))ζ(s) and is convergent (uniformly not absolutely) for σ > 0, we have an expres-
sion that can be used to explore the characteristics of the real component, imaginary component
and/or function zeros of the zeta function in the critical strip. It is important to note that
(1-2(1−s)) does not have any zeros for 0≤ σ < 1. It has an infinite number of zeros for σ=1.

It is important to emphasize that the relation between ζ(s) and η(s) shows that the two functions
have the same zeros for 0 < σ < 1.

A zero of η(s) requires coincident zeros of both real and imaginary components of the function.

3.2. Eta function real and imaginary components for σ > 0.
Investigating the real and imaginary components of η(s).

Starting with:

η(s) = Σ∞n=1
(−1)(n−1)

ns = (1- 1
2s+ 1

3s - 1
4s ...)

Extracting the real and imaginary parts for one term (remembering that s= (σ+ai)):

1
ns = 1

nσ(cos(alog(n))+isin(alog(n))

= nσcos(alog(n))−nσisin(alog(n))
(nσcos(alog(n)))2+(nσsin(alog(n)))2

= cos(alog(n))−isin(alog(n))
nσ

This leads to the series representation of the real part as:

1- cos(alog(2))
2σ + cos(alog(3))

3σ - cos(alog(4))
4σ +... Exp 1



This leads to the series representation of the imaginary part as:

sin(alog(2))
2σ - sin(alog(3))

3σ + sin(alog(4))
4σ -... Exp 2

3.3. Investigating Eta function real component equal to imaginary component and value of the
real component.
Firstly equating the expressions for the real and imaginary components:

1- cos(alog(2))
2σ + cos(alog(3))

3σ - cos(alog(4))
4σ +...= sin(alog(2))

2σ - sin(alog(3))
3σ + sin(alog(4))

4σ -...

=⇒ 1- cos(alog(2))
2σ + cos(alog(3))

3σ - cos(alog(4))
4σ +...-( sin(alog(2))

2σ - sin(alog(3))
3σ + sin(alog(4))

4σ -...)=0 Exp 3

This gives an an implicit function which describes the values of σ and a when Reη(s)=Imη(s).

Figure 3 below illustrates the implicit function:

Figure 3. Implicit Function Re(eta) = Im(eta)

Note the separation of the points on the curve with horizontal and vertical tangents.

Totally differentiating Exp 3:

log(2)cos(alog(2))
2σ

dσ
da+ log(2)sin(alog(2))

2σ - log(3)cos(alog(3))
3σ

dσ
da - log(3)sin(alog(3))

3σ + log(4)cos(alog(4))
4σ

dσ
da+ log(4)sin(alog(4))

4σ -

... + log(2)sin(alog(2))
2σ

dσ
da - log(2)cos(alog(2))

2σ - log(3)sin(alog(3))
3σ

dσ
da+ log(3)cos(alog(3))

3σ + log(4)sin(alog(4))
4σ

dσ
da -

log(4)cos(alog(4))
4σ -... = 0

=⇒ dσ
da = (- log(2)sin(alog(2))

2σ + log(3)sin(alog(3))
3σ - log(4)sin(alog(4))

4σ + log(2)cos(alog(2))
2σ - log(3)cos(alog(3))

3σ

+ log(4)cos(alog(4))
4σ -...) /(+ log(2)sin(alog(2))

2σ - log(3)sin(alog(3))
3σ + log(4)sin(alog(4))

4σ + log(2)cos(alog(2))
2σ -

log(3)cos(alog(3))
3σ + log(4)cos(alog(4))

4σ -...) Exp 4



If we now totally differentiate Exp 1 and substitute in the dσ
da expression above (since we are

investigating the real component value when the real component is equal to the imaginary com-
ponent), we will have an expression that describes the derivative of the expression that describes
the real component value when the real component equals the imaginary component:

Totally differentiating Exp 1:

D(Exp 1) = log(2)cos(alog(2))
2σ

dσ
da+ log(2)sin(alog(2))

2σ - log(3)cos(alog(3))
3σ

dσ
da - log(3)sin(alog(3))

3σ + log(4)cos(alog(4))
4σ

dσ
da

+ log(4)sin(alog(4))
4σ -...

=⇒ D(Exp 1) = dσ
da ( log(2)cos(alog(2))

2σ - log(3)cos(alog(3))
3σ + log(4)cos(alog(4))

4σ -...)+ log(2)sin(alog(2))
2σ -

log(3)sin(alog(3))
3σ + log(4)sin(alog(4))

4σ -... Exp 5

Expressions 4 and 5 are convergent for σ > 0 (from the uniform convergence of the eta function

series, but can also be seen from the fact that log(n)
nσ eventually becomes a monotonically reduc-

ing series tending to zero from a (large) value of n for any value of σ > 0, which together with
the Dirichlet test shows convergence).

The implicit function theorem [4, p. 25.2.3] tells us that expression 4 (since expression 3 is con-
tinuously differentiable) describes a curve with neighbourhoods where σ is a function of a, except
where dσ

da is undefined as the denominator is zero.

The same process can be used to show that:

da
dσ = (- log(2)sin(alog(2))

2σ + log(3)sin(alog(3))
3σ - log(4)sin(alog(4))

4σ - log(2)cos(alog(2))
2σ + log(3)cos(alog(3))

3σ - log(4)cos(alog(4))
4σ -

...) /(+ log(2)sin(alog(2))
2σ - log(3)sin(alog(3))

3σ + log(4)sin(alog(4))
4σ - log(2)cos(alog(2))

2σ + log(3)cos(alog(3))
3σ - log(4)cos(alog(4))

4σ -
...) Exp 6.

And:

D(Exp 1) = da
dσ ( log(2)sin(alog(2))

2σ - log(3)sin(alog(3))
3σ + log(4)sin(alog(4))

4σ -...)+ log(2)cos(alog(2))
2σ -

log(3)cos(alog(3))
3σ + log(4)cos(alog(4))

4σ -... Exp 7

It is important to note that expression 7 is equivalent to expression 5 (they describe the same
function).

Similarly the implicit function theorem tells us that expression 6 describes a curve with neigh-
bourhoods where a is a function of σ, except where da

dσ is undefined as the denominator is zero.

At this point it is useful to note the Harmonic Addition Theorem (described in [5, p. 200] and
its implications for expressions 5 and 7 when expressions 4 and 6 are substituted in.

Restating the harmonic addition theorem:

Given xs(t)=ΣL
i=1αisin(ω0t+φi) or xc(t)=ΣL

i=1αicos(ω0t+φi), it is possible to find β and Ψ

so that xs(t) = βsin(ω0t+ Ψ) or xc(t) = βcos(ω0t+ Ψ), where:



β = (ΣL
i=1α

2
i + 2ΣL−1

i=1 ΣL
j=i+1αiαjcos(φi − φj))

1
2 and:

Ψ = arg(
ΣLi=1αisinφi
ΣLi=1αicosφi

),−π < Ψ ≤ π

In the limit as L increases, the expression for β does not appear to converge. For the next steps
of the process, we shall consider partial sums of the Dirichlet eta function (ie n ranges from 2
to L (however large) and not necessarily to ∞).

With the above constraint, if we now use the harmonic addition theorem combined with expres-
sions 5 and 4, substituting log(2) for ω0 and a for t and noticing that the αi and φi terms are
identical for both the sin and cos series:

dσ
da = (- log(2)sin(alog(2))

2σ + log(3)sin(alog(3))
3σ - log(4)sin(alog(4))

4σ + log(2)cos(alog(2))
2σ - log(3)cos(alog(3))

3σ + log(4)cos(alog(4))
4σ -

...) /(+ log(2)sin(alog(2))
2σ - log(3)sin(alog(3))

3σ + log(4)sin(alog(4))
4σ + log(2)cos(alog(2))

2σ - log(3)cos(alog(3))
3σ + log(4)cos(alog(4))

4σ -
...)

=⇒ dσ
da = ((-βsin(log(2)a+ Ψ)+βcos(log(2)a+ Ψ))/(βcos(log(2)a+ Ψ)+βsin(log(2)a+ Ψ)))

Expression 8

D(Exp 1) = ((- log(2)sin(alog(2))
2σ + log(3)sin(alog(3))

3σ - log(4)sin(alog(4))
4σ + log(2)cos(alog(2))

2σ - log(3)cos(alog(3))
3σ +

log(4)cos(alog(4))
4σ -...) /(+ log(2)sin(alog(2))

2σ - log(3)sin(alog(3))
3σ + log(4)sin(alog(4))

4σ + log(2)cos(alog(2))
2σ - log(3)cos(alog(3))

3σ

+ log(4)cos(alog(4))
4σ -...))* ( log(2)cos(alog(2))

2σ - log(3)cos(alog(3))
3σ + log(4)cos(alog(4))

4σ -...)+ log(2)sin(alog(2))
2σ -

log(3)sin(alog(3))
3σ + log(4)sin(alog(4))

4σ -...

=⇒ D(Exp 1) = ((-βsin(log(2)a+Ψ)+βcos(log(2)a+Ψ))*(βcos(log(2)a+Ψ)/(βcos(log(2)a+
Ψ)+βsin(log(2)a+ Ψ)))+ βsin(log(2)a+ Ψ)

=⇒ D(Exp 1) = (βcos(log(2)a + Ψ)(βcos(log(2)a + Ψ)-βsin(log(2)a + Ψ))+βsin(log(2)a +
Ψ)(βcos(log(2)a+ Ψ)+βsin(log(2)a+ Ψ)))/(βcos(log(2)a+ Ψ)+βsin(log(2)a+ Ψ))

=⇒ D(Exp 1) = β/(cos(log(2)a+ Ψ)+sin(log(2)a+ Ψ)) or:

D(Exp 1) = βcsc(log(2)a+ Ψ + π
4 )/2

1
2 Expression 9

Using the same approach with expressions 7 and 6:

da
dσ = ((-βsin(log(2)a+Ψ)-βcos(log(2)a+Ψ))/(-βcos(log(2)a+Ψ)+βsin(log(2)a+Ψ))) Expres-
sion 10

And:

D(Exp 1) = -βcsc(log(2)a+ Ψ− π
4 )/2

1
2 Expression 11

Note that expressions 9 and 11 are equivalent - they describe the same function.

Expressions 8-11 deserve close study.

Firstly, we can look at β in more detail. Starting from the definition of β above: β =

(ΣL
i=1α

2
i + 2ΣL−1

i=1 ΣL
j=i+1αiαjcos(φi − φj))

1
2



Note that β as an amplitude does not change sign for varying values of σ and a (given we that
we do not rearrange any series), but potentially has a minimum of zero. It is also useful to note
that in general, the limit as x→ 0 of yx/x is y and of y(x2)/x is 0.

In fact, it seems that β does not equal zero in any of the above expressions (although this is not
a necessary result for the purposes of this paper). This is because for β to be zero then in the
expression xc(t)=ΣL

i=1αicos(ω0t+ φi), xc(t) would be zero for all t (ie the expression would be
identically zero for all t). This would mean that, given that φi are all fixed, they would need
to be zero or multiples of π (or appropriate multiples of expressions including π, such that the
ΣL
i=1αicos(ω0t+φi) summed identically to zero for any t). In the particular case here, where φi

= (alog(n)-alog(2)), this is not the case. This means that in this case, β 6= 0.

The csc function has no zeros (and is undefined in between sections of alternating all positive
values and all negative values) . All expressions are valid for all σ and a values for the eta
function (and describe a single valued function for each σ,a input) - except those points where
dσ
da and da

dσ are undefined.

More specifically, firstly looking at expressions 8 and 9: Expression 8 describes a number of curves
with neighbourhoods where σ is a function of a, except where expression 8 is undefined when the
denominator is zero. Expression 9 gives the derivative of the function which describes the value
of the real part of η(s) in those neighbourhoods, which is positive(negative) in one neighbourhood
where σ is a function of a (ie the value of the real part of η(s) increases(decreases) for increasing
a), is undefined at the same points where expression 8 is undefined and is negative(positive)
in the adjacent neighbourhood (ie the value of the real part of η(s) increases(decreases) for de-
creasing a). This means that each separate curve segment describing the value of the real part
of η(s) when Re(η(s)) = Im(η(s)) always has a positive(negative) derivative.

The same argument holds for expressions 10 and 11 (except that a is now a function of σ) and
Expression 11 gives the derivative of the function which describes the value of the real part
of η(s) in those neighbourhoods, which is positive(negative) in one neighbourhood where a is
a function of σ (ie the value of the real part of η(s) increases(decreases) for increasing σ), is
undefined at the same points where expression 10 is undefined and is negative(positive) in the
adjacent neighbourhood (ie the value of the real part of η(s) decreases(increases) for increasing
σ. This means that each separate curve segment describing the value of the real part of η(s)
when Re(η(s)) = Im(η(s)) always has a positive(negative) derivative.

It is important to note that expressions 8 and 10 are undefined at different values - which means
that we can define the function completely (with no change of sign for the total derivative of
the function) at all points since expressions 8 and 10 describe the same function.

This means that the separate curve segments described by expression 9 and expression 11 either
have all positive or all negative derivatives (derivative does not change sign but might equal
zero, although individual segments might have positive or negative derivatives) - which means
that they can only have a single zero per curve. This, in turn, means that there can be only one
zero in the local region of any particular value of a.

The result of this is that the function approximating the value of the real component of the eta
function when the partial sums of the series representing the real and imaginary components
of η(s) have the same value can have at most one zero for a discrete complete section of curve.



This means that for any fixed value of a, η(s) can only have one zero (in order to have more
zeros, then the derivative would need to change sign at some point). This, combined with the
facts that 1) the eta function zeros are the same as the zeta function zeros and 2) The Riemann
xi function shows that a zeta function zero at s means there is a corresponding zero at (1-s),
means that s and (1-s) must have the same real component (1/2).

These results hold for any value of a and for any value of L. This means that even though the
expression for β does not at first sight appear to converge, we could argue that the derivative
will still be non-zero everywhere when L tends to the limit. More rigorously, we can argue that
(based on the fact that partial sums of series approach the value of the series with a known
estimate of the error as the number of terms in the partial sum increases) for any value of a we
can show that the real component of the eta function has a single zero to any required degree
of accuracy (by increasing L).

We can further note that in the expression for Ψ, that is: Ψ = arg(
ΣLi=1αisinφi
ΣLi=1αicosφi

),−π < Ψ ≤ π

The two series in the expression both converge (the αi terms are of alternating sign and strictly
reducing in magnitude and both the sin and cos series are actually phase shifted versions of the
cos(xlog(n)) and sin(xlog(n)) series - by xlog(2) - which have already been proved to be bounded
for all partial sums) - which means that 1) in the limit the expression for Ψ converges and 2) we
can evaluate the value of β by using the value of Ψ and thee values of the convergent series for
real and imaginary components. This in turn means that we can evaluate β in the case of the
infinite series without formally proving the convergence of the series for β (although I suspect
it may converge).
The implication is that the Riemann Hypothesis is true.

4. Conclusions
Known previously - The Riemann zeta function does not have zeros outside the critical strip.

In Section 2 the apparent behaviour of the paths of the points where Re(zeta(s))=Im(zeta(s))
were observed, showing that it was unlikely that there would be 2 zeros of ζ(s) for the same
value of a (the imaginary component of s). In addition, the property of the Riemann xi function
that ξ(s) = ξ(1-s) was noted.

In section 3 the Dirichlet eta function was introduced as an appropriate mechanism for investi-
gating the zeros of the zeta function for ζ(s) where σ > 0.

In Section 3.2 the convergent series representation of the real and imaginary parts of the eta
function were established.

In section 3.3 the convergent series representations of the derivative of the implicit function
describing the function where the real part is equal to the imaginary part of the eta function
was established. Combined with the series representations of the derivative of the real part of
the function when the real part is equal to the imaginary part and using the harmonic addition
theorem (and working with partial sums due to the non-convergence of resulting expressions) it
was shown that the derivative will not change sign along any specific curve (ie curves that have
all positive derivatives or all negative derivatives).

This leads to the conclusion that the real component of the eta function where the real part of
eta equals the imaginary part of eta has only a single zero for a fixed value of a (the imaginary



part of s), which can be shown to any required degree of accuracy by increasing L (the num-
ber of terms in the partial sum). It is also implied (by the non-converging expression) that the
derivative does not change sign for any value of L, removing the need for relying on partial sums.

Combining these conclusions, all of the roots of η(s)and therefore ζ(s) are such that for each
value of the imaginary component (a) there is at most one root, which means that since ξ(σ+ai)
= ξ(1− (σ + ai)) those roots will be at σ=1/2 - which means that the Riemann Hypothesis is
true.
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