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Abstract: In this paper we consider nine special ruled surfaces associated to an involute

of a curve α and its Bertrand mate α∗∗ with k1 6= 0. They are called as involute Frenet

ruled and Bertrandian Frenet ruled surfaces, because of their generators which are the Frenet

vector fields of curve α. First we give the striction curves of all Frenet ruled surfaces. Then

the striction curves of involute and Bertrandian Frenet ruled surfaces are given in terms of

the Frenet apparatus of the curve α. Some results are given on the striction curves of involute
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§1. Introduction

A ruled surface can always be described (at least locally) as the set of points swept by a moving

straight line. A ruled surface is one which can be generated by the motion of a straight line

in Euclidean 3 − space [2]. Choosing a directrix on the surface, i.e. a smooth unit speed

curve α (s) orthogonal to the straight lines and then choosing v(s) to be unit vectors along

the curve in the direction of the lines, the velocity vector αs and v satisfy
〈

α
′

, v
〉

= 0 where

αs = α′ . The fundamental forms of the B − scroll with null directrix and Cartan frame in

the Minkowskian 3 − space are examined in [5]. The properties of some ruled surfaces are also

examined in E
3 [6] , [7] ,[9] and [11]. A striction point on a ruled surface ϕ(s, v) = α(s)+ v.e(s)

is the foot of the common normal between two consecutive generators (or ruling). To illustrate

the current situation, we bring here the famous example of L. K. Graves [3], so called the

B − scroll. The special ruled surfaces B − scroll over null curves with null rulings in 3-

dimensional Lorentzian space form has been introduced by L. K. Graves. The Gauss map of

B-scrolls has been examined in [1]. Deriving a curve based on an other curve is one of the

main subjects in geometry. Involute-evolute curves and Bertrand curves are of these kinds. An

involute of a given curve is well-known concept in Euclidean 3−space. We can say that evolute
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and involute are methods of deriving a new curve based on a given curve. The involute of a

curve is called sometimes evolvent and evolvents play a part in the construction of gears. The

evolute is the locus of the centers of osculating circles of the given planar curve [12]. Let α and

α∗ be the curves in Euclidean 3−space. The tangent lines to a curve α generate a surface called

the tangent surface of α. If a curve α∗ is an involute of α, then by definition α is an evolute of

α∗. Hence if we are given a curve α, then its evolutes are the curves whose tangent lines intersect

α orthogonally. By using a similar method we produce a new ruled surface based on an other

ruled surface. The differential geometric elements of the involute D̃ scroll are examined in [10].

It is well-known that if a curve is differentiable in an open interval at each point then a set

of three mutually orthogonal unit vectors can be constructed. We say the set of these vectors

are called Frenet frame or moving frame vectors. The rates of these frame vectors along the

curve define curvatures of the curve. The set whose elements are frame vectors and curvatures

of a curve α is called Frenet-Serret apparatus of the curve. Let Frenet vector fields of α be

V1 (s) , V2 (s) , V3 (s) and let first and second curvatures of the curve α(s) be k1 (s) and k2 (s) ,

respectively. Then the quantities {V1, V2, V3, k1, k2} are called the Frenet-Serret apparatus of

the curves. If a rigid object moves along a regular curve described parametrically by α(s). then

we know that this object has its own intrinsic coordinate system. The Frenet formulae are also

well known as








V̇1

V̇2

V̇3









=









0 k1 0

−k1 0 k2

0 −k2 0

















V1

V2

V3









where curvature functions are defined by k1(s) = ‖V1(s)‖, k2(s) = −
〈

V2, V̇3

〉

.

Let unit speed regular curve α : I → E
3 and α∗ : I → E

3 be given. If the tangent at the

point α(s) to the curve α passes through the tangent at the point α∗(s) to the curve α∗ then

the curve α∗ is called the involute of the curve α, for ∀s ∈ I provided that 〈V1, V
∗
1 〉 = 0. We

can write

α∗ (s) = α (s) + (c − s)V1 (s) (1.1)

the distance between corresponding points of the involute curve in E
3 is ([4],[8])

d
(

α(s), α∗(s)
)

= |c − s|, c = constant, ∀s ∈ I.

Theorem 1.1([4],[8]) The Frenet vectors of the involute α∗, based on its evolute curve α are



















































V ∗
1 = V2,

V ∗
2 =

−k1V1 + k2V3

(k2
1 + k2

2)
1
2

V ∗
3 =

k2V1 + k1V3

(k2
1 + k2

2)
1
2

.

(1.2)
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The first and the second curvatures of involute α∗ are

k∗
1 =

√

k2
1 + k2

2

λk1
, k∗

2 =
k

′

2k1 − k
′

1k2

λk1 (k2
1 + k2

2)
=

−k2
2

(

k1

k2

)
′

λk1 (k2
1 + k2

2)
, (1.3)

where (σ − s)k1 > 0, k1 6= 0.

Let α : I → E
3 and α∗∗ : I → E

3 be two C2− class differentiable unit speed curves and

let V1(s), V2(s), V3(s) and V ∗∗
1 (s), V ∗∗

2 (s), V ∗∗
3 (s) be the Frenet frames of the curves α and α∗∗,

respectively. If the principal normal vector V2 of the curve α is linearly dependent on the

principal normal vector V ∗∗
2 of the curve α∗∗, then the pair (α, α∗∗) is called a Bertrand curve

pair [4], [8]. Also α∗∗ is called a Bertrand mate. If the curve α∗∗ is a Bertrand mate of α then

we may write

α∗∗ (s) = α (s) + λV2 (s) (1.4)

If the curve α∗∗ is Bertrand mate α (s) then we have

〈V ∗∗
1 (s) , V1 (s)〉 = cos θ = constant.

Theorem 1.2([4],[8]) The distance between corresponding points of the Bertrand curve pair in

E
3 is constant.

Theorem 1.3([4]) If the second curvature k2(s) 6= 0 along a curve α(s) then α(s) is called a

Bertrand curve provided that nonzero real numbers λ and β λk1 + βk2 = 1 hold along the curve

α(s) where s ∈ I. It follows that a circular helix is a Bertrand curve.

Theorem 1.4([4]) Let α : I → E
3 and α∗∗ : I → E

3 be two C2− class differentiable unit speed

curves and let the quantities {V1, V2, V3, k1, k2} and {V ∗∗
1 , V ∗∗

2 , V ∗∗
3 , k∗∗

1 , k∗∗
2 } be Frenet-Serret

apparatus of the curves α and its Bertrand mate α∗∗ respectively, then



















































V ∗∗
1 =

βV1 + λV3
√

λ2 + β2
,

V ∗∗
2 = V2,

V ∗∗
3 =

−λV1 + βV3
√

λ2 + β2
; λk2 > 0

(1.5)

The first and the second curvatures of the offset curve α∗∗ are given by















k∗∗
1 =

βk1 − λk2

(λ2 + β2) k2
=

k1 − λ
(

k2
1 + k2

2

)

(λ2 + β2) k2
2

,

k∗∗
2 =

1

(λ2 + β2) k2
.

(1.6)
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Due to this theorem, we can write

βk1 − λk2 = m =⇒ k∗∗
2

k∗∗
1

=
1

βk1 − λk2
=

1

m
,

(k∗∗
2

k∗∗
1

)′

=
−m′

m2k2

√

λ2 + β2
=⇒ ds

ds∗∗
=

1

k2

√

λ2 + β2
·

A differentiable one-parameter family of (straight) lines {α(u), X(u)} is a correspondence

that assigns to each u ∈ I a point α(u) ∈ R
3 and a vector X(u) ∈ R

3, X(u) 6= 0, so that both

α(u) and X(u) depend differentiable on u. For each u ∈ I, the line L which passes through

α(u) and is parallel to X(u) is called the line of the family at u. Given a one-parameter family

of lines {α(u), X(u)} the parameterized surface

ϕ(u, v) = α(u) + v.X(u) where u ∈ I and v ∈ R (1.7)

is called the ruled surface generated by the family {α(u), X(u)}. The lines L are called the

rulings and the curve α(u) is called an anchor of the surface ϕ, [2].

Theorem 1.5([2]) The striction point on a ruled surface ϕ(u, v) = α(u)+ v.X(u) is the foot of

the common normal between two consecutive generators (or ruling). The set of striction points

defines the striction curve given by

c(u) = α(u) − 〈α′
u, X ′

u〉
〈X ′

u, X ′
u〉

.X(u) (1.8)

where X ′
u = DT X(u).

§2. On the Tangent Vector Fields of Striction Curves Along the Involute and

Bertrandian Frenet Ruled Surfaces

Definition 2.1 In the Euclidean 3 − space, let α(s) be the arc length curve. The equations















ϕ1 (s, u1) = α (s) + u1V1 (s)

ϕ2 (s, u2) = α (s) + u2V2 (s)

ϕ3 (s, u3) = α (s) + u3V3 (s)

(2.1)

are the parametrization of the ruled surface which is called V1 − scroll ( tangent ruled surface),

V2 − scroll (normal ruled surface) and V3 − scroll (binormal ruled surface) respectively in [6].

Theorem 2.1([6]) The striction curves of Frenet ruled surfaces are given by the following
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matrix








c1 − α

c2 − α

c3 − α









=









0 0 0

0 k1

k2
2
+k2

2

0

0 0 0

















V1

V2

V3









.

Theorem 2.2 The tangent vector fields T1, T2 and T3 belonging to striction curves of Frenet

ruled surface is given by

[T ] =









T1

T2

T3









=











1 0 0

k2
2

η‖c′
2
(s)‖

( k1
η )

′

‖c′
2
(s)‖

k1k2

η‖c′
2
(s)‖

1 0 0



















V1

V2

V3









.

or








T1

T2

T3









=









1 0 0

a b c

1 0 0

















V1

V2

V3









where

a =
k2
2

η‖c′
2
(s)‖ , b =

( k1
η )

′

‖c′
2
(s)‖ , c = k1k2

η‖c′
2
(s)‖ and η = k2

1 + k2
2 .

Proof It is easy to give this matrix because we have already got the following equalities

T1 (s) = T3 (s) = α′ (s) = V1.

Since c2(s) = α(s) +
k1

k2
1 + k2

2

V2, where k2
1 + k2

2 = η 6= 0, hence we have

c′2(s) =
k2
2

η
V1 +

(

k1

η

)′

V2 +
k1k2

η
V3,

T2 (s) =
c′2(s)

‖c′2(s)‖
=

ηk2
2V1 + (k′

1η − k1η
′)V2 + ηk2k1V3

(

η3k4
2 + (k′

1ηk1η′)
2
)

1
2

. 2
2.1 Involute Frenet Ruled Surfaces

In this subsection, first we give the tangent, normal and binormal Frenet ruled surfaces of the

involute-evolute curves. Further we write their parametric equations in terms of the Frenet

apparatus of the involute-evolute curves. Hence they are called involute Frenet ruled surfaces

as in the following way.
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Definition 2.2([6]) In the Euclidean 3-space, let α(s) be the arc length curve. The equations

ϕ∗
1 (s, v1) = α∗ (s) + v1V

∗
1 (s) = α (s) + (σ − s)V1 (s) + v1V2 (s) ,

ϕ∗
2 (s, v2) = α∗ (s) + v2V

∗
2 (s) = α (s) + (σ − s)V1 (s) + v2

(

−k1V1 + k2V3

(k2
1 + k2

2)
1
2

)

,

ϕ∗
3 (s, v3) = α∗ (s) + v3V

∗
3 (s) = α (s) + (σ − s)V1 (s) + v3

(

k2V1 + k1V3

(k2
1 + k2

2)
1
2

)

are the parametrization of the ruled surfaces which are called involute tangent ruled surface,

involute normal ruled surface and involute binormal ruled surface, respectively.

We can deduce from Theorem 2.1 striction curves of the involute Frenet ruled surfaces are

given by the following matrix









c∗1 − α∗

c∗2 − α∗

c∗3 − α∗









=









0 0 0

0
k∗

1

k∗2
1

+k∗2
2

0

0 0 0

















V ∗
1

V ∗
2

V ∗
3









.

It is easy to give the following matrix for the striction curves of four Frenet ruled surfaces

along the involute curve α∗.

c∗1 (s) = c∗3(s) = α∗ (s) ,

c∗2(s) = α∗(s) +
k∗
1

k∗2
1 + k∗2

2

V ∗
2 (s) .

Also we can write explicit equations of the striction curves on involute Frenet ruled surfaces

in terms of Frenet apparatus of an evolute curve α.

Theorem 2.3 The equations of the striction curves on involute Frenet ruled surfaces in terms

of Frenet apparatus of an evolute curve α are given by









c∗1 − α

c∗2 − α

c∗3 − α









=











σ − s 0 0

(σ − s)

(

1 − k2
1

(k2
1
+k2

2)(1+m)

)

0
(σ − s)k1k2

(k2
1 + k2

2) (1 + m)

σ − s 0 0



















V1

V2

V3









.

Theorem 2.4 The tangent vector fields T1
∗, T2

∗, T3
∗ of striction curves belonging to an involute

Frenet ruled surface in terms of Frenet apparatus by themselves are given by

[T ∗] =









T1
∗

T2
∗

T3
∗









=









1 0 0

a∗ b∗ c∗

1 0 0

















V1
∗

V2
∗

V3
∗









.
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a∗ =
k∗
2
2

η∗
∥

∥c∗2
′(s)
∥

∥

, b∗ =

(

k∗

1

η∗

)′

∥

∥c∗2
′(s)
∥

∥

, c∗ =
k∗
1k∗

2

η∗
∥

∥c∗2
′(s)
∥

∥

, η∗ = k∗
1
2 + k∗

2
2, µ∗ =

(

k∗
2

k∗
1

)′

.

2.2 Bertrandian Frenet ruled surfaces

In this subsection, first we give the tangent, normal and binormal Frenet ruled surfaces of

the Bertrand mate α∗∗. Further we write their parametric equations in terms of the Frenet

apparatus of the Bertrand curve α. Hence they are called Bertrandian Frenet ruled surfaces as

in the following way.

Definition 2.3([6]) In the Euclidean 3− space, let α(s) be the arc length curve. The equations

ϕ∗∗
1 (s, w1) = α∗∗ (s) + w1V

∗∗
1 (s) = α + λV2 + w1

βV1 + λV3
√

λ2 + β2
,

ϕ∗∗
2 (s, w2) = α∗∗ (s) + w2V

∗∗
2 (s) = α + (λ + w2)V2, (2.2)

ϕ∗∗
3 (s, w3) = α∗∗ (s) + w3V

∗∗
3 (s) = α + λV2 + w3

(

−λV1 + βV3
√

λ2 + β2

)

,

are the parametrization of the ruled surfaces which are called Bertrandian tangent ruled surface,

Bertrandian normal ruled surface and Bertrandian binormal ruled surface, respectively.

We can also deduce from Theorem 2.1 the striction curves of Bertrand Frenet ruled surfaces

are given by the following matrix









c∗∗1 − α∗∗

c∗∗2 − α∗∗

c∗∗3 − α∗∗









=









0 0 0

0
k∗∗

1

k∗∗2
1

+k∗∗2
2

0

0 0 0

















V ∗∗
1

V ∗∗
2

V ∗∗
3









.

It is easy to give the following matrix for the striction curves belonging to Bertrand Frenet

ruled surfaces

c∗∗1 (s) = c∗∗3 (s) = α∗∗ (s)

c∗∗2 (s) = α∗∗(s) +
k∗∗
1

k∗∗2
1 + k∗∗2

2

V ∗∗
2 (s)

Theorem 2.5 The equations of the striction curves on Bertrandian Frenet ruled surfaces in

terms of Frenet apparatus of curve α









c∗∗1 − α

c∗∗2 − α

c∗∗3 − α









=











0 λ 0

0

(

λ +
m(λ2+β2)k2

(m2+1)

)

0

0 λ 0



















V1

V2

V3









.
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Proof Since the equations of the striction curves on Bertrandian Frenet ruled surfaces in

terms of Frenet apparatus of curve α are

c∗∗1 (s) = c∗∗3 (s) = α∗∗ (s) = α (s) + λV2 (s)

the first and the second curvatures of the curve α∗∗ are given by k∗∗
1 =

βk1 − λk2

(λ2 + β2) k2
and

k∗∗
2 =

1

(λ2 + β2) k2
. Also k2k

∗∗
2 =

1

(λ2 + β2)
and

c∗∗2 (s) = α∗∗(s) +
k∗∗
1

k∗∗2
1 + k∗∗2

2

V ∗∗
2 (s) = α +



λ +

(

λ2 + β2
)

k2
(

(βk1 − λk2)
2 + 1

)



V2. 2
Theorem 2.6 The tangent vector fields T ∗∗

1 , T ∗∗
2 and T ∗∗

3 of striction curves belonging

to Bertrandian Frenet ruled surface are given by









T ∗∗
1

T ∗∗
2

T ∗∗
3









=









1 0 0

a∗∗ b∗∗ c∗∗

1 0 0

















V ∗∗
1

V ∗∗
2

V ∗∗
3









where

a∗∗ =
k∗∗
2

2

η∗∗
∥

∥c∗∗2
′(s)
∥

∥

, b∗∗ =

(

k∗∗

1

η∗∗

)′

∥

∥c∗∗2
′(s)
∥

∥

, c∗∗ =
k∗∗
1 k∗∗

2

η∗∗
∥

∥c∗∗2
′(s)
∥

∥

and η∗∗ = k∗∗
1

2 + k∗∗
2

2.

Theorem 2.7 The product of tangent vector fields T1
∗, T2

∗, T3
∗ and tangent vector fields

T1
∗∗, T2

∗∗, T3
∗∗ of striction curves on an involute and Bertrandian Frenet ruled surface re-

spectively, are given by

[T ∗] [T ∗∗]
T

= A









0 Ab∗∗ 0

B a∗∗B + b∗∗a∗A + c∗∗C B

0 b∗∗A 0









where the coefficients are

A =

√

(λ2 + β2)(k1
2 + k2

2) , B = b∗(−βk1 + λk2) + c∗, C = b∗ + c∗(−λk2 + βk1).

Proof Let [T ∗] = [A∗] [V ∗] and [T ∗∗] = [A∗∗] [V ∗∗] be given. By using the properties of a

matrix following result can be obtained:
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[T ∗] [T ∗∗]
T

= [A∗] [V ∗] ([A∗∗] [V ∗∗])
T

= [A∗]
(

[V ∗] [V ∗∗]
T

)

[A∗∗]
T

=









1 0 0

a∗ b∗ c∗

1 0 0

















V1
∗

V2
∗

V3
∗

























1 0 0

a∗∗ b∗∗ c∗∗

1 0 0

















V1
∗∗

V2
∗∗

V3
∗∗

















T

=









1 0 0

a∗ b∗ c∗

1 0 0

















V1
∗

V2
∗

V3
∗

















V1
∗∗

V2
∗∗

V3
∗∗









T 







1 0 0

a∗∗ b∗∗ c∗∗

1 0 0









T

= A









0 b∗∗A 0

B a∗∗B + b∗∗a∗A + c∗∗C B

0 b∗∗A 0









. 2
As a result of Theorem 2.1 we can write that in the Euclidean 3 − space, the position of

the unit tangent vector field T ∗
1 , T ∗

2 , T ∗
3 and T ∗∗

1 , T ∗∗
2 , T ∗∗

3 of striction curves belonging to ruled

surfaces ϕ∗
1, ϕ

∗
2, ϕ

∗
3 and ϕ∗∗

1 , ϕ∗∗
2 , ϕ∗∗

3 respectively, along the curve α∗ and α∗∗, can be expressed

by the following equations

[T ∗] [T ∗∗]
T

=









〈T ∗
1 , T ∗∗

1 〉 〈T ∗
1 , T ∗∗

2 〉 〈T ∗
1 , T ∗∗

3 〉
〈T ∗

2 , T ∗∗
1 〉 〈T ∗

2 , T ∗∗
2 〉 〈T ∗

2 , T ∗∗
3 〉

〈T ∗
3 , T ∗∗

1 〉 〈T ∗
3 , T ∗∗

2 〉 〈T ∗
3 , T ∗∗

3 〉









,

here [T ∗∗]
T

is the transpose matrix of [T ∗∗] .

Hence we may write that, there are four tangent vector fields on striction curves which

are perpendicular to each other, for the involute and Bertrandian Frenet ruled surfaces given

above. Since 〈T ∗
1 , T ∗∗

1 〉 = 〈T ∗
1 , T ∗∗

3 〉 = 〈T ∗
3 , T ∗∗

1 〉 = 〈T ∗
3 , T ∗∗

3 〉 = 0, it is trivial.

Theorem 2.8 (i) The tangent vector fields of striction curves on an involute tangent and

Bertrandian normal ruled surfaces are perpendicular under the condition

[

(βk1 − λk2)(λ
2 + β2)k2

(βk1 − λk2)2 + 1

]′

= 0, λ2 = −β2 or k1
2 = −k2

2.

(ii) The tangent vector fields of striction curves on an involute binormal and Bertrandian

normal ruled surfaces are perpendicular under the condition

[

(βk1 − λk2)(λ
2 + β2)k2

(βk1 − λk2)2 + 1

]′

= 0, λ2 = −β2 or k1
2 = −k2

2.
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Proof (i) Since 〈T ∗
1 , T ∗∗

2 〉 = b∗∗A and 〈T ∗
1 , T ∗∗

2 〉 = 0

b∗∗A = 0
[

(βk1 − λk2)(λ
2 + β2)k2

(βk1 − λk2)2 + 1

]′
√

(λ2 + β2)(k1
2 + k2

2) = 0

[

(βk1 − λk2)(λ
2 + β2)k2

(βk1 − λk2)2 + 1

]′

= 0 or

√

(λ2 + β2)(k1
2 + k2

2) = 0,

this completes the proof.

(ii) Since 〈T ∗
1 , T ∗∗

2 〉 = 〈T ∗
3 , T ∗∗

2 〉 = b∗∗A, the proof is trivial. 2
Theorem 2.9 (i) The tangent vector fields of striction curves on an involute normal and

Bertrandian tangent ruled surfaces are perpendicular under the condition

−βk1 + λk2 =
k2
2(

k1

k2
)′(k2

1 + k2
2)

3
2

[

(k2
1 + k2

2)
3 + k4

2(
k1

k2
)′

2
]

(

λk1(k2
1
+k2

2
)
5
2

[

(k2
1
+k2

2
)3+k4

2
(

k1
k2

)′
2
]

)′ .

(ii) The tangent vector fields of striction curves on an involute normal and Bertrandian

binormal ruled surfaces are perpendicular under the condition

−βk1 + λk2 =
k2
2(

k1

k2
)′(k2

1 + k2
2)

3
2

[

(k2
1 + k2

2)
3 + k4

2(
k1

k2
)′

2
]

(

λk1(k2
1
+k2

2
)
5
2

[

(k2
1
+k2

2
)3+k4

2
(

k1
k2

)′
2
]

)′ .

Proof (i) Since 〈T ∗
2 , T ∗∗

1 〉 = B = b∗(−βk1 + λk2) + c∗ and 〈T ∗
2 , T ∗∗

1 〉 = 0

B = b∗(−βk1 + λk2) + c∗ = 0

βk1 − λk2 +
k2
2(

k1

k2
)′(k2

1 + k2
2)

3
2

[

(k2
1 + k2

2)
3 + k4

2(
k1

k2
)′

2
]

(

λk1(k2
1
+k2

2
)
5
2

[

(k2
1
+k2

2
)3+k4

2
(

k1
k2

)′
2
]

)′ = 0

−βk1 + λk2 =
k2
2(

k1

k2
)′(k2

1 + k2
2)

3
2

[

(k2
1 + k2

2)
3 + k4

2(
k1

k2
)′

2
]

(

λk1(k2
1
+k2

2
)
5
2

[

(k2
1
+k2

2
)3+k4

2
(

k1
k2

)′
2
]

)′ ,

this completes the proof.

(ii) Since 〈T ∗
2 , T ∗∗

1 〉 = 〈T ∗
2 , T ∗∗

3 〉 = B = b∗(−βk1 + λk2) + c∗, the proof is trivial. 2
Corollary 2.1 The inner product between tangent vector fields of striction curves on an involute
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normal and Bertrandian normal ruled surfaces of the (α∗, α∗∗) is

〈T ∗
2 , T ∗∗

2 〉 = a∗∗B + b∗∗a∗A + c∗∗C.
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[5] Kılıçoğlu Ş, Hacısalihoğlu H.H. and Şenyurt S., On the fundamental forms of the B-scroll

with null directrix and Cartan frame in Minkowskian 3-space, Applied Mathematical Sci-

ences, doi.org/10.12988/ams.2015.53230, 9(80), 3957 - 3965, 2015.
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[11] Şenyurt, S., On involute B-scroll a New View, University of Ordu, Journal of Science and

Technology, 4(1), 59-74, 2014.

[12] Springerlink, Encyclopaedia of Mathematics, Springer-Verlag, Berlin Heidelberg, New York,

2002.


