Some Properties of Conformal β-Change

H.S.Shukla and Neelam Mishra

(Department of Mathematics and Statistics, D. D. U. Gorakhpur University, Gorakhpur (U.P.)-273009,India)
E-mail: profhsshuklagkp@rediffmail.com, pneelammishra@gmail.com

Abstract

We have considered the conformal β-change of the Finsler metric given by $$
L(x, y) \rightarrow \bar{L}(x, y)=e^{\sigma(x)} f(L(x, y), \beta(x, y)),
$$ where $\sigma(x)$ is a function of $\mathrm{x}, \beta(x, y)=b_{i}(x) y^{i}$ is a 1 -form on the underlying manifold M^{n}, and $f(L(x, y), \beta(x, y))$ is a homogeneous function of degree one in L and β. We have studied quasi-C-reducibility, C-reducibility and semi-C-reducibility of the Finsler space with this metric. We have also calculated V-curvature tensor and T-tensor of the space with this changed metric in terms of v-curvature tensor and T-tensor respectively of the space with the original metric.

Key Words: Conformal change, β-change, Finsler space, quasi-C-reducibility, Creducibility, semi-C-reducibility, V-curvature tensor, T-tensor.

AMS(2010): 53B40, 53C60.

§1. Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space on the differentialble manifold M^{n} equipped with the fundamental function $\mathrm{L}(\mathrm{x}, \mathrm{y})$.B.N.Prasad and Bindu Kumari and C. Shibata $[1,2]$ have studied the general case of β-change,that is, $L^{*}(x, y)=f(L, \beta)$, where f is positively homogeneous function of degree one in L and β, and β given by $\beta(x, y)=b_{i}(x) y^{i}$ is a one- form on M^{n}. The β-change of special Finsler spaces has been studied by H.S.Shukla, O.P.Pandey and Khageshwar Mandal [7].

The conformal theory of Finsler space was initiated by M.S. Knebelman [12] in 1929 and has been investigated in detail by many authors (Hashiguchi [8] ,Izumi[4,5] and Kitayama [9]). The conformal change is defined as $L^{*}(x, y)=e^{\sigma(x)} L(x, y)$, where $\sigma(x)$ is a function of position only and known as conformal factor. In 2008, Abed [15,16] introduced the change $\bar{L}(x, y)=$ $e^{\sigma(x)} L(x, y)+\beta(x, y)$, which he called a β-conformal change, and in 2009 and 2010,Nabil L.Youssef, S.H.Abed and S.G. Elgendi [13,14] introduced the transformation $\bar{L}(x, y)=f\left(e^{\sigma} L, \beta\right)$, which is β-change of conformally changed Finsler metric L. They have not only established the relationships between some important tensors of $\left(M^{n}, L\right)$ and the corresponding tensors of (M^{n}, \bar{L}), but have also studied several properties of this change.

[^0]We have changed the order of combination of the above two changes in our paper [6], where we have applied β-change first and conformal change afterwards, i.e.,

$$
\begin{equation*}
\bar{L}(x, y)=e^{\sigma(x)} f(L(x, y), \beta(x, y)) \tag{1.1}
\end{equation*}
$$

where $\sigma(x)$ is a function of $\mathrm{x}, \beta(x, y)=b_{i}(x) y^{i}$ is a 1-form. We have called this change as conformal β-change of Finsler metric. In this paper we have investigated the condition under which a conformal β-change of Finsler metric leads a Douglas space into a Douglas space.We have also found the necessary and sufficient conditions for this change to be a projective change.

In the present paper, we investigate some properties of conformal β-change. The Finsler space equipped with the metric \bar{L} given by (1.1) will be denoted by $\overline{F^{n}}$. Throughout the paper the quantities corresponding to $\overline{F^{n}}$ will be denoted by putting bar on the top of them. We shall denote the partial derivatives with respect to x^{i} and y^{i} by ∂_{i} and $\dot{\partial}_{i}$ respectively. The Fundamental quantities of F^{n} are given by

$$
g_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} \frac{L^{2}}{2}=h_{i j}+l_{i} l_{j}, \quad l_{i}=\dot{\partial}_{i} L
$$

Homogeneity of f gives

$$
\begin{equation*}
L f_{1}+\beta f_{2}=f \tag{1.2}
\end{equation*}
$$

where subscripts 1 and 2 denote the partial derivatives with respect to L and β respectively. Differentiating above equations with respect to L and β respectively, we get

$$
\begin{equation*}
L f_{12}+\beta f_{22}=0 \text { and } L f_{11}+\beta f_{21}=0 \tag{1.3}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
f_{11} / \beta^{2}=\left(-f_{12}\right) / L \beta=f_{22} / L^{2} \tag{1.4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f_{11}=\beta^{2} \omega, f_{12}=-L \beta \omega, f_{22}=L^{2} \omega \tag{1.5}
\end{equation*}
$$

where Weierstrass function ω is positively homogeneous of degree -3 in L and β. Therefore

$$
\begin{equation*}
L \omega_{1}+\beta \omega_{2}+3 \omega=0 \tag{1.6}
\end{equation*}
$$

where ω_{1} and ω_{2} are positively homogeneous of degree -4 in L and β. Throughout the paper we frequently use the above equations without quoting them. Also we have assumed that f is not linear function of L and β so that $\omega \neq 0$.

The concept of concurrent vector field has been given by Matsumoto and K. Eguchi [11] and S. Tachibana [17], which is defind as follows:

The vector field b_{i} is said to be a concurrent vector field if

$$
\begin{equation*}
b_{i \mid j}=-\left.g_{i j} \quad b_{i}\right|_{j}=0 \tag{1.7}
\end{equation*}
$$

where small and long solidus denote the h - and v-covariant derivatives respectively. It has been
proved by Matsumoto that b_{i} and its contravariant components b^{i} are functions of coordinates alone. Therefore from the second equation of (1.7), we have $C_{i j k} b^{i}=0$.

The aim of this paper is to study some special Finsler spaces arising from conformal β-change of Finsler metric,viz., quasi-C-reducible, C-reducible and semi-C-reducible Finsler spaces. Further, we shall obtain v-curvature tensor and T-tensor of this space and connect them with v-curvature tensor and T-tensor respectively of the original space.

§2. Metric Tensor and Angular Metric Tensor of \bar{F}^{n}

Differentiating equation (1.1) with respect to y^{i} we have

$$
\begin{equation*}
\bar{l}_{i}=e^{\sigma}\left(f_{1} l_{i}+f_{2} b_{i}\right) \tag{2.1}
\end{equation*}
$$

Differentiating (2.1) with respect to y^{j}, we get

$$
\begin{equation*}
\bar{h}_{i j}=e^{2 \sigma}\left(\frac{f f_{1}}{L} h_{i j}+f L^{2} \omega m_{i} m_{j}\right) \tag{2.2}
\end{equation*}
$$

where $m_{i}=b_{i}-\frac{\beta}{L} L_{i}$.
From (2.1) and (2.2) we get the following relation between metric tensors of F^{n} and \bar{F}^{n} :

$$
\begin{equation*}
\bar{g}_{i j}=e^{2 \sigma}\left[\frac{f f_{1}}{L} g_{i j}-\frac{p \beta}{L} l_{i} l_{j}+\left(f L^{2} \omega+f_{2}^{2}\right) b_{i} b_{j}+p\left(b_{i} l_{j}+b_{j} l_{i}\right)\right] \tag{2.3}
\end{equation*}
$$

where $p=f_{1} f_{2}-f \beta L \omega$.
The contravariant components $\bar{g}^{i j}$ of the metric tensor of \bar{F}^{n}, obtainable from $\bar{g}^{i j} \bar{g}_{j k}=\delta_{k}^{i}$, are as follows:

$$
\begin{equation*}
\bar{g}^{i j}=e^{-2 \sigma}\left[\frac{L}{f f_{1}} g^{i j}+\frac{p L^{3}}{f^{3} f_{1} t}\left(\frac{f \beta}{L^{2}}-\Delta f_{2}\right) l^{i} l^{j}-\frac{L^{4} \omega}{f f_{1} t} b^{i} b^{j}-\frac{p L^{2}}{f^{2} f_{1} t}\left(l^{i} b^{j}+l^{j} b^{i}\right)\right] \tag{2.4}
\end{equation*}
$$

where $l^{i}=g^{i j} l_{j}, b^{2}=b_{i} b^{i}, b^{i}=g^{i j} b_{j}, g^{i j}$ is the reciprocal tensor of $g_{i j}$ of F^{n}, and

$$
\begin{equation*}
t=f_{1}+L^{3} \omega \Delta, \Delta=b^{2}-\frac{\beta^{2}}{L^{2}} \tag{2.5}
\end{equation*}
$$

$$
\begin{align*}
& \text { (a) } \dot{\partial}_{i} f=e^{\sigma}\left(\frac{f}{L} l_{i}+f_{2} m_{i}\right), \quad \text { (b) } \dot{\partial}_{i} f_{1}=-e^{\sigma} \beta L \omega m_{i} \\
& \text { (c) } \dot{\partial}_{i} f_{2}=e^{\sigma} L^{2} \omega m_{i}, \quad \text { (d) } \dot{\partial}_{i} p=-\beta q L m_{i} \\
& \text { (e) } \dot{\partial}_{i} \omega=-\frac{3 \omega}{L} l_{i}+\omega_{2} m_{i}, \quad(f) \dot{\partial}_{i} b^{2}=-2 C_{. . i} \\
& \text { (g) } \dot{\partial}_{i} \Delta=-2 C_{. . i}-\frac{2 \beta}{L^{2}} m_{i} \tag{2.6}
\end{align*}
$$

$$
\begin{align*}
& \text { (a) } \dot{\partial}_{i} q=-\frac{3 q}{L} l_{i}, \quad \text { (b) } \dot{\partial}_{i} t=-2 L^{3} \omega C_{. . i}+\left[L^{3} \Delta \omega_{2}-3 \beta L \omega\right] m_{i}, \\
& \text { (c) } \dot{\partial}_{i} q=-\frac{3 q}{L} l_{i}+\left(4 f_{2} \omega_{2}+3 \omega^{2} L^{2}+f \omega_{22}\right) m_{i} \tag{2.7}
\end{align*}
$$

§3. Cartan's C-Tensor and C-Vectors of \bar{F}^{n}

Cartan's covariant C-tensor $C_{i j k}$ of F^{n} is defined by

$$
\bar{C}_{i j k}=\frac{1}{4} \dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} L^{2}=\dot{\partial}_{k} g_{i j}
$$

and Cartan's C-vectors are defined as follows:

$$
\begin{equation*}
C_{i}=C_{i j k} g^{j k}, C^{i}=C_{j k}^{i} g^{j k} . \tag{3.1}
\end{equation*}
$$

We shall write $C^{2}=C^{i} C_{i}$. Under the conformal β-chang (1.1) we get the following relation between Cartan's C-tensors of F^{n} and \bar{F}^{n} :

$$
\begin{equation*}
\bar{C}_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{p}{2 L}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\frac{q L^{2}}{2} m_{i} m_{j} m_{k}\right] . \tag{3.2}
\end{equation*}
$$

We have
(a) $m_{i} l^{i}=0$,
(b) $m_{i} b^{i}=b^{2}-\frac{\beta^{2}}{L^{2}}=\Delta=b_{i} m^{i}$,
(c) $g_{i j} m^{i}=h_{i j} m^{i}=m_{j}$.

From (2.1), (2.3), (2.4) and (3.2), we get

$$
\begin{align*}
\bar{C}_{i j}^{h}= & C_{i j}^{h}+\frac{p}{2 f f_{1}}\left(h_{i j} m^{h}+h_{j}^{h} m_{i}+h_{i}^{h} m_{j}\right)+\frac{q L^{3}}{2 f f_{1}} m_{j} m_{k} m^{h} \\
& -\frac{L}{f t} C \cdot j k n^{h}-\frac{p L \Delta}{2 f^{2} f_{1} t} h_{j k} n^{h}-\frac{2 p L+q L^{4} \Delta}{2 f^{2} f_{1} t} m_{j} m_{k} n^{h} \tag{3.4}
\end{align*}
$$

where $n^{h}=f L^{2} \omega b^{h}+p l^{h}$ and $h_{j}^{i}=g^{i l} h_{l j}, C_{. i j}=C_{r i j} b^{r}, C_{. . i}=C_{r j i} b^{r} b^{j}$ and so on.
Proposition 3.1 Let $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ be an n-dimensional Finsler space obtained from the conformal β-change of the Finsler space $F^{n}=\left(M^{n}, L\right)$, then the normalized supporting element \bar{l}_{i}, angular metric tensor $\bar{h}_{i j}$, fundamental metric tensor $\bar{g}_{i j}$ and (h)hv-torsion tensor $\bar{C}_{i j k}$ of \bar{F}^{n} are given by (2.1), (2.2), (2.3) and (3.2), respectively.

From (2.4), (3.1), (3.2) and (3.4) we get the following relations between the C-vectors of of F^{n} and \bar{F}^{n} and their magnitudes

$$
\begin{equation*}
\bar{C}_{i}=C_{i}-L^{3} \omega C_{i . .}+\mu m_{i} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{gather*}
\mu=\frac{p(n+1)}{2 f f_{1}}-\frac{3 p L^{3} \omega \Delta}{2 f f_{1}}+\frac{q L^{3} \Delta\left(1-L^{3} \omega \Delta\right)}{2 f f_{1}} \\
\bar{C}^{i}=\frac{e^{-2 \sigma} L}{f f_{1}} C^{i}+M^{i} \tag{3.6}
\end{gather*}
$$

where

$$
M^{i}=\frac{\mu e^{-2 \sigma} L}{f f_{1}} m^{i}-\frac{L^{4} \omega}{f f_{1}} C_{. .}^{i}-\left(C_{i}-e^{2 \sigma} L^{3} \omega C_{i . .}+\mu \Delta\right)\left(\frac{L^{3} \omega}{f f_{1}} b^{i}+\frac{L}{f t} y^{i}\right)
$$

and

$$
\begin{equation*}
\bar{C}^{2}=\frac{e^{-2 \sigma}}{p} C^{2}+\lambda \tag{3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda= & \left(\frac{e^{-2 \sigma} L}{f f_{1}}-L^{3} \omega \Delta\right) \mu^{2} \Delta+\frac{2 \mu e^{-2 \sigma} L}{f f_{1}} C . \\
& -(1+2 \mu \Delta) L^{3} \omega+\left(1-3 \mu+e^{2 \sigma} L^{2} \omega f f_{1} C .\right) L^{3} \omega C_{\ldots} \\
& +L^{3} \omega C_{. . r}\left(\left(e^{4 \sigma} L \omega f^{2} f_{1}^{2} C_{i . .}-\mu \Delta\right) L^{3} \omega b^{r}-e^{2 \sigma} L^{2} \omega f f_{1} C_{. .}^{r}-2 C^{r}\right) .
\end{aligned}
$$

§4. Special Cases of \bar{F}^{n}

In this section, following Matsumoto [10], we shall investigate special cases of \bar{F}^{n} which is conformally β-changed Finsler space obtained from F^{n}.

Definition 4.1 A Finsler space $\left(M^{n}, L\right)$ with dimension $n \geq 3$ is said to be quasi-C-reducible if the Cartan tensor $C_{i j k}$ satisfies

$$
\begin{equation*}
C_{i j k}=Q_{i j} C_{k}+Q_{j k} C_{i}+Q_{k i} C_{j} \tag{4.1}
\end{equation*}
$$

where $Q_{i j}$ is a symmetric indicatory tensor.

The equation (3.2) can be put as

$$
\bar{C}_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{1}{6} \pi_{(i j k)}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right) m_{k}\right\}\right]
$$

where $\pi_{(i j k)}$ represents cyclic permutation and sum over the indices i, j and k.

Putting the value of m_{k} from equation (3.5) in the above equation, we get

$$
\bar{C}_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{1}{6 \mu} \pi_{(i j k)}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right)\left(\bar{C}_{k}-C_{k}+L^{3} \omega C_{k . .}\right)\right\}\right]
$$

Rearranging this equation, we get

$$
\begin{aligned}
\bar{C}_{i j k}= & e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{1}{6 \mu} \pi_{(i j k)}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right) \bar{C}_{k}\right\}\right. \\
& \left.+\frac{1}{6 \mu} \pi_{(i j k)}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right)\left(L^{3} \omega C_{k . .}-C_{k}\right)\right\}\right]
\end{aligned}
$$

Further rearrangment of this equations gives

$$
\begin{equation*}
\bar{C}_{i j k}=\pi_{(i j k)}\left(\bar{H}_{i j} \bar{C}_{k}\right)+U_{i j k} \tag{4.2}
\end{equation*}
$$

where $\bar{H}_{i j}=\frac{e^{2 \sigma}}{6 \mu}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right)\right.$, and

$$
\begin{equation*}
U_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{1}{6 \mu} \pi_{(i j k)}\left\{\left(\frac{3 p}{L} h_{i j}+q L^{2} m_{i} m_{j}\right)\left(L^{3} \omega C_{k . .}-C_{k}\right)\right\}\right] \tag{4.3}
\end{equation*}
$$

Since $\bar{H}_{i j}$ is a symmetric and indicatory tensor, therefore from equation (4.2) we have the following theorem.

Theorem 4.1 Conformally β-changed Finsler space \bar{F}^{n} is quasi- C-reducible iff the tensor $U_{i j k}$ of equation (4.3) vanishes identically.

We obtain a generalized form of Matsumoto's result [10] as a corollary of the above theorem.

Corollary 4.1 If F^{n} is Reimannian space, then the conformally β-changed Finsler space \bar{F}^{n} is always a quasi-C-reducible Finsler space.

Definition 4.2 A Finsler space $\left(M^{n}, L\right)$ of dimension $n \geq 3$ is called C-reducible if the Cartan tensor $C_{i j k}$ is written in the form

$$
\begin{equation*}
C_{i j k}=\frac{1}{n+1}\left(h_{i j} C_{k}+h_{k i} C_{j}+h_{j k} C_{i}\right) \tag{4.4}
\end{equation*}
$$

Define the tensor $G_{i j k}=C_{i j k}-\frac{1}{(n+1)}\left(h_{i j} C_{k}+h_{k i} C_{j}+h_{j k} C_{i}\right)$. It is clear that $G_{i j k}$ is symmetric and indicatory. Moreover, $G_{i j k}$ vanishes iff F^{n} is C-reducible.

Proposition 4.1 Under the conformal β-change(1.1), the tensor $\bar{G}_{i j k}$ associated with the space \bar{F}^{n} has the form

$$
\begin{equation*}
\bar{G}_{i j k}=e^{2 \sigma} \frac{f f_{1}}{L} G_{i j k}+V_{i j k} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
V_{i j k}= & \frac{1}{(n+1)} \pi_{(i j k)}\left\{\left(e^{2 \sigma}(n+1)\left(\alpha_{1} h_{i j}+\alpha_{2} m_{i} m_{j}\right) m_{k}+e^{2 \sigma} \omega L^{2} m_{i} m_{j} C_{k}\right.\right. \\
& \left.+e^{2 \sigma} L^{2} \omega\left(f f_{1} h_{i j}+L^{3} \omega m_{i} m_{j}\right) C_{k . .}\right\} \tag{4.6}\\
& \alpha_{1}=\frac{e^{2 \sigma} p}{2 L}-\frac{\mu f f_{1} e^{2 \sigma}}{L(n+1)}, \quad \alpha_{2}=\frac{e^{2 \sigma} q L^{2}}{6}-\frac{\mu e^{2 \sigma} \omega L^{2}}{(n+1)}
\end{align*}
$$

From (4.5) we have the following theorem.

Theorem 4.2 Conformally β-changed Finsler space \bar{F}^{n} is C-reducible iff F^{n} is C-reducible and the tensor $V_{i j k}$ given by (4.6) vanishes identically.

Definition 4.3 A Finsler space $\left(M^{n}, L\right)$ of dimension $n \geq 3$ is called semi-C-reducible if the Cartan tensor $C_{i j k}$ is expressible in the form:

$$
\begin{equation*}
C_{i j k}=\frac{r}{n+1}\left(h_{i j} C_{k}+h_{k i} C_{j}+h_{j k} C_{i}\right)+\frac{s}{C^{2}} C_{i} C_{j} C_{k} \tag{4.7}
\end{equation*}
$$

where r and s are scalar functions such that $r+s=1$.
Using equations (2.2), (3.5) and (3.7) in equation (3.2), we have

$$
\bar{C}_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{p}{2 \mu f f_{1}}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{k i} \bar{C}_{j}+\bar{h}_{j k} \bar{C}_{i}\right)+\frac{\Delta L\left(f_{1} q-3 p \omega\right)}{2 f f_{1} \mu t \bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k}\right]
$$

If we put

$$
r^{\prime}=\frac{p(n+1)}{2 \mu f f_{1}}, s^{\prime}=\frac{\Delta L\left(f_{1} q-3 p \omega\right)}{2 f f_{1} \mu t}
$$

we find that $r^{\prime}+s^{\prime}=1$ and

$$
\begin{equation*}
\bar{C}_{i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j k}+\frac{r^{\prime}}{n+1}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{k i} \bar{C}_{j}+\bar{h}_{j k} \bar{C}_{i}\right)+\frac{s^{\prime}}{\bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k}\right] . \tag{4.8}
\end{equation*}
$$

From equation (4.8) we infer that \bar{F}^{n} is semi-C- reducible iff $C_{i j k}=0$, i.e. iff F^{n} is a Reimannian space. Thus we have the following theorem.

Theorem 4.3 Conformally β-changed Finsler space \bar{F}^{n} is semi-C-reducible iff F^{n} is a Riemannian space.

§5. v-Curvature Tensor of \bar{F}^{n}

The v-curvature tensor [10] of Finsler space with fundamental function L is given by

$$
S_{h i j k}=C_{i j r} C_{h k}^{r}-C_{i k r} C_{h j}^{r}
$$

Therefore the v-curvature tensor of conformally β-changed Finsler space \bar{F}^{n} will be given by

$$
\begin{equation*}
\bar{S}_{h i j k}=\bar{C}_{i j r} \bar{C}_{h k}^{r}-\bar{C}_{i k r} \bar{C}_{h j}^{r} \tag{5.1}
\end{equation*}
$$

From equations (3.2) and(3.4), we have

$$
\begin{aligned}
\bar{C}_{i j r} \bar{C}_{h k}^{r}= & e^{2 \sigma}\left[\frac{f f_{1}}{L} C_{i j r} C_{h k}^{r}+\frac{p}{2 L}\left(C_{i j k} m_{h}+C_{i j h} m_{k}+C_{i h k} m_{j}\right.\right. \\
& \left.+C_{h j k} m_{i}\right)+\frac{p f_{1}}{2 L t}\left(C_{. i j} h_{h k}+C_{h k} h_{i j}\right)-\frac{f f_{1} L^{2} \omega}{t} C_{. i j} C_{. h k}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{p^{2} \Delta}{4 f L t} h_{h k} h_{i j}+\frac{L^{2}\left(q f_{1}-2 p \omega\right)}{2 t}\left(C_{. i j} m_{k} m_{h}+C_{. h k} m_{i} m_{j}\right) \\
& +\frac{p\left(p+L^{3} q \Delta\right)}{4 L f t}\left(h_{i j} m_{h} m_{k}+h_{h k} m_{i} m_{j}\right)+\frac{p^{2}}{4 L f f_{1}}\left(h_{i j} m_{h} m_{k}\right. \\
& \left.+h_{h k} m_{i} m_{j}+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}+h_{j k} m_{i} m_{h}+h_{i k} m_{h} m_{j}\right) \\
& \left.+\frac{L^{2}\left(2 p q t+\left(q f_{1}-2 p \omega\right)\left(2 p+L^{3} q \Delta\right)\right)}{4 f f_{1} t} m_{i} m_{j} m_{h} m_{k}\right] . \tag{5.2}
\end{align*}
$$

We get the following relation between v-curvature tensors of $\left(M^{n}, L\right)$ and $\left(M^{n}, \bar{L}\right)$:

$$
\begin{equation*}
\bar{S}_{h i j k}=e^{2 \sigma}\left[\frac{f f_{1}}{L} S_{h i j k}+d_{h j} d_{i k}-d_{h k} d_{i j}+E_{h k} E_{i j}-E_{h j} E_{i k}\right], \tag{5.3}
\end{equation*}
$$

where

$$
\begin{gather*}
d_{i j}=P C_{. i j}-Q h_{i j}+R m_{i} m_{j}, \tag{5.4}\\
E_{i j}=S h_{i j}+T m_{i} m_{j}, \tag{5.5}\\
P=L\left(\frac{s}{t}\right)^{1 / 2}, Q=\frac{p g}{2 L^{2} \sqrt{s t}}, R=\frac{L\left(2 \omega p-f_{1} q\right)}{2 \sqrt{s t}}, S=\frac{p}{2 L^{2} \sqrt{f \omega}}, T=\frac{L\left(q f_{1}-\omega p\right)}{2 f_{1} \sqrt{f \omega}} .
\end{gather*}
$$

Proposition 5.1 The relation between v-curvature tensors of F^{n} and \bar{F}^{n} is given by (5.3).
When b_{i} in β is a concurrent vector field, then $C_{. i j}=0$. Therefore the value of v-curvature tensor of \bar{F}^{n} as given by (5.3) is reduced to the extent that $d_{i j}=R m_{i} m_{j}-Q h_{i j}$.

$\S 6$. The T-Tensor $T_{h i j k}$

The T-tensor of F^{n} is defined in [3] by

$$
\begin{equation*}
T_{h i j k}=\left.L C_{h i j}\right|_{k}+C_{h i j} l_{k}+C_{h i k} l_{j}+C_{h j k} l_{i}+C_{i j k} l_{h} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.C_{h i j}\right|_{k}=\dot{\partial}_{k} C_{h i j}-C_{r i j} C_{h k}^{r}-C_{h r j} C_{i k}^{r}-C_{h i r} C_{j k}^{r} \tag{6.2}
\end{equation*}
$$

In this section we compute the T-tensor of \bar{F}^{n}, which is given by

$$
\begin{equation*}
\bar{T}_{h i j k}=\bar{L} \bar{C}_{h i j} \overline{\mid}_{k}+\bar{C}_{h i j} \bar{l}_{k}+\bar{C}_{h i k} \bar{l}_{j}+\bar{C}_{h j k} \bar{l}_{i}+\bar{C}_{i j k} \bar{l}_{h} \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{C}_{h i j} \bar{T}_{k}=\dot{\partial}_{k} \bar{C}_{h i j}-\bar{C}_{r i j} \bar{C}_{h k}^{r}-\bar{C}_{h r j} \bar{C}_{i k}^{r}-\bar{C}_{h i r} \bar{C}_{j k}^{r} \tag{6.4}
\end{equation*}
$$

The derivatives of m_{i} and $h_{i j}$ with respect to y^{k} are given by

$$
\begin{equation*}
\dot{\partial}_{k} m_{i}=-\frac{\beta}{L^{2}} h_{i k}-\frac{1}{L}\left(l_{i} m_{k}\right), \quad \dot{\partial}_{k} h_{i j}=2 C_{i j k}-\frac{1}{L}\left(l_{i} h_{j k}+l_{j} h_{k i}\right) \tag{6.5}
\end{equation*}
$$

From equations (3.2) and (6.5), we have

$$
\begin{align*}
\dot{\partial}_{k} \bar{C}_{h i j}= & e^{2 \sigma}\left[\frac{f f_{1}}{L} \partial_{k} C_{h i j}+\frac{p}{L}\left(C_{i j k} m_{h}+C_{i j h} m_{k}+C_{i h k} m_{j}+C_{h j k} m_{i}\right)\right. \\
& -\frac{p \beta}{2 L^{3}}\left(h_{i j} h_{h k}+h_{h j} h_{i k}+h_{i h} h_{j k}\right)+\frac{p}{2 L^{2}}\left(h_{j k} l_{h} m_{i}+h_{h k} l_{j} m_{i}\right. \\
& +h_{h k} l_{i} m_{j}+h_{i k} l_{h} m_{j}+h_{j k} l_{i} m_{h}+h_{j k} l_{h} m_{i}+h_{i j} l_{h} m_{k}+h_{h j} l_{i} m_{k} \\
& \left.+h_{i k} l_{j} m_{k}+h_{i j} l_{k} m_{h}+h_{j h} l_{k} m_{i}+h_{h i} l_{k} m_{j}\right)-\frac{\beta q}{2}\left(h_{i j} m_{h} m_{k}\right. \\
& \left.+h_{h k} m_{i} m_{j}+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}+h_{j k} m_{i} m_{h}+h_{i k} m_{h} m_{j}\right) \\
& -\frac{q L}{2}\left(l_{i} m_{j} m_{h} m_{k}+l_{j} m_{i} m_{h} m_{k}+l_{h} m_{i} m_{j} m_{k}+h_{k} m_{i} m_{j} m_{h}\right) \\
& \left.+\frac{L^{2}}{2}\left(4 f_{2} \omega_{2}+3 L^{2} \omega^{2}+f \omega_{22}\right) m_{h} m_{i} m_{j} m_{k}\right] . \tag{6.6}
\end{align*}
$$

Using equations (6.5) and (5.2) in equation(6.4), we get

$$
\begin{align*}
\bar{C}_{h i j} \bar{T}_{k}= & \left.e^{2 \sigma} \frac{f f_{1}}{L} C_{h i j}\right|_{k}-\frac{e^{2 \sigma} p}{2 L}\left(C_{i j k} m_{h}+C_{i j h} m_{k}+C_{i h k} m_{j}+C_{h j k} m_{i}\right) \\
& -p e^{2 \sigma}\left(\frac{2 f \beta t}{4 f L^{3} t}+\frac{L^{2} p \Delta}{4 f L^{3} t}\right)\left(h_{i j} h_{h k}+h_{h j} h_{i k}+h_{i h} h_{j k}\right)-e^{2 \sigma}\left(\frac{\beta q}{2}\right. \\
& \left.+\frac{p^{2} f_{1}+p q f_{1} L^{3} \Delta+3 p^{2}}{4 L f f_{1} t}\right)\left(h_{i j} m_{h} m_{k}+h_{h k} m_{i} m_{j}+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}\right. \\
& \left.+h_{j k} m_{i} m_{h}+h_{i k} m_{h} m_{j}\right)-\frac{e^{2 \sigma} p}{2 L^{2}}\left[l _ { h } \left(h_{j k} m_{i}+h_{i j} m_{k}\right.\right. \\
& \left.+h_{i k} m_{j}\right)+l_{j}\left(h_{h k} m_{i}+h_{i k} m_{k h}+h_{i h} m_{k}\right)+l_{i}\left(h_{h k} m_{j}+h_{j k} m_{h}\right. \\
& \left.\left.+h_{h j} m_{k}\right)+l_{k}\left(h_{i j} m_{h}+h_{j h} m_{i}+h_{h i} m_{j}\right)\right]-\frac{e^{2 \sigma} q L}{2}\left(l_{i} m_{j} m_{h} m_{k}\right. \\
& \left.+l_{j} m_{i} m_{h} m_{k}+l_{h} m_{i} m_{j} m_{k}+h_{k} m_{i} m_{j} m_{h}\right)-\frac{p f_{1} e^{2 \sigma}}{2 L t}\left(C_{. i j} h_{h k}\right. \\
& \left.+C_{. h j} h_{i k}+C_{. h k} h_{i j}+C_{. i k} h_{h}+C_{. h i} h_{j k}+C_{. j k} h_{h i}\right)+\frac{e^{2 \sigma} f f_{1} L^{2} \omega}{t}\left(C_{. i j} C_{. h k}\right. \\
& \left.+C_{. h j} C_{. i k}+C_{. h i} C_{. j k}\right)-\frac{e^{2 \sigma} L^{2}\left(q f_{1}-2 p \omega\right)}{2 t}\left(C_{. i j} m_{k} m_{h}\right. \\
& +C . h k m_{i} m_{j}+C_{. h j} m_{i} m_{k}+C_{. i k} m_{j} m_{h} \\
& \left.+C_{. h i} m_{j} m_{k}+C_{. j k} m_{h} m_{i}\right)+e^{2 \sigma}\left[\frac{L^{2}\left(4 f_{2} \omega_{2}+3 L^{2} \omega^{2}+f \omega_{22}\right)}{2}\right. \\
& \left.-\frac{3 L^{2}\left(2 p q t+\left(q f_{1}-2 p \omega\right)\left(2 p+L^{3} q \Delta\right)\right.}{4 f f_{1} t}\right] m_{i} m_{j} m_{h} m_{k} . \tag{6.7}
\end{align*}
$$

Using equations (2.1), (3.2) and (6.6) in equation (6.3), we get the following relation
between T-tensors of Finsler spaces F^{n} and \bar{F}^{n} :

$$
\begin{align*}
\bar{T}_{h i j k}= & e^{3 \sigma}\left[\frac{f^{2} f_{1}}{L^{2}} T_{h i j k}+\frac{f\left(f_{1} f_{2}+f \beta L \omega\right)}{2 L}\left(C_{i j k} m_{h}+C_{i j h} m_{k}+C_{i h k} m_{j}\right.\right. \\
& \left.+C_{h j k} m_{i}\right)+\frac{f^{2} f_{1} L^{2} \omega}{t}\left(C_{. i j} C_{. h k}+C_{. h j} C_{. i k}+C_{. h i} C_{. j k}\right) \\
& -\frac{p f_{1}}{2 L t}\left(C_{. i j} h_{h k}+C_{. h j} h_{i k}+C_{. h k} h_{i j}+C_{. i k} h_{h}+C_{. h i} h_{j k}+C_{. j k} h_{h i}\right) \\
& -\frac{f L^{2}\left(q f_{1}-2 p \omega\right)}{2 t}\left(C_{. i j} m_{k} m_{h}+C_{. h k} m_{i} m_{j}+C_{. h j} m_{i} m_{k}\right. \\
& \left.+C_{. i k} m_{j} m_{h}+C_{. h i} m_{j} m_{k}+C_{. j k} m_{h} m_{i}\right)-\frac{p\left(2 f \beta t+L^{2} p \Delta\right)}{4 L^{3} t}\left(h_{i j} h_{h k}\right. \\
& \left.+h_{h j} h_{i k}+h_{i h} h_{j k}\right)-\left(\frac{p^{2} f_{1}+p q f_{1} L^{3} \Delta+3 p^{2}}{4 L f_{1} t}+\frac{\beta q f}{2}-\frac{p f_{2}}{L}\right) \\
& \left(h_{i j} m_{h} m_{k}+h_{h k} m_{i} m_{j}+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}+h_{j k} m_{i} m_{h}\right. \\
& \left.+h_{i k} m_{h} m_{j}\right)+\left[\frac{L^{2}\left(4 f_{2} \omega_{2}+3 L^{2} \omega^{2}+f \omega_{22}\right)}{2}+2 L^{2} f_{2} q\right. \\
& \left.\left.-\frac{3 L^{2}\left(2 p q t+\left(q f_{1}-2 p \omega\right)\left(2 p+L^{3} q \Delta\right)\right.}{4 f_{1} t}\right] m_{i} m_{j} m_{h} m_{k}\right] . \tag{6.8}
\end{align*}
$$

Proposition 6.1 The relation between T-tensors of F^{n} and \bar{F}^{n} is given by (6.7).

If $b i$ is a concurrent vector field in F^{n}, then $C_{. i j}=0$. Therefore from(6.8), we have

$$
\begin{align*}
\bar{T}_{h i j k}= & e^{3 \sigma}\left[\frac{f^{2} f_{1}}{L^{2}} T_{h i j k}-\frac{p\left(2 f \beta t+L^{2} p \Delta\right)}{4 L^{3} t}\left(h_{i j} h_{h k}+h_{h j} h_{i k}+h_{i h} h_{j k}\right)\right. \\
& -\left(\frac{p^{2} f_{1}+p q f_{1} L^{3} \Delta+3 p^{2} t}{4 L f_{1} t}+\frac{\beta q f}{2}-\frac{p f_{2}}{L}\right)\left(h_{i j} m_{h} m_{k}+h_{h k} m_{i} m_{j}\right. \\
& \left.+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}+h_{j k} m_{i} m_{h}+h_{i k} m_{h} m_{j}\right) \\
& +\left[2 L^{2} f_{2} q+\frac{L^{2}\left(4 f_{2} \omega_{2}+3 L^{2} \omega^{2}+f \omega_{22}\right)}{2}+\frac{3 L^{2}\left(q f_{1}-2 p \omega\right)\left(2 p+L^{3} q \Delta\right)}{4 L f f_{1} t}\right. \\
& \left.\left.-\frac{3 L^{2} 2 p q t}{4 L f f_{1} t}\right] m_{i} m_{j} m_{h} m_{k}\right] . \tag{6.9}
\end{align*}
$$

If $b i$ is a concurrent vector field in F^{n}, with vanishing T-tensor then T-tensor of F^{n} is given by

$$
\begin{align*}
\bar{T}_{h i j k}= & e^{3 \sigma}\left[-\frac{p\left(2 f \beta t+L^{2} p \Delta\right)}{4 L^{3} t}\left(h_{i j} h_{h k}+h_{h j} h_{i k}+h_{i h} h_{j k}\right)\right. \\
& -\left(\frac{p^{2} f_{1}+p q f_{1} L^{3} \Delta+3 p^{2} t}{4 L f_{1} t}+\frac{\beta q f}{2}-\frac{p f_{2}}{L}\right)\left(h_{i j} m_{h} m_{k}\right. \\
& \left.+h_{h k} m_{i} m_{j}+h_{h j} m_{i} m_{k}+h_{h i} m_{j} m_{k}+h_{j k} m_{i} m_{h}+h_{i k} m_{h} m_{j}\right) \\
& +\left[\frac{L^{2}\left(4 f_{2} \omega_{2}+3 L^{2} \omega^{2}+f \omega_{22}\right)}{2}-\frac{3 L^{2} 2 p q t}{4 L f f_{1} t}\right. \\
& \left.\left.+\frac{3 L^{2}\left(q f_{1}-2 p \omega\right)\left(2 p+L^{3} q \Delta\right)}{4 L f f_{1} t}+2 L^{2} f_{2} q\right] m_{i} m_{j} m_{h} m_{k}\right] . \tag{6.10}
\end{align*}
$$

Acknowledgement

The work contained in this research paper is part of Major Research Project "Certain Investigations in Finsler Geometry" financed by the U.G.C., New Delhi.

References

[1] B.N.Prasad and Bindu Kumari, The β-change of Finsler metric and imbedding classes of their tangent spaces, Tensor N. S., 74, (2013),48-59.
[2] C. Shibata, On invariant tensors of β-change of Finsler metric, J. Math.Kyoto Univ., 24(1984),163-188.
[3] F.Ikeda, On the tensor $T_{i j k l}$ of Finsler spaces, Tensor N. S., 33(1979),203-209.
[4] H.Izumi, Conformal transformations of Finsler spaces I, Tensor N.S., 31(1977),33-41.
[5] H.Izumi, Conformal transformations of Finsler spaces II. An h-conformally flat Finsler space, Tensor N.S., 33(1980),337-369.
[6] H.S.Shukla and Neelam Mishra, Conformal β-changes of Finsler metric, J.Int.Acad.Phys.Sci., 21(1)(2017), 19-30.
[7] H.S.Shukla, O.P.pandey and Khageshwar Mandal, The β-change of Special Finsler Spaces, International J.Math.Combin., 1(2017), 78-87.
[8] M.Hashiguchi, On conformal transformation of Finsler metric, J.Math.Kyoto Univ.,16(1976),2550.
[9] M.Kitayama, Geometry of Transformations of Finsler metrics, Hokkaido University of Education,Kushiro Campus, Japan, 2000.
[10] M.Mastsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Otsu, 520 Japan, 1986.
[11] M. Matsumoto and K. Eguchi, Finsler space admitting a concurrent vector field, Tensor N.S., 28(1974), 239-249.
[12] M.S.Knebelman, Conformal geometry of generalized metric spaces, Proc.Nat.Acad. Sci., USA.,15(1929),376-379.
[13] N.L.Youssef, S.H.Abed and S.G.Elgendi, Generalized β-conformal change of Finsler metrics, Int.J.Geom.Meth.Mod.Phys.,7,4(2010).ArXiv No.:math.DG/0906.5369.
[14] N.L.Youssef,S.H.Abed and S.G.Elgendi, Generalized β-conformal change and special Finsler spaces, Int.J.Geom.Meth.Mod.Phys., 8,6(2010). ArXiv No.:math.DG/1004.5478v3.
[15] S.H.Abed, Conformal β-changes in Finsler spaces, Proc.Math.Phys.Soc.Egypt, 86(2008),7989.ArXiv No.:math.DG/0602404.
[16] S.H.Abed, Cartan connections associated with a β-conformal change in Finsler geometry, Tensor N.S., 70(2008),146-158. ArXiv No.:math.DG/0701491.
[17] S.Tachibana, On Finsler spaces which admit a concurrent vector field, Tensor N. S., 1 (1950),1-5.

[^0]: ${ }^{1}$ Received January 22, 2018, Accepted May 12, 2018.

