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§1. Introduction

Hamilton started the study of Ricci flow [12] in 1982 and proved its existence. This concept

was developed to answer Thurston’s geometric conjecture which says that each closed three

manifold admits a geometric decomposition. Hamilton also [11]classified all compact manifolds

with positive curvature operator in dimension four. Since then, the Ricci flow has become a

powerful tool for the study of Riemannian manifolds, especially for those manifolds with positive

curvature. Perelman also did an excellent work on Ricci flow [15], [16].

The Ricci flow equation is given by

∂g

∂t
= −2S (1.1)

on a compact Riemannian manifold M with Riemannian metric g. A solution to the Ricci

flow is called a Ricci soliton if it moves only by a one-parameter group of diffeomorphism and

scaling.Ramesh Sharma [18], M. M. Tripathi [19], Bejan, Crasmareanu [4]studied Ricci soliton

in contact metric manifolds also. The Ricci soliton equation is given by

£Xg + 2S + 2λg = 0, (1.2)

where £X is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X is a vector field

and λ is a scalar. The Ricci soliton is said to be shrinking, steady and expanding according as
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λ is negative, zero and positive respectively.

In 2005, A.E. Fischer [10] introduced the concept of conformal Ricci flow which is a variation

of the classical Ricci flow equation. In classical Ricci flow equation the unit volume constraint

plays an important role but in conformal Ricci flow equation scalar curvature R is considered

as constraint. Since the conformal geometry plays an important role to constrain the scalar

curvature and the equations are the vector field sum of a conformal flow equation and a Ricci

flow equation, the resulting equations are named as the conformal Ricci flow equations. The

conformal Ricci flow equation on M where M is considered as a smooth closed connected

oriented n-manifold(n > 3), is defined by the equation [10]

∂g

∂t
+ 2(S +

g

n
) = −pg (1.3)

and r = −1, where p is a scalar non-dynamical field(time dependent scalar field), r is the scalar

curvature of the manifold and n is the dimension of manifold.

In 2015, N. Basu and A. Bhattacharyya [3] introduced the notion of conformal Ricci soliton

and the equation is as follows

£Xg + 2S = [2λ − (p +
2

n
)]g. (1.4)

The equation is the generalization of the Ricci soliton equation and it also satisfies the conformal

Ricci flow equation.

An almost contact metric structure (φ, ξ, η, g) on a manifold M is called a trans-Sasakian

structure [14] if the product manifold belongs to the class W4 where W4 is a class of Hermitian

manifolds which are closely related to locally conformal Kaehler manifolds [6]. A trans-Sasakian

structure of type (0, 0), (0, β) and (α, 0) are cosymplectic [5], β−Kenmotsu [13], and α−Sasakian

[13], respectively.

§2. Preliminaries

A differentiable manifold of dimension n is called Lorentzian Kenmotsu manifold [2] if it admits

a (1, 1) tensor field φ, a covarient vector field ξ, a 1-form η and Lorentzian metric g which

satisfy on M respectively such that

φ2X = X + η(X)ξ, g(X, ξ) = η(X), (2.1)

η(ξ) = −1, η(φX) = 0, φξ = 0, (2.2)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (2.3)

for all X, Y ∈ χ(M).

If Lorentzian Kenmotsu manifold M satisfies

∇Xξ = β[X − η(X)ξ], (∇Xφ)Y = β(g(φX, Y )ξ − η(Y )φX), (2.4)
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(∇Xη)Y = αg(φX, Y ), (2.5)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric

g. Then the manifold M is called Lorentzian β−Kenmotsu manifold.

Furthermore, on an Lorentzian β-Kenmotsu manifold M the following relations hold [1],

[17]:

η(R(X, Y )Z) = β2[g(X, Z)η(Y ) − g(Y, Z)η(X)], (2.6)

R(ξ, X)Y = β2[η(Y )X − g(X, Y )ξ], (2.7)

R(X, Y )ξ = β2[η(X)Y − η(Y )X ], (2.8)

S(X, ξ) = −(n − 1)β2η(X), (2.9)

Qξ = −(n − 1)β2ξ, (2.10)

S(ξ, ξ) = (n − 1)β2, (2.11)

where β is some constant, R is the Riemannian curvature tensor, S is the Ricci tensor and Q

is the Ricci operator given by S(X, Y ) = g(QX, Y ) for all X, Y ∈ χ(M).

Now from definition of Lie derivative we have

(£ξg)(X, Y ) = (∇ξg)(X, Y ) + g(β[X − η(X)ξ], Y ) + g(X, β[Y − η(Y )ξ])

= 2βg(X, Y ) − 2βη(X)η(Y ). (2.12)

Applying Ricci soliton equation (1.2) in (2.12) we get

S(X, Y ) =
1

2
[−2λg(X, Y )] − 1

2
[2βg(X, Y ) − 2βη(X)η(Y )]

= −λg(X, Y ) − βg(X, Y ) + βη(X)η(Y )

= Ág(X, Y ) + βη(X)η(Y ), (2.13)

where Á = (−λ − β), which shows that the manifold is η-Einstein.

Also

QX = ÁX + βη(X)ξ, (2.14)

S(X, ξ) = (Á + β)η(X) = Aη(X). (2.15)

If we put X = Y = ei in (2.13) where {ei} is the orthonormal basis of the tangent space

TM where TM is a tangent bundle of M and summing over i, we get

R(g) = Án + β.

Proposition 2.1 A Lorentzian β-Kenmotsu manifold admitting Ricci soliton is η-Einstein.
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Again applying conformal Ricci soliton (1.4) in (2.12) we get

S(X, Y ) =
1

2
[2λ − (p +

2

n
)]g(X, Y ) − 1

2
[2βg(X, Y ) − 2βη(X)η(Y )]

= B́g(X, Y ) + βη(X)η(Y ), (2.16)

where

B́ =
1

2
[2λ − (p +

2

n
)] − β, (2.17)

which also shows that the manifold is η-Einstein.

Also

QX = B́X + βη(X)ξ, (2.18)

S(X, ξ) = (B́ + β)η(X) = Bη(X). (2.19)

If we put X = Y = ei in (2.16) where {ei} is the orthonormal basis of the tangent space

TM where TM is a tangent bundle of M and summing over i, we get

r = B́n + β.

For conformal Ricci soliton r(g) = −1. So

−1 = B́n + β

which gives B = 1
n (−β − 1).

Comparing the values of B from (2.17) with the above equation we get

λ =
1

n
(β(n − 1) − 1) +

1

2
(p +

2

n
)

Proposition 2.2 A Lorentzian β-Kenmotsu manifold admitting conformal Ricci soliton is

η-Einstein and the value of the scalar

λ =
1

n
(β(n − 1) − 1) +

1

2
(p +

2

n
).

§3. Lorentzian β-Kenmotsu Manifold Admitting Ricci

Soliton, Conformal Ricci Soliton and R(ξ, X).C̃ = 0

Let M be a n dimensional Lorentzian β-Kenmotsu manifold admitting Ricci soliton (g, V, λ).

Quasi conformal curvature tensor C̃ on M is defined by

C̃(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY ]

−[
r

2n + 1
][

a

2n
+ 2b][g(Y, Z)X − g(X, Z)Y ], (3.1)

where r is scalar curvature.
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Putting Z = ξ in (3.1) we have

C̃(X, Y )ξ = aR(X, Y )ξ + b[S(Y, ξ)X − S(X, ξ)Y + g(Y, ξ)QX − g(X, ξ)QY ]

−[
r

2n + 1
][

a

2n
+ 2b][g(Y, ξ)X − g(X, ξ)Y ]. (3.2)

Using (2.1), (2.8), (2.14), (2.15) in (3.2) we get

C̃(X, Y )ξ = [−aβ2 + Ab + Áb − [
r

2n + 1
][

a

2n
+ 2b]](η(Y )X − η(X)Y ).

Let

D = −aβ2 + Ab + Áb − [
r

2n + 1
][

a

2n
+ 2b],

so we have

C̃(X, Y )ξ = D(η(Y )X − η(X)Y ). (3.3)

Taking inner product with Z in (3.3) we get

−η(C̃(X, Y )Z) = D[η(Y )g(X, Z) − η(X)g(Y, Z)]. (3.4)

Now we consider that the Lorentzian β-Kenmotsu manifold M which admits Ricci soliton

is quasi conformally semi symmetric i.e. R(ξ, X).C̃ = 0 holds in M , which implies

R(ξ, X)(C̃(Y, Z)W ) − C̃(R(ξ, X)Y, Z)W − C̃(Y, R(ξ, X)Z)W − C̃(Y, Z)R(ξ, X)W = 0, (3.5)

for all vector fields X, Y, Z, W on M .

Using (2.7) in (3.5) and putting W = ξ we get

η(C̃(Y, Z)ξ)X − g(X, C̃(Y, Z)ξ)ξ − η(Y )C̃(X, Z)ξ + g(X, Y )C̃(ξ, Z)ξ

−η(Z)C̃(Y, X)ξ + g(X, Z)C̃(Y, ξ)ξ − η(ξ)C̃(Y, Z)X + g(X, ξ)C̃(Y, Z)ξ = 0. (3.6)

Taking inner product with ξ in (3.6) and using (2.2), (3.3) we obtain

g(X, C̃(Y, Z)ξ) + η(C̃(Y, Z)X) = 0. (3.7)

Putting Z = ξ in (3.7) and using (3.3) we get

−Dg(X, Y ) − Dη(X)η(Y ) + η(C̃(Y, Z)X) = 0. (3.8)

Now from (3.1) we can write

C̃(Y, ξ)X = aR(Y, ξ)X + b[S(ξ, X)Y − S(Y, X)ξ + g(ξ, X)QY − g(Y, X)Qξ]

−[
r

2n + 1
][

a

2n
+ 2b][g(ξ, X)Y − g(Y, X)ξ]. (3.9)
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Taking inner product with ξ and using (2.2), (2.7), (2.9), (2.10) in (3.9) we get

η(C̃(Y, ξ)X) = aη(β2(g(X, Y )ξ − η(X)Y )) + b[Aη(X)η(Y ) + S(X, Y ) + η(X)(Áη(Y )

−βη(Y )) − g(X, Y )(−Á + β)] − [
r

2n + 1
][

a

2n
+ 2b][η(X)η(Y ) + g(X, Y )].

After a long simplification we have

η(C̃(Y, ξ)X) = g(X, Y )[Áb − bβ − aβ2 − [
r

2n + 1
][

a

2n
+ 2b]]

+η(X)η(Y )[2Áb − aβ2 − [
r

2n + 1
][

a

2n
+ 2b]] + bS(X, Y ). (3.10)

Putting (3.10) in (3.5) we get

ρg(X, Y ) + ση(X)η(Y ) = S(X, Y ), (3.11)

where

ρ =
1

b
[D + bβ + aβ2 − Áb + [

r

2n + 1
][

a

2n
+ 2b]]

and

σ =
1

b
[D + aβ2 − 2Áb + [

r

2n + 1
][

a

2n
+ 2b]].

So from (3.11) we conclude that the manifold becomes η-Einstein manifold. Thus we can

write the following theorem:

Theorem 3.1 If a Lorentzian β-Kenmotsu manifold admits Ricci soliton and is quasi confor-

mally semi symmetric i.e. R(ξ, X).C̃ = 0, then the manifold is η-Einstein manifold where C̃

is quasi conformal curvature tensor and R(ξ, X) is derivation of tensor algebra of the tangent

space of the manifold.

If a Lorentzian β-Kenmotsu manifold admits conformal Ricci soliton then after a brief

calculation we can also establish that the manifold becomes η-Einstein, only the values of

constants ρ, σ will be changed which would not hamper our main result.

Hence we can state the following theorem:

Theorem 3.2 A Lorentzian β-Kenmotsu manifold admitting conformal Ricci soliton and is

quasi conformally semi symmetric i.e. R(ξ, X).C̃ = 0, then the manifold is η-Einstein manifold

where C̃ is quasi conformal curvature tensor and R(ξ, X) is derivation of tensor algebra of the

tangent space of the manifold.

§4. Lorentzian β-Kenmotsu Manifold Admitting Ricci

Soliton, Conformal Ricci Soliton and R(ξ, X).S = 0

Let M be a n dimensional Lorentzian β-Kenmotsu manifold admitting Ricci soliton (g, V, λ).

Now we consider that the tensor derivative of S by R(ξ, X) is zero i.e. R(ξ, X).S = 0. Then the
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Lorentzian β-Kenmotsu manifold admitting Ricci soliton is Ricci semi symmetric which implies

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0. (4.1)

Using (2.13) in (4.1) we get

Ág(R(ξ, X)Y, Z) + βη(R(ξ, X)Y )η(Z) + Ág(Y, R(ξ, X)Z) + βη(Y )η(R(ξ, X)Z) = 0. (4.2)

Using (2.7) in (4.2) we get

Ág(β2[η(Y )X − g(X, Y )ξ], Z) + Ág(Y, β2[η(Z)X − g(X, Z)ξ]) + βη(β2[η(Y )X−

g(X, Y )ξ])η(Z) + βη(Y )η(β2[η(Z)X − g(X, Z)ξ]) = 0. (4.3)

Using (2.2) in (4.3) we have

Áβ2η(Y )g(X, Z) − Áβ2η(Z)g(X, Y ) + Áβ2η(Z)g(X, Y ) − Áβ2η(Y )g(X, Z)

+β3η(Y )η(X)η(Z) + β3g(X, Y )η(Z) + β3η(Y )η(X)η(Z) + β3g(X, Z)η(Y ) = 0. (4.4)

Putting Z = ξ in (4.4) and using (2.2) we obtain

g(X, Y ) = −η(X)η(Y ).

Hence we can state the following theorem:

Theorem 4.1 If a Lorentzian β-Kenmotsu manifold admits Ricci soliton and is Ricci semi

symmetric i.e. R(ξ, X).S = 0, then g(X, Y ) = −η(X)η(Y ) where S is Ricci tensor and R(ξ, X)

is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian β-Kenmotsu manifold admits conformal Ricci soliton then by similar cal-

culation we can obtain the same result. Hence we can state the following theorem:

Theorem 4.2 A Lorentzian β-Kenmotsu manifold admitting conformal Ricci soliton and is

Ricci semi symmetric i.e. R(ξ, X).S = 0, then g(X, Y ) = −η(X)η(Y ) where S is Ricci tensor

and R(ξ, X) is derivation of tensor algebra of the tangent space of the manifold.

§5. Lorentzian β-Kenmotsu Manifold Admitting Ricci

Soliton, Conformal Ricci Soliton and R(ξ, X).P = 0

Let M be a n dimensional Lorentzian β-Kenmotsu manifold admitting Ricci soliton (g, V, λ).

The projective curvature tensor P on M is defined by

P (X, Y )Z = R(X, Y )Z − 1

2n
[S(Y, Z)X − S(X, Z)Y ]. (5.1)

Here we consider that the manifold is projectively semi symmetric i.e. R(ξ, X).P = 0 holds.
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So

R(ξ, X)(P (Y, Z)W ) − P (R(ξ, X)Y, Z)W − P (Y, R(ξ, X)Z)W − P (Y, Z)R(ξ, X)W = 0, (5.2)

for all vector fields X, Y, Z, W on M .

Using (2.7) and putting Z = ξ in (5.2) we have

η(P (Y, ξ)W )X − g(X, P (Y, ξ)W )ξ − η(Y )P (X, ξ)W + g(X, Y )P (ξ, ξ)W

−η(ξ)P (Y, X)W + g(X, ξ)P (Y, ξ)W − η(W )P (Y, ξ)X + g(X, W )P (Y, ξ)ξ = 0. (5.3)

Now from (5.1) we can write

P (X, ξ)Z = R(X, ξ)Z − 1

n − 1
[S(ξ, Z)X − S(X, Z)ξ]. (5.4)

Using (2.7), (2.15) in (5.4) we get

P (X, ξ)Z = β2g(X, Z)ξ +
1

n − 1
S(X, Z)ξ + (

A

n − 1
− β2)η(Z)X. (5.5)

Putting (5.5) and W = ξ in (5.3) and after a long calculation we get

1

n − 1
S(X, Y )ξ + (

A

n − 1
+ β2)η(X)Y − A

n − 1
g(X, Y )ξ

−(
A

n − 1
+ β2)η(Y )X = 0. (5.6)

Taking inner product with ξ in (5.6) we obtain

S(X, Y ) = −Ag(X, Y ),

which clearly shows that the manifold in an Einstein manifold.

Thus we can conclude the following theorem:

Theorem 5.1 If a Lorentzian β-Kenmotsu manifold admits Ricci soliton and is projectively

semi symmetric i.e. R(ξ, X).P = 0 holds, then the manifold is an Einstein manifold where P

is projective curvature tensor and R(ξ, X) is derivation of tensor algebra of the tangent space

of the manifold.

If a Lorentzian β-Kenmotsu manifold admits conformal Ricci soliton then using the same

calculation we can obtain similar result, only the value of constant A will be changed which

would not hamper our main result. Hence we can state the following theorem:

Theorem 5.2 A Lorentzian β-Kenmotsu manifold admitting conformal Ricci soliton and is

projectively semi symmetric i.e. R(ξ, X).P = 0 holds, then the manifold is an Einstein manifold

where P is projective curvature tensor and R(ξ, X) is derivation of tensor algebra of the tangent

space of the manifold.
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§6. Lorentzian β-Kenmotsu Manifold Admitting Ricci

Soliton, Conformal Ricci Soliton and R(ξ, X).P̃ = 0

Let M be a n dimensional Lorentzian β-Kenmotsu manifold admitting Ricci soliton (g, V, λ).

The pseudo projective curvature tensor P̃ on M is defined by

P̃ (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y ]

− r

n
[

a

n − 1
+ b][g(Y, Z)X − g(X, Z)Y ]. (6.1)

Here we consider that the manifold is pseudo projectively semi symmetric i.e. R(ξ, X).P̃ = 0

holds.

So

R(ξ, X)(P̃ (Y, Z)W ) − P̃ (R(ξ, X)Y, Z)W − P̃ (Y, R(ξ, X)Z)W − P̃ (Y, Z)R(ξ, X)W = 0, (6.2)

for all vector fields X, Y, Z, W on M .

Using (2.7) and putting W = ξ in (6.2) we have

η(P̃ (Y, Z)ξ)X − g(X, P̃ (Y, Z)ξ)ξ − η(Y )P̃ (X, Z)ξ + g(X, Y )P̃ (ξ, Z)ξ

−η(Z)P̃ (Y, X)ξ + g(X, Z)P̃ (Y, ξ)ξ − η(ξ)P̃ (Y, Z)X + η(X)P̃ (Y, Z)ξ = 0. (6.3)

Now from (6.1) we can write

P̃ (X, Y )ξ = aR(X, Y )ξ + b[S(Y, ξ)X − S(X, ξ)Y ] +
r

n
[

a

n − 1
+ b][g(Y, ξ)X − g(X, ξ)Y ]. (6.4)

Using (2.1), (2.8), (2.15) in (6.4) and after a long calculation we get

P̃ (X, Y )ξ = ϕ(η(X)Y − θ(Y )X), (6.5)

where ϕ = (aβ2 − Ab − r
n [ a

n−1 + b]).

Using (6.5) and putting Z = ξ in (6.3) we obtain

P̃ (Y, ξ)X + ϕη(X)Y − ϕg(X, Y )ξ = 0. (6.6)

Taking inner product with ξ in (6.6) we get

η(P̃ (Y, ξ)X) + ϕη(X)η(Y ) − ϕg(X, Y ) = 0. (6.7)

Again from (6.1) we can write

P̃ (X, ξ)Z = a(X, ξ)Z + b[S(ξ, Z)X − S(X, Z)ξ] +
r

n
[

a

n − 1
+ b][g(ξ, Z)X − g(X, Z)ξ]. (6.8)
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Using (2.1), (2.7), (2.15) in (6.8) we get

P̃ (X, ξ)Z = aβ2[g(X, Z)ξ − η(Z)X ] + b[Aη(Z)X − S(X, Z)ξ]

+
r

n
[

a

n − 1
+ b][g(ξ, Z)X − g(X, Z)ξ]. (6.9)

Taking inner product with ξ and replacing X by Y , Z by X in (6.9) we have

η(P̃ (Y, ξ)X) = aβ2[−g(X, Y ) − η(X)η(Y )] + b[Aη(X)η(Y ) + S(X, Y )]+

r

n
[

a

n − 1
+ b][η(X)η(Y ) − g(X, Y )]. (6.10)

Using (6.10) in (6.7) and after a brief simplification we obtain

S(X, Y ) = Tg(X, Y ) + Uη(X)η(Y ), (6.11)

where T = − 1
b [−aβ2 − r

n [ a
n−1 + b] − ϕ] and U = − 1

b [ϕ + r
n [ a

n−1 + b] + Ab − aβ2].

From (6.11) we can conclude that the manifold is η-Einstein. Thus we have the following

theorem:

Theorem 6.1 If a Lorentzian β-Kenmotsu manifold admits Ricci soliton and is pseudo pro-

jectively semi symmetric i.e. R(ξ, X).P̃ = 0 holds, then the manifold is η Einstein manifold

where P̃ is pseudo projective curvature tensor and R(ξ, X) is derivation of tensor algebra of the

tangent space of the manifold.

If a Lorentzian β-Kenmotsu manifold admits conformal Ricci soliton then by following the

same calculation we would obtain the same result, only the constant value of T and U will be

changed. Hence we can state the following theorem:

Theorem 6.2 A Lorentzian β-Kenmotsu manifold admitting conformal Ricci soliton and is

pseudo projectively semi symmetric i.e. R(ξ, X).P̃ = 0 holds, then the manifold is η Einstein

manifold where P̃ is pseudo projective curvature tensor and R(ξ, X) is derivation of tensor

algebra of the tangent space of the manifold.

§7. An Example of a 3-Dimensional Lorentzian β-Kenmotsu Manifold

In this section we construct an example of a 3-dimensional Lorentzian β-kenmotsu manifold.To

construct this, we consider the three dimensional manifold M = {(x, y, z) ∈ R3 : z 6= 0} where

(x, y, z) are the standard coordinates in R3. The vector fields

e1 = e−z ∂

∂x
, e2 = e−z ∂

∂y
, e3 = e−z ∂

∂z

are linearly independent at each point of M.
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Let g be the Lorentzian metric defined by

g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) = −1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form which satisfies the relation

η(e3) = −1.

Let φ be the (1, 1) tensor field defined by φ(e1) = −e2, φ(e2) = −e1, φ(e3) = 0. Then we

have

φ2(Z) = Z + η(Z)e3,

g(φZ, φW ) = g(Z, W ) + η(Z)η(W )

for any Z, W ∈ χ(M3). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric structure

on M. Now, after calculating we have

[e1, e3] = e−ze1, [e1, e2] = 0, [e2, e3] = e−ze2.

The Riemannian connection ∇ of the metric is given by the Koszul’s formula which is

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z, X) − Zg(X, Y )

−g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y ]). (7.1)

By Koszul’s formula we get

∇e1
e1 = e−ze3,∇e2

e1 = 0,∇e3
e1 = 0,

∇e1
e2 = 0,∇e2

e2 = ‘e−ze3,∇e3
e2 = 0,

∇e1
e3 = e−ze1,∇e2

e3 = e−ze2,∇e3
e3 = 0.

From the above we have found that β = e−z and it can be easily shown that M3(φ, ξ, η, g)

is a Lorentzian β-kenmotsu manifold. The results established in this note can be verified on

this manifold.
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