Proof of Riemann Hypothesis

Andrey Skrypnyk
ansk66@mail.ru

Abstract

This article describes how to calculate the formula for calculating all primes.

Index Terms-algorithm

I. Riemann Hypothesis Definition

There is a pattern in the distribution of primes among the positive integers.

II. Riemann Hypothesis Proof Algorithm

A. Distinguishing the Sequence of Odd Numbers

Let \mathbb{N} be natural numbers, including zero, and \mathbb{N}^{*} be natural numbers without zero.

First two primes (by condition) are:

$$
\begin{equation*}
1,2 . \tag{1}
\end{equation*}
$$

Prime number 2 is significant for dividing the sequence into two equal sequences of even (x) and odd (y) numbers:

$$
\begin{gather*}
x \in\left\{2 M \mid M \in \mathbb{N}^{*}\right\} \tag{2}\\
y \in\left\{2 M+1 \mid M \in \mathbb{N}^{*}\right\} \tag{3}
\end{gather*}
$$

Starting from $M=2$ (2) describes the set of composite numbers $x_{\text {comp }}$ by condition:

$$
\begin{equation*}
x_{c o m p} \in\left\{2 M \mid M \in \mathbb{N}^{*}, M \geq 2\right\} \tag{4}
\end{equation*}
$$

Thus further we will consider the sequence of odd numbers $\{y\}$ (3) to determine the pattern in the distribution of primes (y_{o}).
The sequence of odd numbers $\{y\}$, except for y_{o}, also includes the set of composite odd numbers $y_{\text {comp }}$:

$$
\begin{equation*}
y_{\text {comp }} \in\left\{y_{o} y \mid y_{o} \geq 3, y \geq 3\right\} \tag{5}
\end{equation*}
$$

Expression (3) without limitations describes the distribution of first y_{o} in the sequence of odd numbers within the segment from 3 to the first $y_{c o m p}=3^{2}=9$.
Let's represent (3) as the following expression:

$$
\begin{equation*}
y_{o}=1^{2}+2 \cdot 1 \cdot M_{1}+2 \tag{6}
\end{equation*}
$$

where $M_{1} \in \mathbb{N}$.
Therefore, this segment can be represented in the following way:

$$
\begin{equation*}
1^{2}<y<3^{2} \tag{7}
\end{equation*}
$$

The following segment, where (6) for determination of y_{o} will be limited by exception of the set of composite numbers $\{3 y \mid y>3\}$, will end with the first $y_{c o m p}$ to which $y_{o}=3$ will bear no relation. By definition it is $y_{c o m p}=5^{2}=25$. Thus we can conclude the following.

B. Conclusion 1

All segments compliant with the specific pattern of distribution of y_{o} are limited by $y_{c o m p}=y_{o n}^{2}$ and $y_{c o m p}=y_{o(n+1)}^{2}$. Let's analyze the first such segment.

C. The first segment of odd numbers from 1 to 9

Distribution of y_{o} is described by (6).
Let's calculate first y_{o} after (1):

$$
\begin{equation*}
3,5,7 \tag{8}
\end{equation*}
$$

D. The second segment of odd numbers from 9 to 25

In order to exclude the composite numbers $y_{\text {comp }}$ from the set $\{3 y \mid y>3\}, y_{o}=1$ in (6) shall be replaced by $y_{o}=3$ and summand 2 shall be replaced by variable ± 2 to cover all y_{o} in this segment:

$$
\begin{equation*}
y_{o}=3^{2}+2 \cdot 3 \cdot M_{3} \pm 2=3^{2}+2\left(3 M_{3} \pm 1\right) \tag{9}
\end{equation*}
$$

where $M_{3} \in \mathbb{N}$.
Let's calculate next y_{o} in the sequence:

$$
\begin{equation*}
11,13,17,19,23 \tag{10}
\end{equation*}
$$

E. The third segment of odd numbers from 25 to 49

For this segment y_{o} value shall be equal in two expressions - in (9) and in the following expression in order to exclude the composite numbers $\{5 y \mid y>5\}$:

$$
\begin{equation*}
y_{o}=5^{2}+2 \cdot 5 \cdot M_{5} \pm 2 z_{5}=5^{2}+2\left(5 M_{5} \pm z_{5}\right) \tag{11}
\end{equation*}
$$

where $M_{5} \in \mathbb{N}, 1 \leq z_{5} \leq 2$.
Starting from the second segment, expression for y_{o} depends on the value of M_{3}. According to Conclusion 1 and (9) it is possible to calculate the lower and upper limits for M_{3} in any segment of $y_{o n}^{2}<y<y_{o(n+1)}^{2}$:

$$
\begin{equation*}
\frac{y_{o n}^{2}-9 \pm 2}{6} \leq M_{3} \leq \frac{y_{o(n+1)}^{2}-9 \pm 2}{6} \tag{12}
\end{equation*}
$$

For this segment M_{3} value in (9) will change:

$$
\begin{equation*}
3 \leq M_{3} \leq 7 \tag{13}
\end{equation*}
$$

Let's compare (9) and (11):

$$
\begin{equation*}
3^{2}+2 \cdot 3 \cdot M_{3} \pm 2=5^{2}+2 \cdot 5 \cdot M_{5} \pm 2 z_{5} \tag{14}
\end{equation*}
$$

Let's express M_{5} from (14):

$$
\begin{equation*}
M_{5}=\frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \tag{15}
\end{equation*}
$$

Substitute (15) into (11):

$$
\begin{equation*}
y_{o}=5^{2}+2\left(5 \cdot \frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \pm z_{5}\right) \tag{16}
\end{equation*}
$$

where $3 \leq M_{3}<7,1 \leq z_{5} \leq 2$.
Calculate next y_{o} in the third segment:

$$
\begin{equation*}
29,31,37,41,43,47 \tag{17}
\end{equation*}
$$

F. Conclusion 2

Based on the results of analysis of first, second and third segments of odd numbers we can conclude the following:
Each successive segment compliant with the pattern of distribution of y_{o} depends on the pattern of distribution of y_{o} in all previous segment starting from the second segment.
Let's analyze the following segment for final determination of the pattern of distribution of y_{o} in segments $y_{o n}^{2}<y<y_{o(n+1)}^{2}$.

G. The fourth segment of odd numbers from 49 to 121

For this segment y_{o} value shall be equal in two expressions - in (16) with different values of variables:

$$
\begin{gather*}
7 \leq M_{3}<19 \tag{18}\\
1 \leq z_{5} \leq 2 \tag{19}\\
M_{5}=\frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \in \mathbb{N}^{*} \tag{20}
\end{gather*}
$$

and in the following expression to exclude the composite numbers $y_{\text {comp }}$ from the set $\{7 y \mid y>7\}$:

$$
\begin{equation*}
y_{o}=7^{2}+2 \cdot 7 \cdot M_{7} \pm 2 z_{7}=7^{2}+2\left(7 M_{7} \pm z_{7}\right) \tag{21}
\end{equation*}
$$

For this segment from (21) it follows that:

$$
\begin{gather*}
M_{7} \in \mathbb{N} \tag{22}\\
1 \leq z_{7} \leq 3 \tag{23}
\end{gather*}
$$

Let's compare (16) and (21):

$$
\begin{align*}
& 5^{2}+2\left(5 \cdot \frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \pm z_{5}\right)= \tag{24}\\
& =7^{2}+2 \cdot 7 \cdot M_{7} \pm 2 z_{7}
\end{align*}
$$

Express M_{7} from (24):

$$
\begin{equation*}
M_{7}=\frac{5 \cdot \frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \pm z_{5}-12 \mp z_{7}}{7} \tag{25}
\end{equation*}
$$

Substitute M_{7} from (25) into (21):

$$
\begin{equation*}
y_{o}=7^{2}+2\left(7 \cdot \frac{5 \cdot \frac{3 M_{3} \pm 1-8 \mp z_{5}}{5} \pm z_{5}-12 \mp z_{7}}{7} \pm z_{7}\right) \tag{26}
\end{equation*}
$$

where (18), (19), (20), (22), (23) and (25) are true.
Let's calculate the successive values of y_{o} in in the fourth segment of odd numbers:

$$
\begin{align*}
& 53,59,61,67,71,73,79,89 \\
& 97,101,103,107,109,113 \tag{27}
\end{align*}
$$

H. General Expression of Distribution of Primes

Thus we can determine the specific patterns, comparing (16) and (26).
Let's present the general expression of distribution of y_{o} in n-th segments $y_{o n}^{2}<y<y_{o(n+1)}^{2}$ taking these patterns into consideration:

$$
\begin{equation*}
y_{o}=y_{o n}^{2}+2\left(y_{o n} M_{y_{o n}} \pm z_{y_{o n}}\right) \tag{28}
\end{equation*}
$$

Variables (28) are calculated using the following formulas:

$$
\begin{equation*}
1 \leq z_{y_{o c}} \leq \frac{y_{o c}-1}{2} \tag{29}
\end{equation*}
$$

where $2 \leq c \leq n$ is the number of the number in the sequence of odd primes;

$$
\begin{align*}
& M_{y_{o n}}= \\
& =\frac{y_{o(n-1)} M_{y_{o(n-1)}} \pm z_{y_{o(n-1)}}-\frac{y_{o n}^{2}-y_{o(n-1)}^{2}}{2} \mp z_{y_{o n}}}{y_{o n}} \tag{30}
\end{align*}
$$

where $M_{y_{o n}} \in \mathbb{N}$;

$$
\begin{equation*}
M_{3}<M_{y_{o b}}<M_{y_{o n}} \tag{31}
\end{equation*}
$$

where M_{3} is calculated according to (12);

$$
\begin{align*}
& M_{y_{o b}}= \\
& =\frac{y_{o(b-1)} M_{y_{o(b-1)}} \pm z_{y_{o(b-1)}}-\frac{y_{o b}^{2}-y_{o(b-1)}^{2}}{2} \mp z_{y_{o b}}}{y_{o b}} \tag{32}
\end{align*}
$$

where $M_{y_{o b}} \in \mathbb{N}^{*}, 3<y_{o(b-1)}<y_{o b}<y_{o n}$.
In order to form the full sequence of y_{o} the n-th segments shall be analyzed in sequence. But calculation of y_{o} from segments to segment becomes more difficult. Thus the third segment of odd numbers in (16) has 5 variables, the fourth segment of odd numbers in (26) has 8 variables. But nevertheless, (26) unequivocally describes the distribution of y_{o} in sequence of numbers. If it is necessary to calculate y_{o} in n th segment, avoiding the previous segments, all $y_{o} \leq y_{o(n+1)}$ from previous calculations shall be known. The required range will be set by summand $y_{o n}^{2}$ and values of M_{3} (12). While solving the problem all (31) for this n-th segment shall be calculated in sequence.

I. Final Conclusion

Riemann Hypothesis is true. Distribution of primes among the positive integers has its own pattern. But for odd numbers of y the sections compliant with the specific pattern of distribution of primes y_{o} are limited by composite numbers $y_{o n}^{2}$ and $y_{o(n+1)}^{2}$. Distribution of y_{o} in such n-th sections, starting from the third segment of odd numbers, is calculated
according to the (28). The full sequence of y_{o} is achieved by consequent analysis of n-th sections, starting from the first segment of odd numbers.
(2017 year)

ACKNOWLEDGMENT

REFERENCES

