Path Related n-Cap Cordial Graphs

A. Nellai Murugan
(Department of Mathematics, V.O.Chidambaram College, Tamil Nadu, India)
P. Iyadurai Selvaraj
(Department of Computer Science, V.O.Chidambaram College, Tamil Nadu, India)
E-mail: anellai.vocc@gmail.com, iyaduraiselvaraj@gmail.com

Abstract

Let $G=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. A n-cap $\overline{(\bigwedge)}$ cordial labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that if each edge uv is assigned the label $$
f(u v)= \begin{cases}0, & \text { if } f(u)=f(v)=1 \\ 1, & \text { otherwise }\end{cases}
$$ with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 . The graph that admits a $\bar{\Lambda}$ cordial labeling is called a $\bar{\Lambda}$ cordial graph (nCCG). In this paper, we proved that Path $P_{n}, \operatorname{Comb}\left(P_{n} \odot K_{1}\right)$, $P_{m} \odot 2 K_{1}$ and Fan ($F_{n}=P_{n}+K_{1}$) are $\bar{\Lambda}$ cordial graphs.

Key Words: $\bar{\Lambda}$ cordial labeling, Smarandachely cordial labeling, $\bar{\Lambda}$ cordial labeling graph.
AMS(2010): 05C78.

§1. Introduction

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $e=\{u v\}$ of vertices in E is called an edge or a line of G. In this paper, we proved that Path P_{n}, $\operatorname{Comb}\left(P_{n} \odot_{1}\right), P_{m} \odot 2 K_{1}$ and Fan $\left(F_{n}=P_{n}+K_{1}\right)$ are $\bar{\Lambda}$ cordial graphs.

§2. Preliminaries

Let $G=(V, E)$ be a graph with p vertices and q edges. A n-cap $(\bar{\bigwedge})$ cordial labeling of a graph G with vertex set V is a bijection from V to $\{0,1\}$ such that if each edge $u v$ is assigned the

[^0]label
\[

f(u v)= $$
\begin{cases}0, & \text { if } f(u)=f(v)=1 \\ 1, & \text { otherwise }\end{cases}
$$
\]

with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1 , and it is said to be a Smarandachely cordial labeling if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at least 1 and the number of edges labeled with 0 or the number of edges labeled with 1 differ by at least 1.

The graph that admits a $\bar{\Lambda}$ cordial labeling is called a $\bar{\Lambda}$ cordial graph. We proved that Path P_{n}, Comb $\left(P_{n} \odot K_{1}\right), P_{m} \odot 2 K_{1}$ and Fan $\left(F_{n}=P_{n}+K_{1}\right)$ are $\bar{\Lambda}$ cordial graphs.

Definition 2.1 A path is a graph with sequence of vertices $u_{1}, u_{2}, \cdots, u_{n}$ such that successive vertices are joined with an edge, denoted by P_{n}, which is a path of length $n-1$.

A closed path of length n is cycle C_{n}.
Definition 2.2 A comb is a graph obtained from a path P_{n} by joining a pendent vertex to each vertices of P_{n}, it is denoted by $P_{n} \odot K_{1}$

Definition 2.3 A graph obtained from a path P_{m} by joining two pendent vertices at each vertices of P_{m} is denoted by $P_{m} \odot 2 K_{1}$

Definition 2.4 A fan is a graph obtained from a path P_{n} by joining each vertices of P_{n} to a pendent vertex, it is denoted by $F_{n}=P_{n}+K_{1}$

§3. Main Results

Theorem 3.1 A path P_{n} is a $\bar{\bigwedge}$ cordial graph
Proof Let $V\left(P_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$ Define $f:$ $V\left(P_{n}\right) \rightarrow\{0,1\}$ with the vertex labeling determined following.

Case 1. n is odd.
Define

$$
f\left(u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n-1}{2} \\ 1, & \frac{n+1}{2} \leq i \leq n\end{cases}
$$

The induced edge labeling are

$$
f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}1, & 1 \leq i \leq \frac{n}{2} \\ 0, & \frac{n}{2} \leq i \leq n\end{cases}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $e_{0}(f)=e_{1}(f)$. Clearly, it satisfies the condition $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$.

Case 2. n is even.

Define

$$
f\left(u_{i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n}{2} \\ 1, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

The induced edge labeling are

$$
f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}1, & 1 \leq i \leq \frac{n}{2} \\ 0, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

Here $V_{0}(f)=V_{1}(f)$ and $e_{0}(f)+1=e_{1}(f)$ which satisfies the condition $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$. Hence, a path P_{n} is a $\bar{\Lambda}$ cordial graph.

For example, P_{5} and P_{6} are $\bar{\bigwedge}$ cordial graph shown in the Figure 1.

Figure 1

Theorem 3.2 A comb $P_{n} \odot K_{1}$ is a $\bar{\bigwedge}$ cordial graph

Proof Let G be a comb $P_{n} \odot K_{1}$ and let $V(G)=\left\{\left(u_{i}, v_{i}\right): 1 \leq i \leq n\right\}$ and $E(G)=$ $\left\{\left[\left(u_{i} u_{i+1}\right): 1 \leq i \leq n-1\right] \bigcup\left[\left(u_{i} v_{i}\right): 1 \leq i \leq n\right]\right\}$. Define $f: V(G) \rightarrow\{0,1\}$ with a vertex labeling

$$
\begin{aligned}
f\left(u_{i}\right) & =1,1 \leq i \leq n \\
f\left(v_{i}\right) & =0,1 \leq i \leq n
\end{aligned}
$$

The induced edge labeling are

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =1,1 \leq i<n \\
f^{*}\left(u_{i} v_{i}\right) & =0,1 \leq i \leq n
\end{aligned}
$$

Here $V_{0}(f)=V_{1}(f)$ and $e_{0}(f)=e_{1}(f)+1$ which satisfies the condition $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$. Hence, a comb $P_{n} \odot K_{1}$ is a $\bar{\bigwedge}$ cordial graph.

For example, $P_{5} \odot K_{1}$ is a $\bar{\bigwedge}$ cordial graph shown in Figure 2.

Figure 2

Theorem 3.3 A graph $P_{m} \odot 2 K_{1}$ is a $\bar{\bigwedge}$ cordial graph.

Proof Let G be a $P_{m} \odot 2 K_{1}$ with $V(G)=\left\{u_{i}, v_{1 i}, v_{2 i}, 1 \leq i \leq n\right\}$ and $E(G)=\left\{\left[\left(u_{i} u_{i+1}\right)\right.\right.$: $\left.1 \leq i<n] \bigcup\left[\left(u_{i} v_{1 i}\right): 1 \leq i \leq n\right] \bigcup\left[\left(u_{i} v_{2 i}\right): 1 \leq i \leq n\right]\right\}$. Define $f: V\left(C_{n}\right) \rightarrow\{0,1\}$ by a vertex labeling $f\left(u_{i}\right)=\{1,1 \leq i \leq n\}, f\left(v_{1 i}\right)=\{0,1 \leq i \leq n\}$ and if n is even,

$$
f\left(v_{2 i}\right)= \begin{cases}1, & 1 \leq i \leq \frac{n}{2} \\ 0, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

if n is odd

$$
f\left(v_{2 i}\right)= \begin{cases}1, & 1 \leq i \leq \frac{n+1}{2} \\ 0, & \frac{n+1}{2}+1 \leq i \leq n\end{cases}
$$

The induced edge labeling are

$$
\begin{aligned}
f^{*}\left(u_{i} u_{i+1}\right) & =\{0,1 \leq i \leq n\} \\
f^{*}\left(u_{i} v_{1 i}\right) & =\{1,1 \leq i \leq n\}
\end{aligned}
$$

and if n is even

$$
f^{*}\left(u_{i} v_{2 i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n}{2} \\ 1, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

Here $V_{0}(f)=V_{1}(f)$ and $e_{0}(f)+1=e_{1}(f)$ which satisfies the condition $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$, and if n is odd

$$
f^{*}\left(u_{i} v_{2 i}\right)= \begin{cases}0, & 1 \leq i \leq \frac{n+1}{2} \\ 1, & \frac{n+1}{2} \leq i \leq n\end{cases}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $e_{0}(f)=e_{1}(f)$ which satisfies the condition $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$. Hence, $P_{m} \odot 2 K_{1}$ is a $\bar{\bigwedge}$ cordial graph.

For example, $P_{5} \odot 2 K_{1}$ is a $\bar{\bigwedge}$ cordial graph shown in the Figures 3.

Figure 3
Theorem 3.4 A fan $F_{n}=P_{n}+K_{1}$ is a $\bar{\bigwedge}$ cordial graph if n is even.
Proof Let G be a fan $F_{n}=P_{n}+K_{1}$ and n is even with $V(G)=\left\{u, v_{i}: 1 \leqslant i \leqslant n\right\}$ and $E(G)=\left\{\left(u, v_{i}\right): 1 \leqslant i \leqslant n\right\}$. Define $f: V(G) \rightarrow\{0,1\}$ with a vertex labeling $f(u)=\{1\}$ and

$$
f\left(v_{i}\right)= \begin{cases}1, & 1 \leq i \leq \frac{n}{2} \\ 0, & \frac{n}{2}+1 \leq i \leq n\end{cases}
$$

The induced edge labeling are

$$
f^{*}\left(u v_{i}\right)=\begin{aligned}
& 0,1 \leq i \leq \frac{n}{2}, \\
& 1, \frac{n}{2}+1 \leq i \leq n,
\end{aligned} \quad \text { and } \quad f^{*}\left(v_{i} v_{i+1}\right)=\begin{aligned}
& 0,1 \leq i \leq \frac{n}{2} \\
& 1, \frac{n}{2} \leq i \leq n
\end{aligned}
$$

Here $V_{0}(f)+1=V_{1}(f)$ and $e_{0}(f)+1=e_{1}(f)$ which satisfies the conditions $\left|V_{0}(f)-V_{1}(f)\right| \leq 1$ and $\left|e_{0}(f)-e_{1}(f)\right| \leq 1$. Hence, a fan $F_{n}=P_{n}+K_{1}$ is a $\bar{\Lambda}$ cordial graph if n is even.

For example, a fan $F_{6}=P_{6}+K_{1}$ is $\bar{\Lambda}$ cordial shown in Figure 4.

Figure 4

References

[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 6(2001), \#DS6.
[2] F. Harary, Graph Theory, Addition - Wesley Publishing Company Inc, USA, 1969.
[3] A.Nellai Murugan and V.Baby Suganya, Cordial labeling of path related splitted graphs, Indian Journal of Applied Research, Vol.4, 3(2014), 1-8.
[4] A.Nellai Murugan and M. Taj Nisha, A study on divisor cordial labelling of star attached paths and cycles, Indian Journal of Research, Vol.3, 3(20140, 12-17.
[5] A.Nellai Murugan and V.Brinda Devi, A study on path related divisor cordial graphs, International Journal of Scientific Research, Vol.3, 4(2014), 286-291.
[6] A.Nellai Murugan and A Meenakshi Sundari, On cordial graphs, International Journal of Scientific Research, Vol.3, 7(20140, 54-55.
[7] A.Nellai Murugan and P. Iyadurai Selvaraj, Path related cup cordial graphs, Indian Journal of Applied Research, Vol.4, 8(2014).
[8] A.Nellai Murugan and P. Iyadurai Selvaraj, Cycle and Armed Cap Cordial Graphs, International Journal on Mathematical Combinatorics, Vol.2(2016), 144-152.
[9] A.Nellai Murugan and P. Iyadurai Selvaraj, Cycle and armed cup cordial graphs, International Journal of Innovative Science, Engineering and Technology, Vol. I, 5(2014), 478-485.
[10] A.Nellai Murugan and P. Iyadurai Selvaraj, Path related cap cordial graphs, OUTREACH, Multidisciplinary Research Journal, Vol. VII (2015), 100-106.
[11] A.Nellai Murugan and P. Iyadurai Selvaraj, Additive square mean labeling of path related graphs, OUTREACH, Multidisciplinary Research Journal, Vol. IX (2016), 168-174.
[12] A.Nellai Murugan and P. Iyadurai Selvaraj, Path related n-cup cordial craphs, ACTA VELIT, Vol.3, 3, 12-17.

[^0]: ${ }^{1}$ Received September 30, 2016, Accepted August 26, 2017.

