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Abstract: The k-distance degree index (Nk-index) of a graph G have been introduced in

[11], and is defined as Nk(G) =
∑diam(G)

k=1

(∑
v∈V (G) dk(v)

)
· k, where dk(v) = |Nk(v)| =

|{u ∈ V (G) : d(v, u) = k}| is the k-distance degree of a vertex v in G, d(u, v) is the distance

between vertices u and v in G and diam(G) is the diameter of G. In this paper, we extend

the study of Nk-index of a graph for other graph operations. Exact formulas of the Nk-index

for corona G ◦ H and neighborhood corona G ⋆ H products of connected graphs G and H

are presented. An explicit formula for the splitting graph S(G) of a graph G is computed.

Also, the Nk-index formula of the join G + H of two graphs G and H is presented. Finally,

we generalize the Nk-index formula of the join for more than two graphs.
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§1. Introduction

In this paper, we consider only simple graph G = (V, E), i.e., finite, having no loops no multiple

and directed edges. A graph G is said to be connected if there is a path between every pair of its

vertices. As usual, we denote by n = |V | and m = |E| to the number of vertices and edges in a

graph G, respectively. The distance d(u, v) between any two vertices u and v of G is the length

of a minimum path connecting them. For a vertex v ∈ V and a positive integer k, the open k-

distance neighborhood of v in a graph G is Nk(v/G) = {u ∈ V (G) : d(u, v) = k} and the closed

k-neighborhood of v is Nk[v/G] = Nk(v)∪{v}. The k-distance degree of a vertex v in G, denoted

by dk(v/G) (or simply dk(v) if no misunderstanding) is defined as dk(v/G) = |Nk(v/G)|, and

generally, a Smarandachely k-distance degree dk(v/G : S) of v on vertex set S ⊂ V (G) is

dk(v/G) = |Nk(v/G : S)|, where Nk(v/G : S) = {u ∈ V (G)\S : d(u, v) = k}. Clearly,

dk(v/G : ∅) = dk(v/G) and d1(v/G) = d(v/G) for every v ∈ V (G). A vertex of degree equals

to zero in G is called an isolated vertex and a vertex of degree one is called a pendant vertex.

The graph with just one vertex is referred to as trivial graph and denoted K1. The complement
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G of a graph G is a graph with vertex set V (G) and two vertices of G are adjacent if and

only if they are not adjacent in G. A totally disconnected graph Kn is one in which no two

vertices are adjacent (that is, one whose edge set is empty). If a graph G consists of s ≥ 2

disjoint copies of a graph H , then we write G = sH . For a vertex v of G, the eccentricity

e(v) = max{d(v, u) : u ∈ V (G)}. The radius of G is rad(G) = min{e(v) : v ∈ V (G)} and

the diameter of G is diam(G) = max{e(v) : v ∈ V (G)}. For any terminology or notation not

mention here, we refer the reader to the books [3, 5].

A topological index of a graph G is a numerical parameter mathematically derived from

the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial

representation of the graph and it is the graph invariant number calculated from a graph repre-

senting a molecule. The topological indices of molecular graphs are widely used for establishing

correlations between the structure of a molecular compound and its physic-chemical proper-

ties or biological activity. The topological indices which are definable by a distance function

d(., .) are called a distance-based topological index. All distance-based topological indices can

be derived from the distance matrix or some closely related distance-based matrix, for more

information on this matter see [2] and a survey paper [20] and the references therein.

There are many examples of such indices, especially those based on distances, which are

applicable in chemistry and computer science. The Wiener index (1947), defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v)

is the first and most studied of the distance based topological indices [19]. The hyper-Wiener

index,

WW (G) =
1

2

∑

{u,v}⊆V

(d(u, v) + d2(u, v))

was introduced in (1993) by M. Randic [14]. The Harrary index

H(G) =
∑

{u,v}⊆V

1

d2(u, v)

was introduced in (1992) by Mihalic et al. [10]. In spite of this, the Harary index is nowadays

defined [8, 12] as

H(G) =
∑

{u,v}⊆V

1

d(u, v)
.

The Schultz index

S(G) =
∑

{u,v}⊆V

(d(u) + d(v))d(u, v)

was introduced in (1989) by H. P. Schultz [16]. A. Dobrynin et al. in (1994) also proposed the

Schultz index and called it the degree distance index and denoted DD(G) [1]. S. Klavzar and
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I Gutman, motivated by Schultz index, introduced in (1997) the second kind of Schultz index

S∗(G) =
∑

{u,v}⊆V

d(u)d(v)d(u, v)

called modified Schultz (or Gutman) index of G [9]. The eccentric connectivity index

ξc =
∑

v∈V

d(v)e(v)

was proposed by Sharma et al. [17]. For more details and examples of distance-based topological

indices, we refer the reader to [2, 20, 13, 6] and the references therein.

Recently, The authors in [11], have been introduced a new type of graph topological index,

based on distance and degree, called k-distance degree of a graph, for positive integer number

k ≥ 1. Which, for simplicity of notion, referred as Nk-index, denoted by Nk(G) and defined by

Nk(G) =

diam(G)∑

k=1




∑

v∈V (G)

dk(v)



 · k

where dk(v) = dk(v/G) and diam(G) is the diameter of G. They have obtained some basic

properties and bounds for Nk-index of graphs and they have presented the exact formulas for

the Nk-index of some well-known graphs. They also established the Nk-index formula for a

cartesian product of two graphs and generalize this formula for more than two graphs. The k-

distance degree index, Nk(G), of a graph G is the first derivative of the k-distance neighborhood

polynomial, Nk(G, x), of a graph evaluated at x = 1,see ([18]).

The following are some fundamental results which will be required for many of our argu-

ments in this paper and which are finding in [11].

Lemma 1.1 For n ≥ 1, Nk(Kn) = Nk(K1) = 0.

Theorem 1.2 For any connected graph G of order n with size m and diam(G) = 2, Nk(G) =

2n(n− 1)− 2m.

Theorem 1.3 For any connected nontrivial graph G, Nk(G) is an even integer number.

In this paper, we extend our study of Nk-index of a graph for other graph operations.

Namely, exact formulas of the Nk-index for corona G ◦ H and neighborhood corona G ⋆ H

products of connected graphs G and H are presented. An explicit formula for the splitting

graph S(G) of a graph G is computed. Also, the Nk-index formula of the join G + H of two

graphs G and H is presented. Finally, we generalize the Nk-index formula of the join for more

than two graphs.

§2. The Nk-Index of Corona Product of Graphs

The corona of two graphs was first introduced by Frucht and Harary in [4].



94 Ahmed M. Naji and Soner Nandappa D

Definition 2.1 Let G and H be two graphs on disjoint sets of n1 and n2 vertices, respectively.

The corona G ◦H of G and H is defined as the graph obtained by taking one copy of G and n1

copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H.

It is clear from the definition of G ◦H that

n = |V (G ◦H)| = n1 + n1n2,

m = |E(G ◦H)| = m1 + n1(n2 + m2)

and

diam(G ◦H) = diam(G) + 2,

where m1 and m2 are the sizes of G and H , respectively. In the following results, Hj , for

1 ≤ j ≤ n1, denotes the copy of a graph H which joining to a vertex vj of a graph G,i.e.,

Hj = {vj} ◦H , D = diam(G) and dk(v/G) denotes the degree of a vertex v in a graph G. Note

that in general this operation is not commutative.

Theorem 2.2 Let G and H be connected graphs of orders n1 and n2 and sizes m1 and m2,

respectively. Then

Nk(G ◦H) =
(
1 + 2n2 + n2

2

)
Nk(G) + 2n1n2 (n1 + n1n2 − 1)− 2n1m2.

Proof Let G and H be connected graphs of orders n1 and n2 and sizes m1 and m2,

respectively and let D = diam(G), n = |V (G◦H)| and m = |E(G◦H)|. Then by the definition

of G ◦H and for every 1 ≤ k ≤ diam(G ◦H), we have the following cases.

Case 1. For every v ∈ V (G),

dk(v/G ◦H) = dk(v/G) + n2dk−1(v/G).

Case 2. For every u ∈ Hj, 1 ≤ j ≤ n1,

• d1(u/G ◦Hj) = 1 + d1(u/H);

• d2(u/G ◦Hj) = d1(vj/G) + (n2 − 1)− d1(u/H);

• dk(u/G ◦Hj) = dk−1(vj/G) + n2dk−2(vj/G), for every 3 ≤ k ≤ D + 2.

Since for every v ∈ V (G ◦ H) either v ∈ V (G) or v ∈ V (Hj), for some 1 ≤ j ≤ n1, it

follows that for 1 ≤ k ≤ diam(G ◦H),

∑

v∈V (G◦H)

dk(v/G ◦H) =
∑

v∈V (G)

dk(v/G ◦H) +

n1∑

j=1

∑

u∈V (Hj)

dk(u/G ◦Hj).
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Hence, by using the hypothesis above

Nk(G ◦H) =

diam(G◦H)∑

k=1

[
∑

v∈V (G◦H)

dk(v/G ◦H)

]
k

=

D+2∑

k=1

[
∑

v∈V (G)

dk(v/G ◦H) +

n1∑

j=1

∑

u∈V (Hj)

dk(u/G ◦Hj)

]
k

=

D+2∑

k=1

[
∑

v∈V (G)

(
dk(v/G) + n2dk−1(v/G)

)]
.k +

D+2∑

k=1

[
n1∑

j=1

∑

u∈V (Hj)

dk(u/G ◦Hj)

]
k

=
D+2∑

k=1

( ∑

v∈V (G)

dk(v/G)
)
.k + n2

D+2∑

k=1

( ∑

v∈V (G)

dk−1(v/G)
)
k

+

n1∑

j=1

∑

u∈V (Hj)

(
1 + d1(u/Hj)

)
+

n1∑

j=1

∑

u∈V (Hj)

(
d1(vj/G) + (n2 − 1)− d(u/Hj)

)
2

+

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−1(vj/G) + n2dk−2(vj/G)

)]
k

Set x = x1 + x2, where

x1 =

D+2∑

k=1

( ∑

v∈V (G)

dk(v/G)
)
k

=

D∑

k=1

( ∑

v∈V (G)

dk(v/G)
)
k +

( ∑

v∈V (G)

dD+1(v/G)
)
(D + 1) +

( ∑

v∈V (G)

dD+2(v/G)
)
(D + 2)

=

D∑

k=1

( ∑

v∈V (G)

dk(v/G)
)
k + 0 + 0 = Nk(G).

x2 = n2

D+2∑

k=1

( ∑

v∈V (G)

dk−1(v/G)
)
k

= n2

[
(
∑

v∈V (G)

d0(v/G))1 + (
∑

v∈V (G)

d1(v/G)).2 + · · ·+ (
∑

v∈V (G)

dD(v/G))(D + 1)

+ (
∑

v∈V (G)

dD+1(v/G))(D + 2)

]
= n2

[
n1 +

D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 1) + 0

]

= n2

[
n1 +

D∑

k=1

(
∑

v∈V (G)

dk(v/G))k +
D∑

k=1

(
∑

v∈V (G)

dk(v/G))1

]

= n2

[
n1 + Nk(G) + n1(n1 − 1)

]
.
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Thus, x = (1 + n2)Nk(G) + n2
1n2. Also, set y = y1 + y2 + y3, where

y1 =

n1∑

j=1

∑

u∈V (Hj)

(1 + d1(u/H))1 = n1n2 + 2n1m2,

y2 =

n1∑

j=1

∑

u∈V (Hj)

(d1(vj/G) + (n2 − 1)− d1(u/H))2 = 2(2m1n2 + n1n2(n2 − 1)− 2n1m2)

and

y3 =

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−1(vj/G) + n2dk−2(vj/G)

)]
k

=
D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−1(vj/G)

)]
k + n2

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−2(vj/G)

)]
k

= n2

[
D+2∑

k=3

( n1∑

j=1

(dk−1(vj/G)
)
k

]
+ n2

2

[
D+2∑

k=3

( n1∑

j=1

(dk−2(vj/G)
)
k

]
.

Now set y3 = y′
3 + y′′

3 , where

y′
3 = n2

[
D+2∑

k=3

(

n1∑

j=1

(dk−1(vj/G))

]
.k

= n2

[
(
∑

v∈V (G)

d2(v/G))3 + (
∑

v∈V (G)

d2(v/G))4 + · · ·+ (
∑

v∈V (G)

dD(v/G))(D + 1) + 0

]

= n2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 1)− (
∑

v∈V (G)

d1(v/G))2

]

= n2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))k +
D∑

k=1

(
∑

v∈V (G)

dk(v/G))1− (
∑

v∈V (G)

d1(v/G))2

]

= n2Nk(G) + n1n2(n1 − 1)− 4m1n2,

and similarly

y′′
3 = n2

2

[
D+2∑

k=3

( n1∑

j=1

(dk−2(vj/G)
)
k

]
= n2

2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 2)

]

= n2
2Nk(G) + 2n1n

2
2(n1 − 1).

Thus, y3 = (n2
2 + n2)Nk(G) + n1n2(n1 − 1)− 4m1n2 + 2n1n

2
2(n1 − 1).

Accordingly,

y = (n2
2 + n2)Nk(G) + 2n2

1n
2
2 + n2

1n2 − 2n1n2 − 2n1m2
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and

Nk(G ◦H) = x + y.

Therefore,

Nk(G ◦H) = (1 + 2n2 + n2
2)Nk(G) + 2n1n2(n1n2 + n1 − 1)− 2n1m2. 2

Corollary 2.3 Let G be a connected graph of order n ≥ 2 and size m ≥ 1. Then

(1) Nk(K1 ◦G) = 2(n2 −m);

(2) Nk(G ◦K1) = 4Nk(G) + 2n(2n− 1);

(3) Nk(G◦Kp) = (1+2p+p2)Nk(G)+2pn(pn+n−1), where Kp is a totally disconnected

graph with p ≥ 2 vertices.

§3. The Nk-Index of Neighborhood Corona Product of Graphs

The neighborhood corona was introduced in [7].

Definition 3.1 Let G and H be connected graphs of orders n1 and n2, respectively. Then the

neighborhood corona of G and H, denoted by G ⋆ H, is the graph obtained by taking one copy

of G and n1 copies of H, and joining every neighbor of the ith vertex of G to every vertex in

the ith copy of H.

It is clear from the definition of G ◦H that

• In general G ⋆ H is not commutative.

• When H = K1, G ⋆ H = S(G) is the splitting graph defined in [?].

• When G = K1, G ⋆ H = G ∪H .

• n = |V (G ⋆ H)| = n1 + n1n2

• diam(G ⋆ H) =





3, if diam(G) ≤ 3;

diam(G), if diam(G) ≥ 3;

In the following results, Hj , for 1 ≤ j ≤ n1, denotes the jth copy of a graph H which corre-

sponding to a vertex vj of a graph G, i.e., Hj = {vj} ⋆ H , D = diam(G) and dk(v/G) denotes

the degree of a vertex v in a graph G.

Theorem 3.2 Let G and H be connected graphs of orders and sizes n1, n2, m1 and m2 respec-

tively such that diam(G) ≥ 3. Then

Nk(G ⋆ H) = (1 + 2n2 + n2
2)Nk(G) + 2n2

2(n1 + m1) + 2n1(n2 −m2).
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Proof Let G and H be connected graphs of orders and sizes n1, m1, n2 and m2 respectively

and let {v1, v2, · · · , vn1} and {u1, u2, · · · , un2} be the vertex sets of G and H respectively. Then

for every w|inv(G ⋆ H) either w = v ∈ V (G) or w = u ∈ V (H). Since, for every v ∈ V (G),

|N1(v/G ⋆ H)| = |N1(v/G)|+ |V (H)||N1(v/G)|
d1(v/G ⋆ H) = d1(v/G) + n2d1(v/G)

= (1 + n2)d1(v/G)

and for every u ∈ V (Hj), 1 ≤ j ≤ n1

|N1(u/G ⋆ Hj)| = |N1(u/H)|+ |N1(vj/G)|,
d1(u/G ⋆ Hj) = d1(u/H) + d1(vj/G).

Thus, for ever w ∈ V (G ⋆ H)

∑

w∈V (G⋆H)

d1(w/G ⋆ H) =
∑

v∈V (G)

d1(v/G ⋆ H) +

n1∑

j=1

∑

u∈V (Hj)

d1(u/G ⋆ Hj)

=
∑

v∈V (G)

(1 + n2)d1(v/G) +

n1∑

j=1

∑

u∈V (Hj)

(d1(u/Hj) + d1(vj/G))

= (1 + n2)
∑

v∈V (G)

d1(v/G) +

n1∑

j=1

2m2 + n2

n1∑

i=1

d1(vj/G)

= (1 + 2n2)
∑

v∈V (G)

d1(v/G) + 2n− 1m2.

Similarly, we obtain

|N2(vj/G ⋆ H)| = |N2(vj/G)|+ |V (Hj)|+ |V (Hj)||N2(vj/G)|,
d2(vj/G ⋆ H) = d2(vj/G) + n2 + n2d2(v/G)

= (1 + n2)d2(v/G) + n2

for every vj ∈ V (G), 1 ≤ j ≤ n1, and

|N2(u/G ⋆ Hj)| = (|V (Hj)| − 1)− |N1(u/Hj)|+ |{vj}|
+|V (Hj)||N2(vj/G)|+ |N2(vj/G)|

d2(u/G ⋆ Hj) = (n2 − 1)− d1(u/H) + 1 + n2d2(vj/G) + d2(v/G)

= n2 + d1(u/H) + (1 + n2)d2(vj/G)
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for every u ∈ Hj , 1 ≤ j ≤ n1. Thus, for ever w ∈ V (G ⋆ H),

∑

w∈V (G⋆H)

d2(w/G ⋆ H) =
∑

v∈V (G)

d2(v/G ⋆ H) +

n1∑

j=1

∑

u∈V (Hj)

d2(u/G ⋆ Hj)

=
∑

v∈V (G)

[
(1 + n2)d1(v/G) + n2

]

+

n1∑

j=1

∑

u∈V (Hj)

[
n2 + d1(u/H) + (1 + n2)d1(vj/G)

]

= (1 + n2 + n2
2)

∑

v∈V (G)

d2(v/G) + n1n
2
2 + n1n2 − 2n1m2.

Also, for every v ∈ V (G), d3(v/G ⋆ H) = (1 + n2)d3(v/G) and for every u ∈ V (Hj),

d3(u/G ⋆ Hj) = n2d1(vj/G) + (1 + n2)d3(vj/G).

Hence, For every w ∈ V (G ⋆ H),

d3(w/G ⋆ H) = (1 + n2 + n2
2)

∑

v∈V (G)

d3(v/G)

+n2
2

∑

v∈V (G)

d1(v/G).

By continue in same process we get, for every 4 ≤ k ≤ diam(G ⋆ H), that is, for every

v ∈ V (G),

dk(v/G ⋆ H) = (1 + n2)dk(v/G)

and for every u ∈ V (Hj),

dk(u/G ⋆ Hj) = (1 + n + 2)dk(vj/G),

and hence for every w ∈ V (G ⋆ H),

dk(w/G ⋆ H) = (1 + 2n2 + n2
2)dk(v/G).

Accordingly,

Nk(G ⋆ H) =

D∑

k=1

(
∑

w∈V (G⋆H)

dk(w/G ⋆ H)) k

=
∑

w∈V (G⋆H)

d1(w/G ⋆ H))1 +
∑

w∈V (G⋆H)

d2(w/G ⋆ H))2 + · · ·

+
∑

w∈V (G⋆H)

dD(w/G ⋆ H)) D
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=
[
(1 + 2n2)

∑

v∈V (G)

d1(v/G) + 2n1m2

]
1

+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d2(v/G) + n1n
2
2 + n1n2

− 2n1m2

]
2 +

[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d3(v/G) + n2
2

∑

v∈V (G)

d1(v/G)
]

3

+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d4(v/G)
]

4 + · · ·+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

dD(v/G)
]

D

= (1 + 2n2 + n2
2)
[ ∑

v∈V (G)

d1(v/G) 1 +
∑

v∈V (G)

d2(v/G) 2 + · · ·+
∑

v∈V (G)

dD(v/G) D
]

+
[
(−n2

2

∑

v∈V (G)

d1(v/G) + 2n1m2) 1 + (n1n
2
2 + n1n2 − 2n1m2) 2

+ (n2
2

∑

v∈V (G)

d1(v/G)) 3

= (1 + 2n2 + n2
2)Nk(G) + 2n2

2(n1 + m1) + 2n1(n2 −m2). 2
Corollary 3.3 Let G be a connected graph of order n ≥ 2 and size m and let S(G) be the

splitting graph of G. Then

Nk(S(G)) = 4Nk(G) + 2(2n + m).

§4. The Nk-Index of Join of Graphs

Definition 4.1([5]) Let G1 and G2 be two graphs with disjoint vertex sets V (G1) and V (G2)

and edge sets E(G1) and E(G2). Then the join G1 + G2 of G1 and G2 is the graph with vertex

set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv|u ∈ V (G1)&v ∈ V (G2)}.

Definition 4.2 It is clear that, G1 + G2 is a connected graph, n = |V (G1 + G2)| = |V (G1)|+
|V (G2)|, m = |E(G1 + G2)| = |V (G1)||V (G2)| + |E(G1)| + |E(G2)| and diam(G1 + G2) ≤ 2.

Furthermore, diam(G1 + G2) = 1 if and only if G1 and G2 are complete graphs. We denote by

dk(v/G) to the k-distance degree of a vertex v in a graph G.

Theorem 4.2 Let G and H be connected graphs of order n1 and n2 and size m1 and m2,

respectively. Then

Nk(G + H) = 4

(
n1 + n2

2

)
− 2(n1n2 + m1 + m2).

Proof The proof is an immediately consequences of Theorem 1.2. 2
Since, For any connected graph G, G+K1 = K1 +G = K1 ◦G then the next result follows
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Corollary 2.3.

Corollary 4.3 For any connected graph G with n vertices and m edges,

Nk(G + K1) = 2(n2 −m).

The join of more than two graphs is defined inductively as following,

G1 + G2 + · · ·+ Gt = (G1 + G2 + · · ·+ Gt−1) + Gt

for some positive integer number t ≥ 2. We denote by
∑t

i=1 Gi to G1 + G2 + · · · + Gt. It is

clear for this definition that

• n = |V (
∑t

i=1 Gi)| =
∑t

i=1 |V (Gi)|.

• m = |E(
∑t

i=1 Gi)| =
∑t

i=1 |E(Gi)|+
∑t

i=2 |V (Gi)|
(∑i−1

j=1 |V (Gj)|
)
.

• diam(
∑t

i=1 Gi) ≤ 2.

Accordingly, we can generalize Theorem 4.2 by using Theorem 1.2 as following.

Theorem 4.4 For some positive integer number t ≥ 2, let G1, G2, · · · , Gt be connected graphs

of orders n1, n2, · · · , nt and sizes m1, m2, · · · , mt, respectively. Then

Nk(

t∑

i=1

Gi) = 4

(∑t
i=1 ni

2

)
− 2

[
t∑

i=1

mi +

t∑

i=2

ni

( i−1∑

j=1

nj

)]
.
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