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Abstract: Let G = (V, E) be a simple graph. The neighborhood graph N(G) of a graph

G is the graph with the vertex set V ∪ S where S is the set of all open neighborhood sets

of G and with vertices u, v ∈ V (N(G)) adjacent if u ∈ V and v is an open neighborhood set

containing u. In this paper, we obtain the domination number, the total domination number

and the independent domination number in the neighborhood graph. We also investigate

these parameters of domination on the join and the corona of two neighborhood graphs.
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§1. Introduction

Let G = (V, E) be a simple graph with |V (G)| = n vertices and |E(G)| = m edges. The neigh-

borhood of a vertex u is denoted by NG(u) and its degree |NG(u)| by degG(u). The minimum

and maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The

open neighborhood of a set S ⊆ G is the set N(S) =
⋃

v∈V (G) N(v), and the closed neighbor-

hood of S is the set N [S] = N(S) ∪ S. A cut-vertex of a graph G is any vertex u ∈ V (G) for

which induced subgraph G\{u} has more components than G. A vertex with degree 1 is called

an end-vertex [1].

A dominating set is a set D of vertices of G such that every vertex outside D is dominated

by some vertex of D. The domination number of G, denoted by γ(G), is the minimum size of a

dominating set of G, and generally, a vertex set Dk
S of G is a Smarandachely dominating k-set

if each vertex of G is dominated by at least k vertices of S. Clearly, if k = 1, such a set Dk
S is

nothing else but a dominating set of G. A dominating set D is a total dominating set of G if

every vertex of the graph is adjacent to at least one vertex in D. The total domination number

of G, denoted by γt(G) is the minimum size of a total dominating set of G. A dominating
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set D is called an independent dominating set if D is an independent set. The independent

domination number of G denoted by γi(G) is the minimum size of an independent dominating

set of G [1].

The join of two graphs G1 and G2, denoted by G1 + G2, is the graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1) and v ∈ V (G2)}. The corona

of two graphs G1 and G2 is the graph G = G1 ◦ G2 formed from one copy of G1 and |V (G1)|
copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2. For

every v ∈ V (G1), Gv
2 is the copy of G2 whose vertices are attached one by one to the vertex

v. The corona G ◦K1, in particular, is the graph constructed from a copy of G, where for each

vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are added [2].

We use Kn, Cn and Pn to denote a complete graph, a cycle and a path of the order n,

respectively. A complete bipartite graph denotes by Km,n and the graph K1,n of order n + 1 is

a star graph with one vertex of degree n and n end-vertices.

The neighborhood graph N(G) of a graph G is the graph with the vertex set V ∪ S where

S is the set of all open neighborhood sets of G and two vertices u and v in N(G) are adjacent

if u ∈ V and v is an open neighborhood set containing u. In Figure 1, a graph G and its

neighborhood graph are shown. The open neighborhood sets in graph G are N(1) = {2, 3, 4},
N(2) = {1, 3}, N(3) = {1, 2} and N(4) = {1} [3].

Figure 1 The graph G and the neighborhood graph of G.

In this paper, we determine the domination number, total domination number and inde-

pendent domination number for the neighborhood graph of a graph G. Also, we consider the

join graph and the corona graph of two neighborhood graphs and investigate some parameters

of domination of these graphs.

§2. Lemma and Preliminaries

In the text follows we recall some results that establish the domination number, the total

domination number and the independent domination number for graphs, that are of interest
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for our work.

Lemma 2.1([3]) If G be a graph without isolated vertex of order n and the size of m, then

N(G) is a bipartite graph with 2n vertices and 2m edges.

Lemma 2.2([3]) If T be a tree with n ≥ 2, then N(T ) = 2T .

Lemma 2.3 ([3]) For a cycle Cn with n ≥ 3 vertices,

N(Cn) =





2Cn if n is even,

C2n if n is odd.

Lemma 2.4 ([3])

(i) For 1 ≤ m ≤ n, N(Km,n) = 2Km,n;

(ii) For n ≥ 1, N(K̄n) = K̄n;

(iii) A graph G is a r-regular if and only if N(G) is a r-regular graph.

Lemma 2.5 ([1]) Let γ(G) be the domination number of a graph G, then

(i) For n ≥ 3, γ(Cn) = γ(Pn) = ⌈n
3 ⌉;

(ii) γ(Kn) = γ(K1,n) = 1;

(iii) γ(Km,n) = 2;

(iv) γ(K̄n) = n.

Lemma 2.6 ([4]) If T be a tree of order n and l end-vertices, then

γ(T ) ≥ n− l + 2

3
.

Lemma 2.7 ([5]) Let G be a r-regular graph of order n. Then

γ(G) ≥ n

r + 1
.

Lemma 2.8 ([6]) Let γt be the total domination number of G. Then

(i) γt(Kn) = γt(Kn,m) = 2;

(ii) γt(Pn) = γt(Cn) =






n
2 if n ≡ 0 (mod 4),

n+2
2 if n ≡ 2 (mod 4),

n+1
2 otherwise.

(iiii) Let T be a nontrivial tree of order n and l end-vertices, then

γt(T ) ≥ n− l + 2

2
;

(iv) Let G be a graph , then γt(G) ≥ 1 + |C|
2 , where C is the set of cut-vertices of G.
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Lemma 2.9 ([7]) Let γi be the independent domination number of G. Then

(i) γi(Pn) = γi(Cn) =
⌈

n
3

⌉
;

(ii) γi(Kn,m) = min{n, m};
(iii) For a graph G with n vertices and the maximum degree ∆,

⌈ n

1 + ∆

⌉
≤ γi(G) ≤ n−∆.

(iv) If G is a bipartite graph of order n without isolated vertex, then

γi(G) ≤ n

2
;

(v) For any tree T with n vertices and l end-vertices,

γi(T ) ≤ n + l

3
.

Lemma 2.10 ([8]) For any graph G, χ(G) ≤ △(G) + 1 where χ(G) is the chromatic number

of G.

Lemma 2.11 ([9]) For any graph G, κ(G) ≤ δ(G), where κ(G) is the connectivity of G.

§3. The Domination Number, the Total Domination Number and the

Independent Domination Number on N(G)

In this section, we propose the obtained results of some parameters of domination on a neigh-

borhood graph.

Theorem 3.1 Let the neighborhood graph of G be N(G), then

(i) γ(N(Pn)) = 2
⌈

n
3

⌉
;

(ii) γ(N(Cn)) =





2⌈n

3 ⌉ if n is even,
⌈

2n
3

⌉
if n is odd.

(iii) γ(N(K1,n)) = γ(N(Kn)) = 2;

(iv) For 2 ≤ n ≤ m, γ(N(Kn,m)) = 4;

(v) For n ≥ 2, γ(N(K̄n)) = 2n.

Proof (i) Using Lemma 2.2, for n ≥ 2, N(Pn) = 2Pn. So, it is sufficient to consider a

dominating set of Pn. By Lemma 2.5(i), γ(Pn) =
⌈

n
3

⌉
. Therefore,

γ(N(Pn)) = 2γ(Pn) = 2
⌈n
3

⌉
.

(ii) If n is even then by Lemma 2.3, N(Cn) = 2Cn. So, we consider a cycle Cn of order n
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and using Lemma 2.5(i), we have

γ(N(Cn)) = 2γ(Cn) = 2
⌈n
3

⌉
.

If n is odd, then since N(Cn) is a cycle of order 2n so, γ(N(Cn)) = γ(C2n) =
⌈

2n
3

⌉
.

The segments on (iii), (iv) and (v) can be obtained similarly by applying Lemma 2.1,

Lemma 2.4 and Lemma 2.5. 2
Theorem 3.2 Let T be a tree of order n with l end-vertices. Then

2

3
(n− l + 2) ≤ γ(N(T )) ≤ n.

Proof Using Lemma 2.2, for every tree T , N(T ) = 2T . So, we consider a tree T to

investigate its domination number. Thus, by Lemma 2.6, for every tree T of order n with l

end-vertices,

γ(T ) ≥ n− l + 2

3
.

Therefore,

γ(N(T )) = 2γ(T ) ≥ 2
(n− l + 2

3

)
.

Since T is without isolated vertices so, N(T ) is a graph without any isolated vertex. There-

fore, V (T ) ⊆ V (N(T )) is a dominating set of N(T ). Thus, γ(N(T )) ≤ n. It completes the

result. 2
Theorem 3.3 Let G be a r-regular graph. Then,

γ(N(G)) ≥ 2n

r + 1
.

Proof Using Lemma 2.5(iii), since G is an r-regular graph so, N(G) is a r-regular graph

too. According to Lemma 2.1 and Lemma 2.7, we have

γ(N(G)) ≥ 2n

r + 1
. 2

Theorem 3.4 Let N(G) be a neighborhood graph of G. Then for every vertex x ∈ V (G),

degG(x) is equal with degN(G)(x).

Proof Assume x ∈ V (G) and degG(x) = k. So, the neighborhood set of x is N(x) =

{y1, · · · , yk} where yi ∈ V (G). In graph N(G), x is adjacent to a vertex such as N(u) that

consists x. Then, x is adjacent to N(yi) for every 1 ≤ i ≤ k. Thus, degree of x is k in N(G).

Therefore, degG(x) = degN(G)(x). 2
Theorem 3.5 Let γ(N(G)) be the domination number of N(G). For any graph G of order n
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with the maximum degree ∆(G),

⌈ 2n

1 + ∆(G)

⌉
≤ γ(N(G)) ≤ 2n−∆(G).

Proof Let D be a dominating set of N(G). Each vertex of D can dominate at most itself

and ∆(N(G)) other vertices. Since by Theorem 3.4, ∆(N(G)) = ∆(G) so,

γ(N(G)) = |D| ≥
⌈ 2n

1 + ∆(G)

⌉
.

Now, let v be a vertex with the maximum degree ∆(N(G)) and N [v] be a closed neighbor-

hood set of v in N(G). Then v dominates N [v] and the vertices in V (N(G)) \ N [v] dominate

themselves.

Hence, V (N(G)) \N [v] is the dominating set of cardinality 2n−∆(N(G)). So,

γ(N(G)) ≤ 2n−∆(N(G)) = 2n−∆(G). 2
We establish a relation between the domination number of N(G) and the chromatic number

χ(G) of the graph G.

Theorem 3.6 For any graph G,

γ(N(G)) + χ(G) ≤ 2n + 1.

Proof By Theorem 3.5, γ(N(G)) ≤ 2n −∆(G) and by Lemma 2.10, χ(G) ≤ ∆(G) + 1.

Thus,

γ(N(G)) + χ(G) ≤ 2n + 1. 2
We obtain a relation between the domination number of N(G) and the connectivity κ(G)

of G following.

Theorem 3.7 For any graph G,

γ(N(G)) + κ(G) ≤ 2n.

Proof By Theorem 3.5, γ(N(G)) ≤ 2n − ∆(G) and by Lemma 2.11, κ(G) ≤ δ(G).

Therefore,

γ(N(G)) + κ(G) ≤ 2n−∆(G) + δ(G),

since, δ(G) ≤ ∆(G) so,

γ(N(G)) + κ(G) ≤ 2n. 2
The following theorem is an easy consequence of the definition of N(G), Lemmas 2.2–2.4
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and Lemma 2.8.

Theorem 3.8 Let the neighborhood graph of G be N(G) and γt(N(G)) be the total domination

number of N(G). Then

(i) γt(N(Pn)) = γt(N(Cn)) =






n if n ≡ 0 (mod 4),

n + 2 if n ≡ 2 (mod 4),

n + 1 otherwise,

(ii) For every n, m ≥ 1, γt(N(Km,n)) = 4;

(iii) For n ≥ 2, γt(N(Kn)) = 4.

Theorem 3.9 Let G be a graph of order n without isolated vertices and with the maximum

degree ∆. Then,

γt(N(G)) ≥ 2n

∆
.

Proof Let D be a total dominating set of N(G). Then, every vertex of V (N(G)) is

adjacent to some vertices of D. Since, every v ∈ D can have at most ∆(N(G)) neighborhood,

it follows that ∆(N(G))γt(N(G)) ≥ |V (N(G))| = 2n. By Theorem 3.4, ∆(N(G)) = ∆(G) = ∆

so, ∆γt(N(G)) ≥ 2n. Therefore,

γt(N(G)) ≥ 2n

∆
. 2

Theorem 3.10 Let T be a nontrivial tree of order n and l end-vertices. Then,

γt(N(T )) ≥ n + 2− l.

Proof Using Lemma 2.2, N(T ) = 2T and so, γt(N(T )) = 2γt(T ). By Lemma 2.8(iv),

γt(T ) ≥ n + 2− l

2
.

Therefore,

γt(N(T )) = 2γt(T ) ≥ 2
(n + 2− l

2

)
= n + 2− l. 2

Theorem 3.11 Let G be a graph with x cut-vertices. Then,

γt(N(G)) ≥ 1 + x.

Proof Let C be the set of cut-vertices of N(G). Since for every cut-vertex u of G, u and

N(u) are both cut-vertices in N(G) so, |C| = 2x. By Lemma 2.8(iv), γt(N(G)) ≥ 1 + |C|
2 .

Therefore, we have

γt(N(G)) ≥ 1 +
|C|
2

= 1 +
2x

2
= 1 + x. 2

Theorem 3.12 Let γi(G) be the independent domination number of G. Then
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(i) γi(N(Kn,m)) = 2m;

(ii) γi(N(K1,n)) = 2;

(iii) γi(N(K̄n)) = 2n;

(iv) γi(N(Pn)) = 2⌈n
3 ⌉;

(v) γi(N(Cn)) =





2
⌈

n
3

⌉
if n is even,

⌈
2n
3

⌉
if n is odd.

Proof The theorem easily proves using Lemma 2.3, Lemma 2.4(i, ii), Lemma 2.5 and

Lemma 2.9(i, ii). 2
Theorem 3.13 For a graph G with n vertices and the maximum degree ∆,

⌈ 2n

1 + ∆

⌉
≤ γi(N(G)) ≤ 2n−∆.

Proof It is easy to see that N(G) is a graph of order 2n and the maximum degree ∆. So,

using Lemma 2.9(iii) we have the result. 2
We establish a relation between the independent domination number of N(G) and the

chromatic number χ(G) of G.

Theorem 3.14 For any graph G,

γi(N(G)) + χ(G) ≤ 2n + 1.

Proof By Theorem 3.13, γi(N(G)) ≤ 2n−∆(G) and by Lemma 2.10, χ(G) ≤ ∆(G) + 1.

So,

γi(N(G)) + χ(G) ≤ 2n + 1. 2
The following theorem is the relation between the independent domination number of N(G)

and the connectivity κ(G) of G.

Theorem 3.15 For any graph G,

γi(N(G)) + κ(G) ≤ 2n.

Proof By Theorem 3.13, γi(N(G)) ≤ 2n−∆(G) and by Lemma 2.11, κ(G) ≤ δ(G). So,

γi(N(G)) + κ(G) ≤ 2n−∆(G) + δ(G) ≤ 2n. 2
Theorem 3.16 Let G be a simple graph of order n and without any isolated vertex. Then

γi(N(G)) ≤ n.
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Proof For every graph G with n vertices, N(G) is a bipartite graph of order 2n. Since G

doesn’t have any isolated vertex so, N(G) is a graph without isolated vertex. Thus, by Lemma

2.9(iv) we have

γi(N(G)) ≤ 2n

2
= n. 2

Theorem 3.17 Let T be a tree with n vertices and l end-vertices without isolated vertices.

Then

γi(N(T )) ≤ 2

3
(n + 2l).

Proof For every tree T , N(T ) = 2T . Let v be an end-vertex of G. Then, the corresponding

vertices of v and N(v) are end-vertices in N(G). Thus, if T has l end-vertices then 2l end-

vertices are in N(T ). So, by Lemma 2.9(v) we have

γi(N(T )) = 2γi(T ) ≤ 2
(n + 2l

3

)
. 2

§4. The Results of the Combination of Neighborhood Graphs

In this section, we consider two graphs G1 and G2 and study the join and the corona of their

neighborhood graphs in two cases. In Section 4.1, we consider two cases for the join of graphs: i)

the neighborhood graph of G1+G2 that denotes by N(G1+G2), ii) the join of two graphs N(G1)

and N(G2). So, the domination number, the total domination number and the independent

domination number of these graphs are obtained. In Section 4.2, we study the domination

number, the total domination number and the independent domination number on two cases

of the corona graphs: i) N(G1 ◦G2) and ii) N(G1) ◦N(G2).

4.1 The Join of Neighborhood Graphs

Let G1 be a simple graph of order n1 with m1 edges and G2 be a simple graph with n2 vertices

and m2 edges. By the definition of the join of two graphs, G1 + G2 has n1 + n2 vertices and

m1 + m2 + m1m2 edges. So, the neighborhood graph of G1 + G2 has 2(n1 + n2) vertices and

2m edges where m = m1 + m2 + m1m2. For every x ∈ V (G1 + G2) that x ∈ V (G1), we have

degG1+G2(x) = degG1(x) + n2. Also, if y ∈ V (G1 + G2) and y ∈ V (G2) then degG1+G2(y) =

degG2(y) + n1. On the other hand, using Theorem 3.4 we know that degG(x) = degN(G)(x).

So, degG1+G2(x) = degN(G1+G2)(x). Thus, if x ∈ V (G1), then degN(G1+G2)(x) = degG1(x)+n2

and if y ∈ V (G2) then degN(G1+G2)(y) = degG2(y) + n1.

Now, let G1 and G2 be simple graphs without any isolated vertex. Thus, the join of N(G1)

and N(G2) denotes N(G1) + N(G2) of order 2(n1 + n2). Also, N(G1 + G2) has 2m1 + 2m2 +

4m1m2 edges. Therefore, E(N(G1)+N(G2)) = E(N(G1 +G2))+2m1m2. Also, we can obtain

for every x ∈ V (N(G1)), degN(G1)+N(G2)(x) = degN(G1)(x) + 2n2 and for every y ∈ V (G2),

degN(G1)+N(G2)(y) = degN(G2)(y) + 2n1.
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Theorem 4.1 Let G1 and G2 be simple graphs without isolated vertex. If order of G1 is n1

and ∆(G1) ≥ n1 − 1, then

γ(N(G1 + G2)) = γi(N(G1 + G2)) = 2.

Proof Let x ∈ V (G1) be a vertex with the maximum degree at least n1−1. So, x dominates

n1 − 1 vertices of G1. Let D = {x, NG1+G2(x)} and NG1+G2(x) be the open neighborhood set

of x in G1 +G2. Since, every vertex of G1 is adjacent to all of vertices of G2 in G1 +G2 so, the

degree of x in G1 + G2 is n1 + n2 − 1 and x dominates n1 + n2 − 1 in N(G1 + G2). Similarity,

NG1+G2(x) dominates n1 + n2 − 1 vertices of N(G1 + G2). So, γ(N(G1 + G2)) = |D| = 2.

Since, x and NG1+G2(x) are not adjacent in N(G1 + G2). Thus, D is an independent

dominating set in N(G1 + G2). Therefore, γi(N(G1 + G2)) = 2. 2
Theorem 4.2 Let G1 and G2 be simple graphs without isolated vertices. Then

2 ≤ γ(N(G1 + G2)) ≤ 4.

Proof It is clearly to obtain γ(N(G1 + G2)) ≥ 2. Let S = {x, NG1+G2(x), y, NG1+G2(y)}
where x ∈ V (G1) and y ∈ V (G2). Then, x dominates all of vertices of G2 in G1 + G2 and so,

all of vertices of N(G1 + G2) that are the corresponding set to the neighborhoods of V (G2).

Similarity, y ∈ V (G2) dominates n1 vertices of N(G1 +G2). It is shown that S is a dominating

set of N(G1 + G2). Therefore, the result holds. 2
Theorem 4.3 For graphs G1 and G2,

γt(N(G1 + G2)) = 4.

Proof Assume S = {x, NG1+G2(x), y, NG1+G2(y)} where x ∈ V (G1) and y ∈ V (G2). The

vertex of NG1+G2(x) in N(G1 + G2) is the corresponding vertex to the neighborhood of x in

G1. So, x dominates all of the vertices of G1 and y dominates all of vertices of G2. It is clearly

to see that x is adjacent to NG1+G2(y) and y is adjacent to NG1+G2(x). Therefore, S is a total

dominating set of N(G1 + G2) and we have γt(N(G1 + G2)) ≤ |S| = 4.

Let D be a total dominating set of N(G1 + G2) that |D| ≤ 3. We can assume that

D = {x, y, z}. Thus, we have the following cases.

Case 1. If x, y, z ∈ V (G1 + G2), then since V (N(G1 + G2)) = V (G1 + G2) ∪ S so, all of the

vertices S are dominated by D where S is the set of all open neighborhood sets of G1 + G2.

But, each of vertices of V (G1 + G2) in V (N(G1 + G2)) is not dominated by D. Thus, it is a

contradiction.

Case 2. Let one of vertices of D be in V (G1+G2) and remained vertices be in S of N(G1+G2).

Without loss of generality suppose that x ∈ V (G1). So, x ∈ V (G1 + G2) and y, z ∈ S. since x
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doesn’t dominate NG1+G2(x) and y, z don’t dominate the corresponding vertices to y and z in

V (G1 + G2) so, D is not the dominate set in N(G1 + G2). So, it is a contradiction.

Therefore, γt(N(G1 + G2)) ≥ 4. 2
Theorem 4.4 For graphs G1 and G2,

(i) γ(N(G1) + N(G2)) = 2;

(ii) γt(N(G1) + N(G2)) = 2.

Proof Using the definition of the total dominating set and the structure of the join of two

graphs, the result is hold. 2
4.2 The Corona of Neighborhood Graphs

In this section, the results of the investigating of the corona on the neighborhood graphs are

proposed.

Theorem 4.5 Let G be a connected graph of order m and H any graph of order n. Then

γ(N(G) ◦N(H)) = 2m.

Proof According to the definition of the corona G and H , for every v ∈ N(G), V (v +

N(H)v)∩V (N(G)) = {v} in which N(H)v is copy of N(H) whose vertices are attached one by

one to the vertex v. Thus, {v} is a dominating set of v + N(H)v for v ∈ V (N(G)). Therefore,

V (N(G)) is a dominating set of N(G) ◦N(H) and γ(N(G) ◦N(H)) ≤ 2m.

Let D be a dominating set of N(G) ◦ N(H). We show that D ∩ V (v + N(H)v) is a

dominating set of v + N(H)v for every v ∈ V (N(G)).

If v ∈ D, then {v} is a dominating set of v + N(H)v. It follows that V (v + N(H)v) ∩D

is a dominating set of v + N(H)v. If v /∈ D and let x ∈ V (v + N(H)v) \D with x 6= v. Since,

D is a dominating set of N(G) ◦ N(H), there exists y ∈ D such that xy ∈ E(N(G) ◦ N(H)).

Then, y ∈ V (N(H)v) ∩D and xy ∈ E(v + N(H)v). Therefore, it completes the result.

Since D ∩ V (v + N(H)v) is a dominating set of v + N(H)v for every v ∈ V (N(G)) so,

γ(N(G) ◦N(H)) = |D| ≥ 2m. It completes the proof. 2
Theorem 4.6 Let G be a connected graph of order m and H any graph of order n. Then

γt(N(G) ◦N(H)) = 2m.

Proof It is easily to obtain that V (N(G)) is a total dominating set for N(G) ◦N(H). So,

γt(N(G) ◦N(H)) ≤ 2m.

Let D be a total dominating set of N(G) ◦N(H). Then, for every v ∈ V (N(G)), |V (v +

N(H)v) ∩D| ≥ 1. So, γt((N(G) ◦N(H)) = |D| ≥ 2m. Therefore, γt(N(G) ◦N(H)) = 2m. 2
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Theorem 4.7 Let G be a simple graph of order n without isolated vertex. Then

γi(N(G) ◦K1) = 2n.

Proof It is clearly that there exists 2n end-vertices in N(G) ◦K1. Since, the set of these

end-vertices is the dominating set and the independent set in N(G)◦K1 so, the result holds. 2
Theorem 4.8 Let G be a simple graph without isolated vertex. Then

N(G ◦K1) ∼= N(G) ◦K1.

Proof Two graphs are isomorphism, if there exists the function bijection between the

vertex sets of these graphs. So, we consider the function f : V (N(G ◦K1)) −→ V (N(G) ◦K1)

where for every u and v in V (N(G◦K1)) if uv ∈ E(N(G◦K1)) then f(u)f(v) ∈ E(N(G)◦K1).

It means that there exists an one to one correspondence between the vertex sets and the edge

sets of N(G ◦K1) and N(G) ◦K1. We easily obtain the following results:

For N(G ◦ K1), |V (N(G ◦ K1))| = 2|V (G ◦ K1)| = 2(2n) = 4n and |E(N(G ◦ K1))| =

2|E(G ◦K1)| = 2(m + n). Also, for graph N(G) ◦K1, we have

|V (N(G) ◦K1)| = 2|V (N(G))| = 4n,

|E(N(G) ◦K1)| = 2n + |E(N(G))| = 2n + 2m = 2(n + m).

For any x ∈ V (N(G ◦ K1)) with degN(G◦K1)(x) = 1, then x /∈ V (G) and x ∈ V (N(G)).

On the other hand, if y ∈ V (N(G) ◦ K1) and degN(G)◦K1
(y) = 1 then, y /∈ V (N(G)). Thus,

x ∈ N(G ◦ K1) is corresponding to y in N(G) ◦ K1. Also, using Theorem 3.4, if x ∈ V (G),

then degN(G◦K1)(x) = degG◦K1(x) and degN(G)◦K1
(x) = degG◦K1(x). Therefore, if x ∈ V (G)

then, the degree of x in N(G ◦K1) is equal with the degree of x in N(G) ◦K1. These results

are shown that there exists an one to one correspondence between two graphs N(G) ◦K1 and

N(G ◦K1). 2
Theorem 4.8 is shown that the obtained results on some parameters of domination of two

graphs N(G ◦K1) and N(G) ◦K1 are equal. So, Theorems 4.5–4.7 hold for N(G ◦K1) for any

graph G.
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