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We outline the relativistic formalism which gives a more comprehensive explanation of the 
complexification scheme. Such issues as considering the Higgs Boson as a soliton depends on Lorentz 
invariance and relativistic causality constraints. We relate the complexification of Maxwell's equations 
to models of nonlocal micro and macro phenomena. In this chapter we relate the electromagnetic fields, 

andF A
 , the potentials to the gravitational field, G . We examine, for example, the manner in 

which advanced potentials may explain the remote connectedness which is indicated by the Clauser test 
of Bell's theorem. Similar arguments apply to Young's double slit experiment. The collective coherent 
phenomena of superconductivity is also explainable by considering the relativistic field theoretic 
approach in which wave equations are solved in the complex Minkowski space.  
 
 
1. Relativistic Conditions for Maxwell's Equations in Complex Geometries and Invariance of the 
Line Element  
 
This section introduces the relativistic form of Maxwell's equations. The fields E and B  are defined in 

terms of ( ,A  ), the four vector potential; and the relativistic form of E and B  is presented in terms of 

the tensor field, F (where indices  and run 1 to 4). We then complexity F and determine the 

expression for the four vector potential  ,jA A   in terms of F . (index j runs 1 to 3). Discussion 

of line element invariance is given in terms of the fields F . 

 In Chap. 6 we describe the complex form of A fields and through the formalism in this section we 

can relate this to the complex forms of E and B . We utilize Weyl's action principle to demonstrate the 

validity of the use of the complex form of F  [1]. Weyl relates the gravitational potential, G , to the 

electromagnetic ‘geometrizing’ potential A , or geometrical vector, using the principle of stationary 

action for all variations G and A  [2]. The quantity A , or vector potential, which we identify with 

A  by symmetry relations on the complex conjugate of A, is related to F , the electromagnetic force 

field, E by a set of gauge invariant relations. The electromagnetic force F is independent of the gauge 

system. The curl of A has the important property 
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where F is antisymmetric or F F   , and changing A  to ' /A A x       is a typical gauge 

transformation where the intrinsic state of the world remains unchanged. 
 Defining the 4-vector potential as A , which is written in terms of the 3-vector jA and , where  is 

the fourth or temporal component of the field. The indices ,   run 1 to 4 and j runs 1 to 3. 

 Then Maxwell's equations in compact notation in their usual tensor form in terms of F , (for c = 

1) are 
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then the equations   1/ /E c B t     and 0B  can be written 

   

                                as 0
F F F

x y z
    
  

  
       (3) 

 

or 0F    for 1 2 3, , ,x x x y x z    and 4x t . 

To complexity the elements of F  we can choose the conditions, for 

 

      41 42 43, ,F F F iE  and  23 32 12, ,F F F B ,  

    or                        (4) 

 , ,x y zE E E iE  and  , , .x y zB B B B     

 
The complex conjugate of the electric and magnetic fields are written in terms of the complex conjugate 

of F  or *F F 
   . Tin this regard there is a useful theorem that states [3] 4 *

123 F F     or 

*( ).t
xyz F F      For  23* 31* 12*, ,F F F iE  and  41* 42* 43*, ,F F F B   we then will obtain 

* / 0F x     or 
* 0F    which gives the same symmetry between real and imaginary 

components as ours and Inomata's formalism [4]. 

 The expressions for the other two Maxwell equations 4E     and 
1

e

E
B J

c t


  


can be 

obtained by introducing the concept of the vector potential in the Lorentz theory as first noticed by 

Minkowski [5]; we have the 4-vector forms  1 2 3, , A    and 4 ,i   so that B A  and
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 or F A   for the vector and scalar potentials

 1 2 3, , ,A A A A 


. If A is a solution to F A   then '

x 

 



 also is also a solution by gauge 

invariance conditions and 41
0A

c t


   


. We term the fourth component of A as  or 4  inter-

changeably. Then from Lorentz theory we have the 4D form as 0
A

x









or 0.A   We now write 

the equations for 4E    and 
1

e

E
B J

c t


   


 as 

 

             
F

s
x










 or .F s            (5) 

 
 The most general covariant transformation group of electromagnetic field equations, which are more 
general than the Lorentz group, is formed by affine transformations which transform the equation of the 

light cone, 2 0s   into itself. The properties of the spacetime manifold are defined in terms of the 
constraints of the line element, which relate to the gravitational potential, G . We also form an analogy 

of the metric space invariant to the electromagnetic source vector, s  [6]. The Lorentz group contains 

the Lorentz transformations as well as inversion with respect to a 4D sphere, or hyperboloid in real 
coordinates. Frank [7] discusses the Weyl theory and gives a proof that the Lorentz group together with 
the group of ordinary affine transformations, is the only group, in which Maxwell's equations are 

covariant [7]. Recall that an affine transformation acts as x x  
 with an inverse 'x x  


 . 

The affine group contains all linear transformations and the group of affine transformations transforms 
s2 = 0 on the light cone into itself.  
 In the Weyl geometry, where we have from before, F    and    

 

           
1 g F

F
xg






  


            (6a) 

 

and       
1 g F

F
xg







  


            (6b) 

 

with the signature (+,+,+,-) and where g  is the square root of the metric tensor representation of  g

, which is proportional to x,y,z. Then using the theorem in Pauli [8],  
 
            F F F               (7) 

 

and from before, F s   and since 0    and then 0x     and we have from 
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        A A s                 (8) 

or  
             A s              (9) 

 
for our potential equation, where  is the D'Alembertian 4-space operator, and 
 

      3

2 2 2 2 2
2

2 2 2 2 2 2

1
Rx y z c t t

 
       

            
    

   (10) 

 

where   is a metrical like transform. 

 The important aspect of this consideration [9] is our ability to relate the electromagnetic potential to 
a corresponding spacetime metric interval s or s2. Hence, we can construct the invariant relations for 

our fields in terms of our Lorentz invariance 4-space conditions where the g relates to ands  
2tog s . We relate the introduction of a complex spacetime to the complex expansion of the electric 

and magnetic fields in this section and demonstrate their self-consistency. We examine this in more 
detail at the end of this section where we consider a generalized affine connection. We relate the 
electromagnetic potential, A  and 4  to g  as g  and also to the square root of the invariant, or s.  

 The key to the relationship of complex F and complex spacetime is the analogy between   and 

g .We can relate the electromagnetic scalar potential into the interval of time as in Eq. (9),

A s    and we make the analogy of the electromagnetic potential, A to the gravitational 

potential,G which is related to the invariance conditions on s2. Both potentials are related to space-

like or time-like interval separation. Note that in the A s   equation we have a g  factor in order 

to form the invariant. In the equation for s2, the invariant is found directly as 2 .s g x x 
 We address 

the set of invariant relations for the case of complex E  and B fields at the end of this section. We relate 

this then to the deSitter algebras and the complex Minkowski metric. 

 We associate the Ex component of F or 41 xF E with '
4  as follows: 

 

          '
41 4 2x

e
F E

r
             (11) 

 
in which 4 e  or e is associated with electric charge on the electron. This approximation is made in the 
absence of a gravitational field. Maxwell's equations are intended to apply to the case in which no field 

of force is acting on the system or in the special system of Galilean coordin-ates  , , , ,x y zA A A A 

where  , ,j
x y zA A A A  is the vector potential and   is the scalar potential and A  is the covariant 

form. For the contravariant form, we have  , ,x y zA A A A     and in empty space we have 

 

           0A  .            (12) 

In non-empty space then 
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                 A J           (13) 
 
or we can write this as 
 

           
2

2
2

A
A J

t


     


      (14) 

 
which is true only approximately for the assumption of flat space for Galilean coordinate 
transformations. This is the condition which demands that we consider the weak Weyl limit of the 
gravitational field. 

 The invariant integral, I for F   is given by 
 

            I = 
1

4
F F gd

             (15) 

 
where d stands for dx,dy,dz. 
The quantity, L is called the action integral of the electromagnetic field. Weyl [10] demonstrated that 
the action integral is a Lagrangian function, or 
 

       L =  2 2 2 2 2 21

2 x y z x y zdt B B B E E E dxdydz            (16) 

 
which is of the form L = (T – V)dt. Note the definition for the kinetic energy, T and the potential energy, 
V for the Hamiltonian is H = T + V the Lagrangian, L = T – V. By describing an electron in a field by 
Weyl's formalism one has a more general, but more complicated, formalism than the usual Einstein-
Galilean formalism [11]. We write a generalized Lagrangian, L in terms of complex quantities. For 

example, we form a modulus of the complex vector B as 
2 * 2 2

Re Im .B BB B B   This is the 

Lagrangian form for the real components of E and B in 4-space with Re ImE E iE  and 

Re ImB B iB  for the complex forms of E  and B . The complex Lagrangian in complex 8-space 

becomes 
 

      L  2 2 2 2
Re Im Re Re Im Im

Re Im

1

2
dt dt B E B E       Re Re Re Im Im Imdx dy dz dx dy dz   (17) 

 
 

 This is an 8D integral, six over space, two over time (not represented here) where all quantities of 
the integrand are real because they are squared quantities. We also write an expression for a generalized 
Poynting vector and energy relationship. There are two equations which define a vector quantity, A  in 

electromagnetic theory which corresponds to the gravitational potential, G  (which relates to the 

metric, g ). We have 
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1 1

E
4 2

F F
g

 




      
              (18) 

and 

             
1

4
F F J

A





       
           (19) 

 

where E  is the energy tensor and J   is the charge and current vector. Two specific cases are for a 

region free from electrons, or 0,T E    or a region free of the gravitational potential or in the 

weak Weyl limit of the gravitational field, F J J     where   is the 4-space D'Alembertian 

operator. The solution for this latter case is for the tensor potential ,A  

 

             1

4

de
F A A

r  
            (20) 

 
if all parts of the electron are the same or uniform in charge. For the proper charge, 0 ,  we have 

0J A   where de is the differential charge. 

 In the limit of 0,A
   then 0 ,  the proper density, is given as 

2

0 12
J J 





   for  
1
221 


  In Weyl's 4D world then, matter cannot be constituted without 

electric charge and current. But since the density of matter is always positive the electric charge and 
current inside an electron must be a space-like vector, thus the square of its length is negative. To quote 
Eddington:  
 

It would seem to follow that the electron cannot be built up of elementary electrostatic charges but 
resolves into something more akin to magnetic charges [12].  

 
Perhaps we can use the structure of Maxwell's equations in complex form to demonstrate that this 

magnetic structure is indeed the complex part of the field and ask what the source is. A fundamental 
question is, what gives rise to charge? What attributes of matter and field give rise to charge? It is 
interesting to note that the charge on a proton and electron is exactly equal and opposite even though 
the protons mass, mp is ~ 1860 times greater than the mass of the electron, me.  
 Considering F and A  as complex entities rather than 4-space real forms, we may be required 

to have complex forms of the current density. The relationship between F and A  has a spatial 

integral over charge. If we consider F and A  as complex quantities, we deduce possible 

implications for the charge e or differential charge de being a complex quantity. Perhaps the expression 

Re Ime e ie   is not appropriate, but a form for the charge integral is, such as: Re Im /de de r  where  

Re Imr r ir  is more appropriate. Fractional charges such as for quarks, give rise to the question of the 

source of charge in elementary particles and its fundamental relationship to magnetic phenomena 
(magnetic domains) are essential considerations and may be illuminated by this or similar formalisms. 
Neither the source of electrics or magnetics is known, although a great deal is known about their 
properties. 
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 Faraday's conclusion of the identical nature of the magnetic field of a loadstone and a moving current 
may need reexamination as well as the issue of Hertzian and non-Hertzian waves. A possible description 
of such phenomena may come from a complex geometric model [13]. As discussed, one can generalize 
Maxwell's equations and examine real and imaginary components which comprise a symmetry in the 
form of the equations. We can examine in detail what the implications of the complex electric and 
magnetic components have in deriving a Coulomb equation and examine the possible way, given a 
rotational coordinate, this formalism relates to the 5D geometries of Kaluza and Klein. The approach 
we take in this chapter does not involve a compact rolled up 5th dimension of the original Kaluza-Klein 
approach which may lead to singularity problems. 

 Starting with F  , A  and ,J   Maxwell's equations can be compactly written as 
F

J
x










 and 

again, 
A A

F
x x
 


 

 
 
 

 and F J 
  . Suppose that an electron moves in such a way that its own 

field on the average just neutralizes an applied external field 'F in the region occupied by the electron. 

The value of F averaged for all the elements of change constituting the electron is given by 

 

              1 2

12

1

4

de de
eF A A

r  
    

 
and                            (21) 
 

             
21

4

e
eF A A

a  
   

 
where 1/a is the average value of 1/r12 for every pair of points in the electron and a will then be a length 
comparable to the radius of the sphere throughout which the charge is spread. The mass of the electron 

is 2 / 4 .m e a  We thus have a form of Coulomb's law; and as we have shown, the complex form of 

F   is consistent with Coulomb's law which is incorporated into Maxwell’s equations in a manner that 
has both a real and an imaginary form of Coulomb's law. 
 Self-consistency can be obtained in the model by assuming that all physical variables are complex. 
Thus, as before, we assumed that space, time, matter, energy, charge, etc. are on an equal footing as 
coordinates of a Cartesian space quantized variable model. In [14] we present a 10D space applicable 
to quantum theory and cosmology in terms of standard physical quantities. It is reasonable then to 
complexity space and time as well as the electric and magnetic fields and to determine the relationship 
of the equations governing standard physical phenomena. Examined in detail is any unifying properties 
of the model in terms of complexifying physical quantities and examining any new predictions that can 
be made. 

 Faraday discusses some possible implications of considering A , rather than F  as fundamental in 

such a way that A  may act in a domain where F  is not observed [13]. In a later section we present 

a complexification of A rather than E and B (in F  ). Continuing with the relationship of ,F   the 

vector A , and scalar potential, and the source terms of metric space, s  let us relate our complex 

electromagnetic field, ,F  to complex spacetime. We have the volume element, d gdxdydz  for 
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  2ds g dx dx 
            (22) 

 
 

and for a particular vector component of .F g f 
   

Then we have 
 

             
1 f g

F
xg






  


           (23) 

 

For F    the function f   is related to the electromagnetic potential and gravitational potential as 

f g
x

 






. As before, 

F
J

x









 and .

F
J

x


 








As before we also had

 41 42 43, ,F F F iE  and  23 31 12, ,F F F B  then the generalized complex form of F   is 

 

          

0

0

0

0

z y x

z x y

y x z

yx z

i
B B E

c
i

B B E
c

F
i

B B E
c

iEiE iE

c c c



   
 
   

  
  
 
 
  
 

         (24) 

 
which can also be written as 
 

           ,
i

F B E
c

   
 

 or 
* , .

iE
F B

c
   
 

        (25) 

 
 
We can now relate the complex E and B fields of the complex spacetime coordinates. 

 Returning to the compact notation for the two homogeneous equations, 
1

0
B

E
c t


  


 and 

0B   as 

 

             0
F F F

x x x
  

  

  
  

  
          (26) 
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It is very clear that introducing the imaginary components into these equations as  / ix  and 

 / it  leaves them unchanged. Examine the inhomogeneous equations 4E     and 

1
.e

E
B J

c t


  


 Then 

              
AA

F
x x


  


 
 

   

    
or                            (27) 
 

              F A   for  ,jA A 


, 

 
 
as before j runs 1 to 3 and all Greek indices run 1 to 4. Then the inhomogeneous equations become in 

general form, F x s      which sets the criterion on s for using  Imix  ; that is, ' .s is  To 

be consistent [15], we can use
1

, .jA A
c    

 
 

 We then consider the group of affine connections for a linear transformation from one system   to 
another '  where   and '  are two frames of reference and  
 

               'x a x             (28) 

 

where a a
    and det 1.a   In general we can form a 4 x 4 coefficient matrix for the usual 

diagonal condition where, 11 1,a   22 331, 1a a  and 44 1,a   all the other elements are zero, i.e. 

the signature (+++-). We can choose arrays of 'a s  both real and imaginary for the general case so 

that we obtain forms for space and time components as being complex; for example, 
 
 

                 '
3 3 4x x i x              (29) 

 

for   1/22
4 , 1 and / .x t v c  


     Other examples involve other combinations of complex 

space and time which must also be consistent with unitarity. We have discussed an 8-space formalism 
for the usual diagonal conditions. See Table 1. 
 Let us examine the effect of a gravitational field on an electron. Then we discuss some 
multidimensional models in which attempts are made to relate the gravitational and electromagnetic 
forces. Some of these multidimensional models are real and some are complex. The structure of the 
metric may well be determined by the geometric constraints set up by the coupling of the gravitational 
and electromagnetic forces. These geometric constraints govern allowable conditions on such 
phenomena as types of allowable wave transmission and the manner in which remote spacetimes are 
connected. Nonlocality or remote spacetime connections have implications for electromagnetic 
phenomena such as Young's double slit experiment and Bell's theorem. 
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Table 1 Coefficient Matrix For The Affine Connection 

For The Transformation From Reference Frame   To '  

1 2 3 4

'
11 12 12 121

'
21 22 23 242

'
31 32 33 343

'
41 42 43 444

x x x x

a a a ax

a a a ax

a a a ax

a a a ax

 

 
 In fact, these experiments are more general than just the properties of the photon, that is, both 
experiments above can be and have been conducted with photons and other particles; and therefore what 
are exhibited are general quantum mechanical properties. Remote connection and/or transmission and 
nonlocality are more general than just electromagnetic phenomena but certainly have their application 
in electrodynamics and the nonlocal properties of the spacetime metric can be tested by experiments 
involving classical and quantum electro-dynamic properties.  
 
 
2. Complex E and B in Real 4-Space and the Complex Lorentz Condition 
 
Another approach to relate the relativistic and electromagnetic theories is the approach of Wyler in his 
controversial work at Princeton [16]. The model of Kaluza and Klein use a 5th rotational dimension to 
develop a model to relate electromagnetic and gravitational phenomena. This geometry is one-to-one 
mapable to our complex Minkowski space. Wyler introduces a complex Lorentz group with similar 
motives to those of Kaluza and Klein [17,8]. Wyler’s formalism appears to relate to our complex 
Maxwell formalism and to that of Kaluza and Klein. The fundamental formalism for the calculation of 
the fine-structure constant,   is most interesting but perhaps not definitive. 
 

             
22

0

04 2

e ce

c h




 


           (20) 

 
where e is elementary charge, 0 vacuum permittivity and 0 the magnetic constant or vacuum 

permeability. An anthropic explanation has been given as the basis for the value of the fine-structure 
constant by Barrow and Tipler. They suggest that stable matter and intelligent living systems would not 
exist if   were much different because carbon would not be produced in stellar fusion [19]. 
 Wyler [16] introduces a complex description of spacetime by introducing complex 
generators of the Lorentz group. He demonstrates that the Minkowski, Mn group is conformally 
isomorphic to the SO(n,2) group and then introduces a Lie algebra of M4 which is isomorphic 
to SO(5,2). From his five and four spaces he generates a set of coefficients that generate the 
value of the fine structure constant, . It is through introducing the complex form of the 
Lorentz group, L(Tn) that he forms an isomorphism to SO(n,2). Wyler calculates the 
electromagnetic coupling constant in terms of geometric group representations. He expands the 
generators of the set of linear transformations, Tn, of the group L(Tn). By definition, L(Tn) is 
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isomorphic to the Poincairé group P(Mn), where Mn is the Minkowski space with signature 
(+++-) or, more generally, (1, n-l). The conformal group C(Mn) is then isomorphic to the 
SO(n,2) group, which is of quadratic form and signature (n,2).  
 Wyler then chooses the complex form  
 
                 Tn = Rn + iVn             (31) 
 
where Rn represents TRe , and Vn represents TIm for y Rn , or y is an element of Rn and all y's are y > 0. 
The Poincairé group, P(Mn) is the semi-direct product of the Lorentz group SO(l, n-l) and the group of 
transformations Rn then is g  S0(n,2). 
 Then C(M4) SO(4,2) is the invariance group of Maxwell's equations. The hyperboloids of the 4-

mass shell momentum operators are 2 2
1 4,...,p p  = m2 from the representation of the Lie group geometry 

of M4 isomorphic to SO(5,2). The intersection of the D5 (5D) hyperspace with D4 (4D) gives a structure 
reduced on D4 which is colinear to the reduction of a Casimir operator function, f(z) harmonic in D4. 
 The coefficients of the Poisson group Dn (n dimensional) as D4 and D5 give the value of  ~ 
1/137.036. Actually, it is the coefficients of the Poisson nucleus Pn(z, ) harmonic in Dn which gives 

the value of   in terms of z where z is, in general, a complex function and  is a spinor. The value is 

obtained from the isomorphic groups SO(5) x SO(2) and SO(4) x SO(2) which gives (9 / 8 4) (V(D5))1/4 

= 1/137.037 where V(D5) is a Euclidean value of the D5 domain [20]. 
 The expression for the Poisson nucleus is given by Hau [20]. Note that the Wyler calculation is 
another example of the relationship between a fifth dimension and a complex "space" of Lorentz 
transformation. The Wyler theory appears to strongly support the fundamental nature of geometric 
models. If one can calculate the fine structure constant or any other force field coupling constants from 
first principles, this gives great impetus to the concept that geometric constraints are extremely 
significant and may potentially be able to explain the origin of scientific law. In particular, we may be 
able to at least describe the major force fields (nuclear, electromagnetic, weak, and gravitational in 
terms of a geometric structure and, perhaps, by this formalism demonstrate the unifying aspects of major 
forces of nature [14,21]. 
 Wyler also associates the conformal group C(Mn) SO(4,2) with the invariant group of Maxwell 
equations. The 4-mass shell conditions on the hyperboloids of mass form the representation of the Lie 
algebras of M4. Isomorphism to SO(5,2) and S(4,2) intersection lead to a model of the intersection of 
Maxwell's field and the elementary particle field, i.e. a possible unification of electromagnetic and weak 
interactions as another approach to the electroweak vector - axial vector model [22]. In the presence of 
an external gravitational field, the cosmological term is small and finite and depends on vacuum state 
polarization. In fact, the cosmological term is given by the sum of all vacuum diagrams. In 
supersymmetry the cosmological term vanishes and therefore the total zero-point energy density of the 
free fields vanishes [23]. 
 We return to our complex E  and B  fields and suggest the relation of our formalism to the Wyler 

formulation. Using the invariance of line elements 2 2 2s X c t  for 2r ct X   for 
2 2 2 2 ,X x y z    to measure the distance from a test charge to an electron charge, we can write for 

the imaginary part of the complex Maxwell equation    Im
Im Im

1 iB
iE iJ

c t


  


then for Im 0.E   

 

            Im
Im Im

1
0 or

iB
iE iJ

c t


  


        (32) 
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or 

            
 Im Im

Im Imor
iB B

icJ cJ
r r

 
 

 
     (33) 

 
for the assumed imaginary, BIm commutator relation. 
 The energy associated with the imaginary part of the magnetic field, ImB  is of interest. We calculate 

an energy invariant by squaring and integrating the above equation as [1,4] 
 

              E 
2

2 0z
m

B
J Rd Rd

r 
                  (34) 

 
The distance function, R(r) over the volume element, d  is assumed to be point-symmetrical and 
vanishes for positive real energy states. The volume, d  is constructed to include a small real domain 
where a point charge is located, avoiding possible divergences. The negative value of the energy integral 
leads us to hypothesize about the possible source of this energy, such as arising from the vacuum. 
Perhaps it can be related to vacuum state polarization in a Fermi-Dirac sea model, as we have presented 
before [24]. Another possible association is with advanced potential models such as those of de 
Beauregard [25,26]. A third and perhaps the most interesting association would be with the complex 
coordinate space [27,28].  
 In Weyl's non-Riemannian geometry, [10,11] he presents a model that does not apply to actual 
spacetime but to a graphic representation of that relational structure, which is the basis in which both 
electromagnetic and metric variables are interrelated [12]. This is the deep significance of the geometry 
and relates to work of Hanson and Newman [29] and Rauscher [27,28] on the complex Minkowski 
space as well as Wyler's work [16] on complex group theories, such as complex Lorentz invariance, 
where he attempts to reconcile Maxwell's equations and relativity theory. The examination of the 
hyperspheres of the de Sitter space is presented by Ellis, where he attempts to unify electromagnetic 
and gravitational theory [30]. Eddington has suggested that the Weyl formalism, developed around 
1923, is one of the major advances in the work of Einstein. The key is that if electromagnetism and 
QED can be reconciled with the gravitational field, along with the electroweak theory, a unity of the 
four forces can be made with a simpler and perhaps more reasonable model than the current Theories 
of everything (TOE). The strong force must also be included. 
 There is a significant difference between Einstein's generalization of Galilean geometry and Weyl's 
generalization of Riemannian geometry. The gravitational force field renders Galilean geometry useless 
and therefore required a move to Riemannian geometry. In terms of Weyl's geometry, we find that the 
electromagnetic force, F , is comparable to the surface of an electron of 4 x 1018 volts/cm, [12] and 

the size of the charge was compatible with the radius of curvature of space. 

 For the electromagnetic mass, 2 / 4 ,em e a  we have  

 

              
1

8gm ds G gd


        (35) 

 
where we denote the curvature R by G for the general case of both gravitational and electromagnetic 
field. The ratio of the masses /g em m  relates to the ratio of field strengths of about 10-37.  
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3. Complex Electromagnetic Forces in a Gravitational Field  
 
We used the weak Weyl limit of the gravitational force in previous calculations of this chapter. We will 
outline how the complexification of F can be formulated geometrically. We demonstrate that we 

obtain the same results for the relationship of mass and charge. Let v denote the velocity vector as 

/v dX ds
 of the electron in the field, and 0 denote the proper density of charge, e. The current is 

given by 0 .J v  The fields, F refer to the applied external force of the electron. Returning to 

Eddington's approach [11], we then have 
 

                  0 .mA A F A 
               (36) 

 
We can also write 0 as e in the above equation.  

 In the limit of our gravitational field we can neglect the gravitational field as an external field or also 
the gravitational energy of the electron. For an electron in a gravitational field we start from the field 

equations with the Ricci curvature tensor, R
  and the metric tensor, g

 . For the case where no matter 

is present we have:  
 

             
4

1 8

2
G R g R GE

c
    
    


            (37) 

 

using the scalar curvature,
4

8
0

GE
R

c


  , where 4 /F c G  and G is the gravitational constant. This 

equation simplifies to  
  
               8R E              (38) 

 
and applies to certain regions that contain electromagnetic fields but no matter and no electron charges. 
 For the only surviving component in the energy considerations, we have 
 

                 41 14F F
r


  


        (39) 

 

where r is the radial separation. Then 41 44
41F g F  and 

2

e

r r





 and 

 

    
2

1 2 3 4
1 2 3 4 4

1 1
.

2 2

e
E E E E

r r


      


        (40) 

 

 One can associate me, the mass of the electron, with 4 ,e  giving 
2

132
~ 1.5 10

e

m

   cm and 

justifies identifying 4  with the electrical charge e for 4 e  or 
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                41 2

1

4

e
F

r r





 


            (41) 

 
We use  

   F J J     for
4

de
A

r



            (42) 

and then 
 

             
 
   1

4 4

de A A de
F A A

r r
 

   


        (43) 

 
because all parts of the electron obey the same relativity where 
 

              
2

2
2

A
A J

t


 

 


 

and                           (44) 

                
1

4

ds d
A v

dt r
 



 


  .    

  

for velocity, v , we drop the   since all measurements are assumed to be proper time measurements. 

Integrating over the electron between pairs of points on the electron surface, 
 

             
2

1 2

12

1 1

4 4

de de e
eF A A A A

r a     
            (45) 

 
where 1/a is the average value of 1/r12. We can write Eq. (43) as 
 

                     
21

4

e
eA F A A A

a
 

  
        (46)  

 

and using the equation from before, relating , ,v A F
   and , ,A mv A F eA  

   so that 
2 / 4m e a  as before. 

 How does this relate to the deSitter spaces? In the deSitter algebras the proper time in all inertial 
frames of intervals is the same or equivalent. This is the powerful absolute of the deSitter space. The 
proper time interval, d  on its geodesic world-line in the deSitter picture is given as 
 

                  2 2 2 2td dt e dX              (47) 

 

for 2 2 2 2dX dx dy dz   in Euclidean coordinates and t is the cosmic time. The metric form of the 

deSitter universe represents the metric form consistent with the observed asymptotically flat, low 
density universe. The se Sitter space is constant with Einstein dynamic equations and is therefore 
consistent with the Hubble constant, HR [30,31].  
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 Ellis [32] suggests that geometry and electromagnetism can be unified by a rigorous analysis of time. 
The hyperspheres of deSitter space can be represented as a 5D metric manifold which tie the geometric 
models of gravity and electromagnetism to the structure of matter. Time is not primary but a property 
of the matter of elementary particles. If t   is allowed in the de Sitter space, then the typical geodesies 
represent what appears to be electromagnetic field lines. This is the manner in which Ellis attempts to 
describe the electromagnetic phenomena as geometric! 
 

 
 

Figure 1 Geodesic plots of de Sitter space representing the field lines of the electromagnetic field. Various 
conditions for signal propagation are given. 
 
 The conformal invariant is given as  
 

                 2 2 2 2 2
2

1
ds dx dy dz dR

R
          (48) 

 
which depends only on the ratios of distances and is thus independent of scale. Let  t = - lnR, then R = 

e-t and  2 2 2 2 2 2tds e dx dy dz dt     which is the de Sitter metric element. Ellis' geodesies of his 

angle metric correspond to geodesics of the de Sitter space (Fig. 1). In 1b, time-like subluminal 
geodesies are represented, in 1c they are luminal, and in 1d these geodesics are space-like superluminal. 
(See Chap. 9) The figures also contain Euclidean space planes as spheres of infinite radii.  
 Feinberg [33] suggested that the first step in the test of multi-dimensional geometric models is to 
predict some simple phenomena such as the Coulomb attraction-repulsion; and that the geodesic form 
in Figure 3 may point a way to do this, because if we can relate this five-dimensional geometry to the 
complex geometry, then we can relate this complex geometry to Coulomb interactions. The curvature 
of space may then be related to a rotation or angular momentum component as a Kaluza-Klein 5th 
dimension. We form an isomorphism of this geometry to an 8D real-complex coordinate geometry 
which appears to not only unify electromagnetic theory and gravitational theory but may also resolve 
some other apparent paradoxes [34,35]. 
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Figure 2  Hertzian and non-Hertzian waves. Where E and B are decoupled into two components ERe and EIm and 
BRe and BIm.  
 

 We have observed that introducing complex E and B fields or complexifying the F   field can be 
performed in such a way as to not distort the electric charge on the electron. We also find consistency 
with the 5D geometry of Kaluza and Klein, the 8D Minkowski space, and the de Sitter space where the 
geodesic represents the electromagnetic field lines. We can also maintain Lorentz invariance conditions 
for both real and complex transforms on the line element. 
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