The k-Distance Degree Index of

 Corona, Neighborhood Corona Products and Join of GraphsAhmed M. Naji and Soner Nandappa D
(Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru - 570 006, India)
E-mail: ama.mohsen78@gmail.com, ndsoner@yahoo.co.in

Abstract

The k-distance degree index (N_{k}-index) of a graph G have been introduced in [11], and is defined as $N_{k}(G)=\sum_{k=1}^{\operatorname{diam}(G)}\left(\sum_{v \in V(G)} d_{k}(v)\right) \cdot k$, where $d_{k}(v)=\left|N_{k}(v)\right|=$ $|\{u \in V(G): d(v, u)=k\}|$ is the k-distance degree of a vertex v in $G, d(u, v)$ is the distance between vertices u and v in G and $\operatorname{diam}(G)$ is the diameter of G. In this paper, we extend the study of N_{k}-index of a graph for other graph operations. Exact formulas of the N_{k}-index for corona $G \circ H$ and neighborhood corona $G \star H$ products of connected graphs G and H are presented. An explicit formula for the splitting graph $S(G)$ of a graph G is computed. Also, the N_{k}-index formula of the join $G+H$ of two graphs G and H is presented. Finally, we generalize the N_{k}-index formula of the join for more than two graphs.

Key Words: Vertex degrees, distance in graphs, k-distance degree, Smarandachely k distance degree, k-distance degree index, corona, neighborhood corona.

AMS(2010): 05C07, 05C12, 05C76, 05C31.

§1. Introduction

In this paper, we consider only simple graph $G=(V, E)$, i.e., finite, having no loops no multiple and directed edges. A graph G is said to be connected if there is a path between every pair of its vertices. As usual, we denote by $n=|V|$ and $m=|E|$ to the number of vertices and edges in a graph G, respectively. The distance $d(u, v)$ between any two vertices u and v of G is the length of a minimum path connecting them. For a vertex $v \in V$ and a positive integer k, the open k distance neighborhood of v in a graph G is $N_{k}(v / G)=\{u \in V(G): d(u, v)=k\}$ and the closed k-neighborhood of v is $N_{k}[v / G]=N_{k}(v) \cup\{v\}$. The k-distance degree of a vertex v in G, denoted by $d_{k}(v / G)$ (or simply $d_{k}(v)$ if no misunderstanding) is defined as $d_{k}(v / G)=\left|N_{k}(v / G)\right|$, and generally, a Smarandachely k-distance degree $d_{k}(v / G: S)$ of v on vertex set $S \subset V(G)$ is $d_{k}(v / G)=\left|N_{k}(v / G: S)\right|$, where $N_{k}(v / G: S)=\{u \in V(G) \backslash S: d(u, v)=k\}$. Clearly, $d_{k}(v / G: \emptyset)=d_{k}(v / G)$ and $d_{1}(v / G)=d(v / G)$ for every $v \in V(G)$. A vertex of degree equals to zero in G is called an isolated vertex and a vertex of degree one is called a pendant vertex. The graph with just one vertex is referred to as trivial graph and denoted K_{1}. The complement

[^0]\bar{G} of a graph G is a graph with vertex set $V(G)$ and two vertices of \bar{G} are adjacent if and only if they are not adjacent in G. A totally disconnected graph $\overline{K_{n}}$ is one in which no two vertices are adjacent (that is, one whose edge set is empty). If a graph G consists of $s \geq 2$ disjoint copies of a graph H, then we write $G=s H$. For a vertex v of G, the eccentricity $e(v)=\max \{d(v, u): u \in V(G)\}$. The radius of G is $\operatorname{rad}(G)=\min \{e(v): v \in V(G)\}$ and the diameter of G is $\operatorname{diam}(G)=\max \{e(v): v \in V(G)\}$. For any terminology or notation not mention here, we refer the reader to the books $[3,5]$.

A topological index of a graph G is a numerical parameter mathematically derived from the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial representation of the graph and it is the graph invariant number calculated from a graph representing a molecule. The topological indices of molecular graphs are widely used for establishing correlations between the structure of a molecular compound and its physic-chemical properties or biological activity. The topological indices which are definable by a distance function $d(.,$.$) are called a distance-based topological index. All distance-based topological indices can$ be derived from the distance matrix or some closely related distance-based matrix, for more information on this matter see [2] and a survey paper [20] and the references therein.

There are many examples of such indices, especially those based on distances, which are applicable in chemistry and computer science. The Wiener index (1947), defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v)
$$

is the first and most studied of the distance based topological indices [19]. The hyper-Wiener index,

$$
W W(G)=\frac{1}{2} \sum_{\{u, v\} \subseteq V}\left(d(u, v)+d^{2}(u, v)\right)
$$

was introduced in (1993) by M. Randic [14]. The Harrary index

$$
H(G)=\sum_{\{u, v\} \subseteq V} \frac{1}{d^{2}(u, v)}
$$

was introduced in (1992) by Mihalic et al. [10]. In spite of this, the Harary index is nowadays defined $[8,12]$ as

$$
H(G)=\sum_{\{u, v\} \subseteq V} \frac{1}{d(u, v)}
$$

The Schultz index

$$
S(G)=\sum_{\{u, v\} \subseteq V}(d(u)+d(v)) d(u, v)
$$

was introduced in (1989) by H. P. Schultz [16]. A. Dobrynin et al. in (1994) also proposed the Schultz index and called it the degree distance index and denoted $D D(G)$ [1]. S. Klavzar and

I Gutman, motivated by Schultz index, introduced in (1997) the second kind of Schultz index

$$
S^{*}(G)=\sum_{\{u, v\} \subseteq V} d(u) d(v) d(u, v)
$$

called modified Schultz (or Gutman) index of $G[9]$. The eccentric connectivity index

$$
\xi^{c}=\sum_{v \in V} d(v) e(v)
$$

was proposed by Sharma et al. [17]. For more details and examples of distance-based topological indices, we refer the reader to $[2,20,13,6]$ and the references therein.

Recently, The authors in [11], have been introduced a new type of graph topological index, based on distance and degree, called k-distance degree of a graph, for positive integer number $k \geq 1$. Which, for simplicity of notion, referred as N_{k}-index, denoted by $N_{k}(G)$ and defined by

$$
N_{k}(G)=\sum_{k=1}^{\operatorname{diam}(G)}\left(\sum_{v \in V(G)} d_{k}(v)\right) \cdot k
$$

where $d_{k}(v)=d_{k}(v / G)$ and $\operatorname{diam}(G)$ is the diameter of G. They have obtained some basic properties and bounds for N_{k}-index of graphs and they have presented the exact formulas for the N_{k}-index of some well-known graphs. They also established the N_{k}-index formula for a cartesian product of two graphs and generalize this formula for more than two graphs. The k distance degree index, $N_{k}(G)$, of a graph G is the first derivative of the k-distance neighborhood polynomial, $N_{k}(G, x)$, of a graph evaluated at $x=1$,see ([18]).

The following are some fundamental results which will be required for many of our arguments in this paper and which are finding in [11].

Lemma 1.1 For $n \geq 1, N_{k}\left(\overline{K_{n}}\right)=N_{k}\left(K_{1}\right)=0$.
Theorem 1.2 For any connected graph G of order n with size m and $\operatorname{diam}(G)=2, N_{k}(G)=$ $2 n(n-1)-2 m$.

Theorem 1.3 For any connected nontrivial graph $G, N_{k}(G)$ is an even integer number.
In this paper, we extend our study of N_{k}-index of a graph for other graph operations. Namely, exact formulas of the N_{k}-index for corona $G \circ H$ and neighborhood corona $G \star H$ products of connected graphs G and H are presented. An explicit formula for the splitting graph $S(G)$ of a graph G is computed. Also, the N_{k}-index formula of the join $G+H$ of two graphs G and H is presented. Finally, we generalize the N_{k}-index formula of the join for more than two graphs.

§2. The N_{k}-Index of Corona Product of Graphs

The corona of two graphs was first introduced by Frucht and Harary in [4].

Definition 2.1 Let G and H be two graphs on disjoint sets of n_{1} and n_{2} vertices, respectively. The corona $G \circ H$ of G and H is defined as the graph obtained by taking one copy of G and n_{1} copies of H, and then joining the $i^{\text {th }}$ vertex of G to every vertex in the $i^{\text {th }}$ copy of H.

It is clear from the definition of $G \circ H$ that

$$
\begin{aligned}
n & =|V(G \circ H)|=n_{1}+n_{1} n_{2}, \\
m & =|E(G \circ H)|=m_{1}+n_{1}\left(n_{2}+m_{2}\right)
\end{aligned}
$$

and

$$
\operatorname{diam}(G \circ H)=\operatorname{diam}(G)+2,
$$

where m_{1} and m_{2} are the sizes of G and H, respectively. In the following results, H^{j}, for $1 \leq j \leq n_{1}$, denotes the copy of a graph H which joining to a vertex v_{j} of a graph G,i.e., $H^{j}=\left\{v_{j}\right\} \circ H, D=\operatorname{diam}(G)$ and $d_{k}(v / G)$ denotes the degree of a vertex v in a graph G. Note that in general this operation is not commutative.

Theorem 2.2 Let G and H be connected graphs of orders n_{1} and n_{2} and sizes m_{1} and m_{2}, respectively. Then

$$
N_{k}(G \circ H)=\left(1+2 n_{2}+n_{2}^{2}\right) N_{k}(G)+2 n_{1} n_{2}\left(n_{1}+n_{1} n_{2}-1\right)-2 n_{1} m_{2} .
$$

Proof Let G and H be connected graphs of orders n_{1} and n_{2} and sizes m_{1} and m_{2}, respectively and let $D=\operatorname{diam}(G), n=|V(G \circ H)|$ and $m=|E(G \circ H)|$. Then by the definition of $G \circ H$ and for every $1 \leq k \leq \operatorname{diam}(G \circ H)$, we have the following cases.

Case 1. For every $v \in V(G)$,

$$
d_{k}(v / G \circ H)=d_{k}(v / G)+n_{2} d_{k-1}(v / G) .
$$

Case 2. For every $u \in H^{j}, 1 \leq j \leq n_{1}$,

- $d_{1}\left(u / G \circ H^{j}\right)=1+d_{1}(u / H) ;$
- $d_{2}\left(u / G \circ H^{j}\right)=d_{1}\left(v_{j} / G\right)+\left(n_{2}-1\right)-d_{1}(u / H) ;$
- $d_{k}\left(u / G \circ H^{j}\right)=d_{k-1}\left(v_{j} / G\right)+n_{2} d_{k-2}\left(v_{j} / G\right)$, for every $3 \leq k \leq D+2$.

Since for every $v \in V(G \circ H)$ either $v \in V(G)$ or $v \in V\left(H^{j}\right)$, for some $1 \leq j \leq n_{1}$, it follows that for $1 \leq k \leq \operatorname{diam}(G \circ H)$,

$$
\sum_{v \in V(G \circ H)} d_{k}(v / G \circ H)=\sum_{v \in V(G)} d_{k}(v / G \circ H)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)} d_{k}\left(u / G \circ H^{j}\right) .
$$

Hence, by using the hypothesis above

$$
\begin{aligned}
N_{k}(G \circ H)= & \sum_{k=1}^{\operatorname{diam}(G \circ H)}\left[\sum_{v \in V(G \circ H)} d_{k}(v / G \circ H)\right] k \\
= & \sum_{k=1}^{D+2}\left[\sum_{v \in V(G)} d_{k}(v / G \circ H)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)} d_{k}\left(u / G \circ H^{j}\right)\right] k \\
= & \sum_{k=1}^{D+2}\left[\sum_{v \in V(G)}\left(d_{k}(v / G)+n_{2} d_{k-1}(v / G)\right)\right] \cdot k+\sum_{k=1}^{D+2}\left[\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)} d_{k}\left(u / G \circ H^{j}\right)\right] k \\
= & \sum_{k=1}^{D+2}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) \cdot k+n_{2} \sum_{k=1}^{D+2}\left(\sum_{v \in V(G)} d_{k-1}(v / G)\right) k \\
& +\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(1+d_{1}\left(u / H^{j}\right)\right)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{1}\left(v_{j} / G\right)+\left(n_{2}-1\right)-d\left(u / H^{j}\right)\right) 2 \\
& +\sum_{k=3}^{D+2}\left[\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{k-1}\left(v_{j} / G\right)+n_{2} d_{k-2}\left(v_{j} / G\right)\right)\right] k
\end{aligned}
$$

Set $x=x_{1}+x_{2}$, where

$$
\begin{aligned}
x_{1}= & \sum_{k=1}^{D+2}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) k \\
= & \sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) k+\left(\sum_{v \in V(G)} d_{D+1}(v / G)\right)(D+1)+\left(\sum_{v \in V(G)} d_{D+2}(v / G)\right)(D+2) \\
= & \sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) k+0+0=N_{k}(G) . \\
x_{2}= & n_{2} \sum_{k=1}^{D+2}\left(\sum_{v \in V(G)} d_{k-1}(v / G)\right) k \\
= & n_{2}\left[\left(\sum_{v \in V(G)} d_{0}(v / G)\right) 1+\left(\sum_{v \in V(G)} d_{1}(v / G)\right) \cdot 2+\cdots+\left(\sum_{v \in V(G)} d_{D}(v / G)\right)(D+1)\right. \\
& \left.+\left(\sum_{v \in V(G)} d_{D+1}(v / G)\right)(D+2)\right]=n_{2}\left[n_{1}+\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right)(k+1)+0\right] \\
= & n_{2}\left[n_{1}+\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) k+\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) 1\right] \\
= & n_{2}\left[n_{1}+N_{k}(G)+n_{1}\left(n_{1}-1\right)\right] .
\end{aligned}
$$

Thus, $x=\left(1+n_{2}\right) N_{k}(G)+n_{1}^{2} n_{2}$. Also, set $y=y_{1}+y_{2}+y_{3}$, where

$$
\begin{aligned}
& y_{1}=\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(1+d_{1}(u / H)\right) 1=n_{1} n_{2}+2 n_{1} m_{2}, \\
& y_{2}=\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{1}\left(v_{j} / G\right)+\left(n_{2}-1\right)-d_{1}(u / H)\right) 2=2\left(2 m_{1} n_{2}+n_{1} n_{2}\left(n_{2}-1\right)-2 n_{1} m_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{3} & =\sum_{k=3}^{D+2}\left[\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{k-1}\left(v_{j} / G\right)+n_{2} d_{k-2}\left(v_{j} / G\right)\right)\right] k \\
& =\sum_{k=3}^{D+2}\left[\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{k-1}\left(v_{j} / G\right)\right)\right] k+n_{2} \sum_{k=3}^{D+2}\left[\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{k-2}\left(v_{j} / G\right)\right)\right] k \\
& =n_{2}\left[\sum_{k=3}^{D+2}\left(\sum_{j=1}^{n_{1}}\left(d_{k-1}\left(v_{j} / G\right)\right) k\right]+n_{2}^{2}\left[\sum_{k=3}^{D+2}\left(\sum_{j=1}^{n_{1}}\left(d_{k-2}\left(v_{j} / G\right)\right) k\right] .\right.\right.
\end{aligned}
$$

Now set $y_{3}=y_{3}^{\prime}+y_{3}^{\prime \prime}$, where

$$
\begin{aligned}
y_{3}^{\prime}= & n_{2}\left[\sum_{k=3}^{D+2}\left(\sum_{j=1}^{n_{1}}\left(d_{k-1}\left(v_{j} / G\right)\right)\right] \cdot k\right. \\
= & n_{2}\left[\left(\sum_{v \in V(G)} d_{2}(v / G)\right) 3+\left(\sum_{v \in V(G)} d_{2}(v / G)\right) 4+\cdots+\left(\sum_{v \in V(G)} d_{D}(v / G)\right)(D+1)+0\right] \\
= & n_{2}\left[\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right)(k+1)-\left(\sum_{v \in V(G)} d_{1}(v / G)\right) 2\right] \\
& =n_{2}\left[\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) k+\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right) 1-\left(\sum_{v \in V(G)} d_{1}(v / G)\right) 2\right] \\
& =n_{2} N_{k}(G)+n_{1} n_{2}\left(n_{1}-1\right)-4 m_{1} n_{2},
\end{aligned}
$$

and similarly

$$
\begin{aligned}
y_{3}^{\prime \prime} & =n_{2}^{2}\left[\sum_{k=3}^{D+2}\left(\sum_{j=1}^{n_{1}}\left(d_{k-2}\left(v_{j} / G\right)\right) k\right]=n_{2}^{2}\left[\sum_{k=1}^{D}\left(\sum_{v \in V(G)} d_{k}(v / G)\right)(k+2)\right]\right. \\
& =n_{2}^{2} N_{k}(G)+2 n_{1} n_{2}^{2}\left(n_{1}-1\right) .
\end{aligned}
$$

Thus, $y_{3}=\left(n_{2}^{2}+n_{2}\right) N_{k}(G)+n_{1} n_{2}\left(n_{1}-1\right)-4 m_{1} n_{2}+2 n_{1} n_{2}^{2}\left(n_{1}-1\right)$.
Accordingly,

$$
y=\left(n_{2}^{2}+n_{2}\right) N_{k}(G)+2 n_{1}^{2} n_{2}^{2}+n_{1}^{2} n_{2}-2 n_{1} n_{2}-2 n_{1} m_{2}
$$

and

$$
N_{k}(G \circ H)=x+y
$$

Therefore,

$$
N_{k}(G \circ H)=\left(1+2 n_{2}+n_{2}^{2}\right) N_{k}(G)+2 n_{1} n_{2}\left(n_{1} n_{2}+n_{1}-1\right)-2 n_{1} m_{2}
$$

Corollary 2.3 Let G be a connected graph of order $n \geq 2$ and size $m \geq 1$. Then
(1) $N_{k}\left(K_{1} \circ G\right)=2\left(n^{2}-m\right)$;
(2) $N_{k}\left(G \circ K_{1}\right)=4 N_{k}(G)+2 n(2 n-1)$;
(3) $N_{k}\left(G \circ \overline{K_{p}}\right)=\left(1+2 p+p^{2}\right) N_{k}(G)+2 p n(p n+n-1)$, where $\overline{K_{p}}$ is a totally disconnected graph with $p \geq 2$ vertices.

§3. The N_{k}-Index of Neighborhood Corona Product of Graphs

The neighborhood corona was introduced in [7].
Definition 3.1 Let G and H be connected graphs of orders n_{1} and n_{2}, respectively. Then the neighborhood corona of G and H, denoted by $G \star H$, is the graph obtained by taking one copy of G and n_{1} copies of H, and joining every neighbor of the $i^{\text {th }}$ vertex of G to every vertex in the $i^{\text {th }}$ copy of H.

It is clear from the definition of $G \circ H$ that

- In general $G \star H$ is not commutative.
- When $H=K_{1}, G \star H=S(G)$ is the splitting graph defined in [?].
- When $G=K_{1}, G \star H=G \cup H$.
- $n=|V(G \star H)|=n_{1}+n_{1} n_{2}$
- $\operatorname{diam}(G \star H)= \begin{cases}3, & \text { if } \operatorname{diam}(G) \leq 3 ; \\ \operatorname{diam}(G), & \text { if } \operatorname{diam}(G) \geq 3 ;\end{cases}$

In the following results, H^{j}, for $1 \leq j \leq n_{1}$, denotes the $j^{t h}$ copy of a graph H which corresponding to a vertex v_{j} of a graph G, i.e., $H^{j}=\left\{v_{j}\right\} \star H, D=\operatorname{diam}(G)$ and $d_{k}(v / G)$ denotes the degree of a vertex v in a graph G.

Theorem 3.2 Let G and H be connected graphs of orders and sizes n_{1}, n_{2}, m_{1} and m_{2} respectively such that $\operatorname{diam}(G) \geq 3$. Then

$$
N_{k}(G \star H)=\left(1+2 n_{2}+n_{2}^{2}\right) N_{k}(G)+2 n_{2}^{2}\left(n_{1}+m_{1}\right)+2 n_{1}\left(n_{2}-m_{2}\right)
$$

Proof Let G and H be connected graphs of orders and sizes n_{1}, m_{1}, n_{2} and m_{2} respectively and let $\left\{v_{1}, v_{2}, \cdots, v_{n_{1}}\right\}$ and $\left\{u_{1}, u_{2}, \cdots, u_{n_{2}}\right\}$ be the vertex sets of G and H respectively. Then for every $w \mid \operatorname{inv}(G \star H)$ either $w=v \in V(G)$ or $w=u \in V(H)$. Since, for every $v \in V(G)$,

$$
\begin{aligned}
\left|N_{1}(v / G \star H)\right| & =\left|N_{1}(v / G)\right|+|V(H)|\left|N_{1}(v / G)\right| \\
d_{1}(v / G \star H) & =d_{1}(v / G)+n_{2} d_{1}(v / G) \\
& =\left(1+n_{2}\right) d_{1}(v / G)
\end{aligned}
$$

and for every $u \in V\left(H^{j}\right), 1 \leq j \leq n_{1}$

$$
\begin{aligned}
\left|N_{1}\left(u / G \star H^{j}\right)\right| & =\left|N_{1}(u / H)\right|+\left|N_{1}\left(v_{j} / G\right)\right| \\
d_{1}\left(u / G \star H^{j}\right) & =d_{1}(u / H)+d_{1}\left(v_{j} / G\right) .
\end{aligned}
$$

Thus, for ever $w \in V(G \star H)$

$$
\begin{aligned}
\sum_{w \in V(G \star H)} d_{1}(w / G \star H) & =\sum_{v \in V(G)} d_{1}(v / G \star H)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)} d_{1}\left(u / G \star H^{j}\right) \\
& =\sum_{v \in V(G)}\left(1+n_{2}\right) d_{1}(v / G)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left(d_{1}\left(u / H^{j}\right)+d_{1}\left(v_{j} / G\right)\right) \\
& =\left(1+n_{2}\right) \sum_{v \in V(G)} d_{1}(v / G)+\sum_{j=1}^{n_{1}} 2 m_{2}+n_{2} \sum_{i=1}^{n_{1}} d_{1}\left(v_{j} / G\right) \\
& =\left(1+2 n_{2}\right) \sum_{v \in V(G)} d_{1}(v / G)+2 n-1 m_{2} .
\end{aligned}
$$

Similarly, we obtain

$$
\begin{aligned}
\left|N_{2}\left(v_{j} / G \star H\right)\right| & =\left|N_{2}\left(v_{j} / G\right)\right|+\left|V\left(H^{j}\right)\right|+\left|V\left(H^{j}\right)\right|\left|N_{2}\left(v_{j} / G\right)\right| \\
d_{2}\left(v_{j} / G \star H\right) & =d_{2}\left(v_{j} / G\right)+n_{2}+n_{2} d_{2}(v / G) \\
& =\left(1+n_{2}\right) d_{2}(v / G)+n_{2}
\end{aligned}
$$

for every $v_{j} \in V(G), 1 \leq j \leq n_{1}$, and

$$
\begin{aligned}
\left|N_{2}\left(u / G \star H^{j}\right)\right|= & \left(\left|V\left(H^{j}\right)\right|-1\right)-\left|N_{1}\left(u / H^{j}\right)\right|+\left|\left\{v_{j}\right\}\right| \\
& +\left|V\left(H^{j}\right)\right|\left|N_{2}\left(v_{j} / G\right)\right|+\left|N_{2}\left(v_{j} / G\right)\right| \\
d_{2}\left(u / G \star H^{j}\right)= & \left(n_{2}-1\right)-d_{1}(u / H)+1+n_{2} d_{2}\left(v_{j} / G\right)+d_{2}(v / G) \\
= & n_{2}+d_{1}(u / H)+\left(1+n_{2}\right) d_{2}\left(v_{j} / G\right)
\end{aligned}
$$

for every $u \in H^{j}, 1 \leq j \leq n_{1}$. Thus, for ever $w \in V(G \star H)$,

$$
\begin{aligned}
\sum_{w \in V(G \star H)} d_{2}(w / G \star H)= & \sum_{v \in V(G)} d_{2}(v / G \star H)+\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)} d_{2}\left(u / G \star H^{j}\right) \\
= & \sum_{v \in V(G)}\left[\left(1+n_{2}\right) d_{1}(v / G)+n_{2}\right] \\
& +\sum_{j=1}^{n_{1}} \sum_{u \in V\left(H^{j}\right)}\left[n_{2}+d_{1}(u / H)+\left(1+n_{2}\right) d_{1}\left(v_{j} / G\right)\right] \\
= & \left(1+n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{2}(v / G)+n_{1} n_{2}^{2}+n_{1} n_{2}-2 n_{1} m_{2}
\end{aligned}
$$

Also, for every $v \in V(G), d_{3}(v / G \star H)=\left(1+n_{2}\right) d_{3}(v / G)$ and for every $u \in V\left(H^{j}\right)$,

$$
d_{3}\left(u / G \star H^{j}\right)=n_{2} d_{1}\left(v_{j} / G\right)+\left(1+n_{2}\right) d_{3}\left(v_{j} / G\right)
$$

Hence, For every $w \in V(G \star H)$,

$$
\begin{aligned}
d_{3}(w / G \star H)= & \left(1+n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{3}(v / G) \\
& +n_{2}^{2} \sum_{v \in V(G)} d_{1}(v / G) .
\end{aligned}
$$

By continue in same process we get, for every $4 \leq k \leq \operatorname{diam}(G \star H)$, that is, for every $v \in V(G)$,

$$
d_{k}(v / G \star H)=\left(1+n_{2}\right) d_{k}(v / G)
$$

and for every $u \in V\left(H^{j}\right)$,

$$
d_{k}\left(u / G \star H^{j}\right)=(1+n+2) d_{k}\left(v_{j} / G\right)
$$

and hence for every $w \in V(G \star H)$,

$$
d_{k}(w / G \star H)=\left(1+2 n_{2}+n_{2}^{2}\right) d_{k}(v / G)
$$

Accordingly,

$$
\begin{aligned}
N_{k}(G \star H)= & \sum_{k=1}^{D}\left(\sum_{w \in V(G \star H)} d_{k}(w / G \star H)\right) k \\
= & \left.\left.\sum_{w \in V(G \star H)} d_{1}(w / G \star H)\right) 1+\sum_{w \in V(G \star H)} d_{2}(w / G \star H)\right) 2+\cdots \\
& \left.+\sum_{w \in V(G \star H)} d_{D}(w / G \star H)\right) D
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[\left(1+2 n_{2}\right) \sum_{v \in V(G)} d_{1}(v / G)+2 n_{1} m_{2}\right] 1 } \\
& +\left[\left(1+2 n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{2}(v / G)+n_{1} n_{2}^{2}+n_{1} n_{2}\right. \\
& \left.-2 n_{1} m_{2}\right] 2+\left[\left(1+2 n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{3}(v / G)+n_{2}^{2} \sum_{v \in V(G)} d_{1}(v / G)\right] 3 \\
& +\left[\left(1+2 n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{4}(v / G)\right] 4+\cdots+\left[\left(1+2 n_{2}+n_{2}^{2}\right) \sum_{v \in V(G)} d_{D}(v / G)\right] D \\
= & \left(1+2 n_{2}+n_{2}^{2}\right)\left[\sum_{v \in V(G)} d_{1}(v / G) 1+\sum_{v \in V(G)} d_{2}(v / G) 2+\cdots+\sum_{v \in V(G)} d_{D}(v / G) D\right] \\
& +\left[\left(-n_{2}^{2} \sum_{v \in V(G)} d_{1}(v / G)+2 n_{1} m_{2}\right) 1+\left(n_{1} n_{2}^{2}+n_{1} n_{2}-2 n_{1} m_{2}\right) 2\right. \\
& +\left(n_{2}^{2} \sum_{v \in V(G)} d_{1}(v / G)\right) 3 \\
= & \left(1+2 n_{2}+n_{2}^{2}\right) N_{k}(G)+2 n_{2}^{2}\left(n_{1}+m_{1}\right)+2 n_{1}\left(n_{2}-m_{2}\right) .
\end{aligned}
$$

Corollary 3.3 Let G be a connected graph of order $n \geq 2$ and size m and let $S(G)$ be the splitting graph of G. Then

$$
N_{k}(S(G))=4 N_{k}(G)+2(2 n+m)
$$

$\S 4$. The N_{k}-Index of Join of Graphs

Definition 4.1([5]) Let G_{1} and G_{2} be two graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$. Then the join $G_{1}+G_{2}$ of G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right) \& v \in V\left(G_{2}\right)\right\}$.

Definition 4.2 It is clear that, $G_{1}+G_{2}$ is a connected graph, $n=\left|V\left(G_{1}+G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+$ $\left|V\left(G_{2}\right)\right|, m=\left|E\left(G_{1}+G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|\left|V\left(G_{2}\right)\right|+\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|$ and $\operatorname{diam}\left(G_{1}+G_{2}\right) \leq 2$. Furthermore, $\operatorname{diam}\left(G_{1}+G_{2}\right)=1$ if and only if G_{1} and G_{2} are complete graphs. We denote by $d_{k}(v / G)$ to the k-distance degree of a vertex v in a graph G.

Theorem 4.2 Let G and H be connected graphs of order n_{1} and n_{2} and size m_{1} and m_{2}, respectively. Then

$$
N_{k}(G+H)=4\binom{n_{1}+n_{2}}{2}-2\left(n_{1} n_{2}+m_{1}+m_{2}\right)
$$

Proof The proof is an immediately consequences of Theorem 1.2.
Since, For any connected graph $G, G+K_{1}=K_{1}+G=K_{1} \circ G$ then the next result follows

Corollary 2.3.

Corollary 4.3 For any connected graph G with n vertices and m edges,

$$
N_{k}\left(G+K_{1}\right)=2\left(n^{2}-m\right)
$$

The join of more than two graphs is defined inductively as following,

$$
G_{1}+G_{2}+\cdots+G_{t}=\left(G_{1}+G_{2}+\cdots+G_{t-1}\right)+G_{t}
$$

for some positive integer number $t \geq 2$. We denote by $\sum_{i=1}^{t} G_{i}$ to $G_{1}+G_{2}+\cdots+G_{t}$. It is clear for this definition that

- $n=\left|V\left(\sum_{i=1}^{t} G_{i}\right)\right|=\sum_{i=1}^{t}\left|V\left(G_{i}\right)\right|$.
- $m=\left|E\left(\sum_{i=1}^{t} G_{i}\right)\right|=\sum_{i=1}^{t}\left|E\left(G_{i}\right)\right|+\sum_{i=2}^{t}\left|V\left(G_{i}\right)\right|\left(\sum_{j=1}^{i-1}\left|V\left(G_{j}\right)\right|\right)$.
- $\operatorname{diam}\left(\sum_{i=1}^{t} G_{i}\right) \leq 2$.

Accordingly, we can generalize Theorem 4.2 by using Theorem 1.2 as following.
Theorem 4.4 For some positive integer number $t \geq 2$, let $G_{1}, G_{2}, \cdots, G_{t}$ be connected graphs of orders $n_{1}, n_{2}, \cdots, n_{t}$ and sizes $m_{1}, m_{2}, \cdots, m_{t}$, respectively. Then

$$
N_{k}\left(\sum_{i=1}^{t} G_{i}\right)=4\binom{\sum_{i=1}^{t} n_{i}}{2}-2\left[\sum_{i=1}^{t} m_{i}+\sum_{i=2}^{t} n_{i}\left(\sum_{j=1}^{i-1} n_{j}\right)\right] .
$$

References

[1] A. D. Andrey and A. K. Amide, Degree Distance of a Graph: A Degree analogue of the Wiener Index, J. Chem. Inf. Comput. Sci., 34 (1994), 1082-1086.
[2] A. T. Balaban, Topological indices based on topological distance in moleculer graphs, Pure Appl. Chem., 55(2) (1983), 199-206.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, Berlin, 2008.
[4] R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4 (1970), 322-325.
[5] F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass. Menlo Park, Calif. London, 1969.
[6] A. Ilic, G. Yu and L. Feng, On the eccentric distance sum of graphs, J. Math. Anal. Appl., 381 (2011), 590-600.
[7] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35 (2011), 493-500.
[8] O. Ivanciuc, T. S. Balaban and A. T. Balaban, Reciprocal distance matrix, related local vertex invariants and topological indices, J. Math. Chem., 12 (1993), 309-318.
[9] S. Klavzar and I. Gutman, Wiener number of vertex-weighted graphs and a chemical application, Disc. Appl. Math., 80 (1997), 73-81.
[10] Z. Mihulic and N. Trinajstic, A graph theoretical approach to strcture-property relationship, J. Chem. Educ., 69(1992),701-712.
[11] A. M. Naji and N. D. Soner, The k-distance degree index of a graph, in Press.
[12] D. Plavsic, S. Nikolic, N. Trinajstic and Z. Mihalic, On the Harary index for the characterization of chemical graphs, J. Math. Chem., 12 (1993), 235-250.
[13] H. Qu and S. Cao, On the adjacent eccentric distance sum index of graphs, PLoS ONE Academic Editor: Vince Grolmusz, Mathematical Institute, HUNGARY, 10(6) (2015), 112, e0129497.doi:10.1371/journal.pone. 0129497.
[14] M. Randic, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett., 211(1993), 478-483.
[15] E. Sampathkumar, H. B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci., 35/36 (1980-1981), 13-16.
[16] H. P. Schultz, Topological organic chemistry 1, graph theory and topological indices of Alkanes, J. Chem. Inf. Comput. Sci., 29 (1989) 227-228.
[17] V. Sharma, R. Goswami and A. K. Madan. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37 (1997), 273-282.
[18] N. D. Soner and A. M. Naji, The k-distance neighborhood polynomial of a graph, World Academy Sci. Engin. Tech. Conference Proceedings, San Francico, USA, Sep 26-27, 18(9) (2016), Part XV 2359-2364.
[19] H. Wiener, Structural determination of the paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20.
[20] K. Xu, M. Liub, K. C. Dasd, I. Gutmane and B. Furtul, A survey on graphs extremal with respect to distance based topological indices, MATCH Commun. Math. Comput. Chem., 71 (2014), 461-508.

[^0]: ${ }^{1}$ Received January 10, 2017, Accepted, November 23, 2017.

