On r-Dynamic Coloring of the Triple Star Graph Families

T.Deepa and M. Venkatachalam
(Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamilnadu, India)

E-mail: deepathangavelu88@gmail.com, venkatmaths@gmail.com

Abstract

An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that $|c(N(v))| \geq \min \{r, d(v)\}$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minimum k such that G has an r-dynamic coloring with k colors. In this paper we investigate the r-dynamic chromatic number of the central graph, middle graph, total graph and line graph of the triple star graph $K_{1, n, n, n}$ denoted by $C\left(K_{1, n, n, n}\right), M\left(K_{1, n, n, n}\right)$, $T\left(K_{1, n, n, n}\right)$ and $L\left(K_{1, n, n, n}\right)$ respectively.

Key Words: Smarandachely r-dynamic coloring, r-dynamic coloring, triple star graph, central graph, middle graph, total graph and line graph.
AMS(2010): 05C15.

§1. Introduction

Graphs in this paper are simple and finite. For undefined terminologies and notations see [5, 17]. Thus for a graph $G, \delta(G), \Delta(G)$ and $\chi(G)$ denote the minimum degree, maximum degree and chromatic number of G respectively. When the context is clear we write, δ, Δ and χ for brevity. For $v \in V(G)$, let $N(v)$ denote the set of vertices adjacent to v in G and $d(v)=|N(v)|$. The r-dynamic chromatic number was first introduced by Montgomery [14].

An r-dynamic coloring of a graph G is a map c from $V(G)$ to the set of colors such that (i) if $u v \in E(G)$, then $c(u) \neq c(v)$ and (ii) for each vertex $v \in V(G),|c(N(v))| \geq \min \{r, d(v)\}$, where $N(v)$ denotes the set of vertices adjacent to $v, d(v)$ its degree and r is a positive integer. Generally, for a subgraph $G^{\prime} \prec G$ and a coloring c on G if $|c(N(v))| \geq \min \{r, d(v)\}$ for $v \in V\left(G \backslash G^{\prime}\right)$ but $|c(N(v))| \leq \min \{r, d(v)\}$ for $u \in V\left(G^{\prime}\right)$, such a r coloring is called a Smarandachely r-dynamic coloring on G. Clearly, if $G^{\prime}=\emptyset$, a Smarandachely r-dynamic coloring is nothing else but the r-dynamic coloring.

The first condition characterizes proper colorings, the adjacency condition and second condition is double-adjacency condition. The r-dynamic chromatic number of a graph G, written $\chi_{r}(G)$, is the minimum k such that G has an r-dynamic proper k-coloring. The 1 -dynamic chromatic number of a graph G is equal to its chromatic number. The 2-dynamic chromatic number of a graph has been studied under the name dynamic chromatic number denoted by $\chi_{d}(G)$ [1-4, 8]. By simple observation, we can show that $\chi_{r}(G) \leq \chi_{r+1}(G)$, however $\chi_{r+1}(G)-\chi_{r}(G)$ can

[^0]be arbitrarily large, for example $\chi($ Petersen $)=2, \chi_{d}($ Petersen $)=3$, but $\chi_{3}($ Petersen $)=10$. Thus, finding an exact values of $\chi_{r}(G)$ is not trivially easy.

There are many upper bounds and lower bounds for $\chi_{d}(G)$ in terms of graph parameters. For example, for a graph G with $\Delta(G) \geq 3$, Lai et al. [8] proved that $\chi_{d}(G) \leq \Delta(G)+1$. An upper bound for the dynamic chromatic number of a d-regular graph G in terms of $\chi(G)$ and the independence number of $G, \alpha(G)$, was introduced in [7]. In fact, it was proved that $\chi_{d}(G) \leq \chi(G)+2 \log _{2} \alpha(G)+3$. Taherkhani gave in [15] an upper bound for $\chi_{2}(G)$ in terms of the chromatic number, the maximum degree Δ and the minimum degree δ. i.e., $\chi_{2}(G)-\chi(G) \leq$ $\left\lceil(\Delta e) / \delta \log \left(2 e\left(\Delta^{2}+1\right)\right)\right\rceil$.

Li et al. proved in [10] that the computational complexity of $\chi_{d}(G)$ for a 3-regular graph is an NP-complete problem. Furthermore, Li and Zhou [9] showed that to determine whether there exists a 3 -dynamic coloring, for a claw free graph with the maximum degree 3 , is NP-complete.
N.Mohanapriya et al. [11, 12] studied the dynamic chromatic number for various graph families. Also, it was proven in [13] that the r - dynamic chromatic number of line graph of a helm graph H_{n} is

$$
\chi_{r}\left(L\left(H_{n}\right)\right)=\left\{\begin{array}{l}
n-1, \quad \delta \leq r \leq n-2 \\
n+1, \quad r=n-1, \\
n+2, \quad r=n \text { and } n \equiv 1 \quad \bmod 3 \\
n+3, \quad r=n \text { and } n \not \equiv 1 \bmod 3, \\
n+4, \quad r=n+1=\Delta, n \geq 6 \quad \text { and } 2 n-2 \equiv 0 \bmod 5 \\
n+5, \quad r=n+1=\Delta, n \geq 6 \quad \text { and } 2 n-2 \not \equiv 0 \bmod 5
\end{array}\right.
$$

In this paper, we study $\chi_{r}(G)$, the r - dynamic chromatic number of the middle, central, total and line graphs of the triple star graphs are discussed.

§2. Preliminaries

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The middle graph [6] of G, denoted by $M(G)$ is defined as follows. The vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y of $M(G)$ are adjacent in $M(G)$ in case one of the following holds: (i) x, y are in $E(G)$ and x, y are adjacent in G. (ii) x is in $V(G), y$ is in $E(G)$, and x, y are incident in G.

The central graph [16] $C(G)$ of a graph G is obtained from G by adding an extra vertex on each edge of G, and then joining each pair of vertices of the original graph which were previously non-adjacent.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The total graph $[6,16]$ of G, denoted by $T(G)$ is defined in the following way. The vertex set of $T(G)$ is $V(G) \cup E(G)$. Two vertices x, y of $T(G)$ are adjacent in $T(G)$ in case one of the following holds: (i) x, y are in $V(G)$ and x is adjacent to y in G. (ii) x, y are in $E(G)$ and x, y are adjacent in G. (iii) x is in $V(G), y$ is in $E(G)$, and x, y are incident in G.

The line graph [13] of G denoted by $L(G)$ is the graph with vertices are the edges of G
with two vertices of $L(G)$ adjacent whenever the corresponding edges of G are adjacent.
Theorem 2.1 For any triple star graph $K_{1, n, n, n}$, the r-dynamic chromatic number

$$
\chi_{r}\left(C\left(K_{1, n, n, n}\right)\right)= \begin{cases}2 n+1, & r=1 \\ 3 n+1, & 2 \leq r \leq \Delta-1 \\ 4 n+1, & r \geq \Delta\end{cases}
$$

Proof First we apply the definition of central graph on $K_{1, n, n, n}$. Let the edge $v v_{i}, v_{i} w_{i}$ and $w_{i} u_{i}$ be subdivided by the vertices $e_{i}(1 \leq i \leq n), e_{i}^{\prime}(1 \leq i \leq n)$ and $e_{i}^{\prime \prime}(1 \leq i \leq n)$ in $K_{1, n, n, n}$.

Clearly $V\left(C\left(K_{1, n, n, n}\right)\right)=\{v\} \bigcup\left\{v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{w_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n\right\}$ $\bigcup\left\{e_{i}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. The vertices $v_{i}(1 \leq i \leq n)$ induce a clique of order n (say K_{n}) and the vertices $v, u_{i}(1 \leq i \leq n)$ induce a clique of order $n+1$ (say $\left.K_{n+1}\right)$ in $C\left(K_{1, n, n, n}\right)$ respectively. Thus, we have $\chi_{r}\left(C\left(K_{1, n, n, n}\right)\right) \geq n+1$.

Case 1. $r=1$.
Consider the color class $C_{1}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(2 n+1)}\right\}$ and assign the r-dynamic coloring to $C\left(K_{1, n, n, n}\right)$ by Algorithm 2.1.1. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(C\left(K_{1, n, n, n}\right)\right)=2 n+1$.

Case 2. $2 \leq r \leq \Delta-1$.
Consider the color class $C_{2}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(3 n+1)}\right\}$ and assign the r-dynamic coloring to $C\left(K_{1, n, n, n}\right)$ by Algorithm 2.1.2. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(C\left(K_{1, n, n, n}\right)\right)=3 n+1$.

Case 3. $r \geq \Delta$.
Consider the color class $C_{3}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(4 n+1)}\right\}$ and assign the r-dynamic coloring to $C\left(K_{1, n, n, n}\right)$ by Algorithm 2.1.3. Thus, an easy check shows that the $r-$ adjacency condition is fulfilled. Hence $\chi_{r}\left(C\left(K_{1, n, n, n}\right)\right)=4 n+1$.

Algorithm 2.1.1

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $C\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{e_{i}\right\} ;$
$C\left(e_{i}\right)=i$;
\}
$V_{2}=\{v\} ;$
$C(v)=n+1 ;$

```
for }i=1\mathrm{ to }
{
V3={vi};
C(vi})=n+i+1
}
for }i=1\mathrm{ to }
{
V
C(e,
}
for }i=1\mathrm{ to }
{
V}={\mp@subsup{w}{i}{}}
C(wi) = i;
}
for i=1 to n
{
V}={\mp@subsup{e}{i}{\prime\prime}}
C(e\mp@subsup{e}{i}{\prime\prime})=n+1;
}
for }i=1\mathrm{ to }
{
V}={\mp@subsup{u}{i}{}}
C(ui)=i;
}
```



```
end
```


Algorithm 2.1.2

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $C\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{u_{i}\right\} ;$
$C\left(u_{i}\right)=i$;
\}
for $i=1$ to n
\{
$V_{2}=\left\{e_{i}^{\prime \prime}\right\} ;$
$C\left(e_{i}^{\prime \prime}\right)=n+1 ;$
\}

```
for i=1 to n
{
V
C(wi)=n+i+1;
}
for i=1 to n
{
V4 = {e, };
C(e.f})=i
}
for i=1 to n
{
V}={\mp@subsup{v}{i}{}}
C(vi})=2n+i+1
}
for }i=1\mathrm{ to }n-
{
V6 = {ei};
C(e}\mp@subsup{e}{i}{})=2n+i+2
}
C(en)=2n+2;
V}={v}
C(v)=n+1;
V= V}\\bigcup\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}\bigcup\mp@subsup{V}{4}{}\bigcup\mp@subsup{V}{5}{}\bigcup\mp@subsup{V}{6}{}\bigcup\mp@subsup{V}{7}{}
end
```


Algorithm 2.1.3

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $C\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{u_{i}\right\} ;$
$C\left(u_{i}\right)=i$;
\}
$V_{2}=\{v\} ;$
$C(v)=n+1 ;$
for $i=1$ to n
\{
$V_{3}=\left\{w_{i}\right\} ;$
$C\left(w_{i}\right)=n+i+1 ;$
\}

```
for }i=1\mathrm{ to }
{
V4}={\mp@subsup{v}{i}{}}
C(vi})=2n+i+1
}
for }i=1\mathrm{ to }
{
V
C(ei) = 3n+i+1;
}
for }i=1\mathrm{ to }
{
V6}={\mp@subsup{e}{i}{\prime}}
C(e,
}
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{\prime\prime}}
C(eil})=3n+2
}
V= V}\\bigcupV\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}\bigcup\mp@subsup{V}{4}{}\bigcup\mp@subsup{V}{5}{}\bigcup\mp@subsup{V}{6}{}\bigcup\mp@subsup{V}{7}{}
```

end

Theorem 2.2 For any triple star graph $K_{1, n, n, n}$, the r-dynamic chromatic number

$$
\chi_{r}\left(M\left(K_{1, n, n, n}\right)\right)= \begin{cases}n+1, & 1 \leq r \leq n \\ n+2, & r=n+1 \\ n+3, & r \geq \Delta\end{cases}
$$

Proof By definition of middle graph, each edge $v v_{i}, v_{i} w_{i}$ and $w_{i} u_{i}$ be subdivided by the vertices $e_{i}(1 \leq i \leq n), e_{i}^{\prime}(1 \leq i \leq n)$ and $e_{i}^{\prime \prime}(1 \leq i \leq n)$ in $K_{1, n, n, n}$ and the vertices v, e_{i} induce a clique of order $n+1$ (say $\left.K_{n+1}\right)$ in $M\left(K_{1, n, n, n}\right)$. i.e., $V\left(M\left(K_{1, n, n, n}\right)\right)=\{v\} \bigcup\left\{v_{i}: 1 \leq i \leq\right.$ $n\} \bigcup\left\{w_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. Thus we have $\chi_{r}\left(M\left(K_{1, n, n, n}\right)\right) \geq n+1$.

Case 1. $1 \leq r \leq n$.
Consider the color class $C_{1}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(n+1)}\right\}$ and assign the r-dynamic coloring to $M\left(K_{1, n, n, n}\right)$ by Algorithm 2.2.1. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(M\left(K_{1, n, n, n}\right)\right)=n+1$, for $1 \leq r \leq n$.

Case 2. $\quad r=n+1$.

Consider the color class $C_{2}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(n+1)}, c_{(n+2)}\right\}$ and assign the r-dynamic coloring to $M\left(K_{1, n, n, n}\right)$ by Algorithm 2.2.2. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(M\left(K_{1, n, n, n}\right)\right)=n+2$, for $r=n+1$.

Case 3. $r=\Delta$.
Consider the color class $C_{3}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{n}, c_{(n+1)}, c_{(n+2)}, c_{(n+3)}\right\}$ and assign the r dynamic coloring to $M\left(K_{1, n, n, n}\right)$ by Algorithm 2.2.3. Thus, an easy check shows that the $r-$ adjacency condition is fulfilled. Hence, $\chi_{r}\left(M\left(K_{1, n, n, n}\right)\right)=n+3$, for $r \geq \Delta$.

Algorithm 2.2.1

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $M\left(K_{1, n, n, n}\right)$.

```
    begin
    for \(i=1\) to \(n\)
    \{
    \(V_{1}=\left\{e_{i}\right\} ;\)
    \(C\left(e_{i}\right)=i\);
    \}
    \(V_{2}=\{v\} ;\)
    \(C(v)=n+1 ;\)
    for \(i=1\) to \(n\)
    \{
    \(V_{3}=\left\{v_{i}\right\} ;\)
    \(C\left(v_{i}\right)=n+1 ;\)
    \}
    for \(i=1\) to \(n-1\)
    \{
    \(V_{4}=\left\{e_{i}^{\prime}\right\} ;\)
    \(C\left(e_{i}^{\prime}\right)=i+1 ;\)
    \}
    \(C\left(e_{n}^{\prime}\right)=1 ;\)
    for \(i=1\) to \(n-2\)
    \{
    \(V_{5}=\left\{w_{i}\right\} ;\)
    \(C\left(w_{i}\right)=i+2\);
    \}
    \(C\left(w_{n-1}\right)=1 ;\)
    \(C\left(w_{n}\right)=2\);
    for \(i=1\) to \(n\)
    \{
    \(V_{6}=\left\{e_{i}^{\prime \prime}\right\} ;\)
    \(C\left(e_{i}^{\prime \prime}\right)=n+1 ;\)
```

```
}
for i=1 to n
{
V}={\mp@subsup{u}{i}{}}
C(u, )}=i
}
```



```
end
```


Algorithm 2.2.2

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $M\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{e_{i}\right\} ;$
$C\left(e_{i}\right)=i$;
\}
$V_{2}=\{v\} ;$
$C(v)=n+1 ;$
for $i=1$ to n
\{
$V_{3}=\left\{v_{i}\right\} ;$
$C\left(v_{i}\right)=n+2$;
\}
for $i=1$ to n
\{
$V_{4}=\left\{e_{i}^{\prime}\right\} ;$
$C\left(e_{i}^{\prime}\right)=n+1 ;$
\}
for $i=1$ to $n-1$
\{
$V_{5}=\left\{w_{i}\right\}$;
$C\left(w_{i}\right)=i+1$;
\}
$C\left(w_{n}\right)=1 ;$
for $i=1$ to $n-2$
\{
$V_{6}=\left\{e_{i}^{\prime \prime}\right\} ;$
$C\left(e_{i}^{\prime \prime}\right)=i+2 ;$
\}
$C\left(e_{n-1}^{\prime \prime}\right)=1 ;$

```
C(een
for }i=1\mathrm{ to }
{
V}={\mp@subsup{u}{i}{}}
C(ui)=n+1;
}
V= V}\\bigcup\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}\bigcup\mp@subsup{V}{4}{}\bigcup\mp@subsup{V}{5}{}\bigcup\mp@subsup{V}{6}{}\bigcup\mp@subsup{V}{7}{}
end
```


Algorithm 2.2.3

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $M\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{e_{i}\right\} ;$
$C\left(e_{i}\right)=i$;
\}
$V_{2}=\{v\} ;$
$C(v)=n+1 ;$
for $i=1$ to n
\{
$V_{3}=\left\{v_{i}\right\} ;$
$C\left(v_{i}\right)=n+2 ;$
\}
for $i=1$ to n
\{
$V_{4}=\left\{e_{i}^{\prime}\right\} ;$
$C\left(e_{i}^{\prime}\right)=n+3$;
\}
for $i=1$ to n
\{
$V_{5}=\left\{w_{i}\right\} ;$
$C\left(w_{i}\right)=n+1 ;$
\}
for $i=1$ to $n-1$
\{
$V_{6}=\left\{e_{i}^{\prime \prime}\right\} ;$
$C\left(e_{i}^{\prime \prime}\right)=i+1 ;$
\}
$C\left(e_{n}^{\prime \prime}\right)=1 ;$
for $i=1$ to n

```
{
V}={\mp@subsup{u}{i}{}}
C(ui) = n+2;
}
V= V}\\bigcup\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}\bigcup\mp@subsup{V}{4}{}\bigcup\mp@subsup{V}{5}{}\bigcup\mp@subsup{V}{6}{}\bigcup\mp@subsup{V}{7}{}
end
```

Theorem 2.3 For any triple star graph $K_{1, n, n, n}$, the r-dynamic chromatic number,

$$
\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right)= \begin{cases}n+1, & 1 \leq r \leq n \\ r+1, & n+1 \leq r \leq \Delta-2 \\ 2 n, & r=\Delta-1 \\ 2 n+1, & r \geq \Delta\end{cases}
$$

Proof By definition of total graph, each edge $v v_{i}, v_{i} w_{i}$ and $w_{i} u_{i}$ be subdivided by the vertices $e_{i}(1 \leq i \leq n), e_{i}^{\prime}(1 \leq i \leq n)$ and $e_{i}^{\prime \prime}(1 \leq i \leq n)$ in $K_{1, n, n, n}$ and the vertices v, e_{i} induce a clique of order $n+1$ (say $\left.K_{n+1}\right)$ in $T\left(K_{1, n, n, n}\right)$. i.e., $V\left(T\left(K_{1, n, n, n}\right)\right)=\{v\} \bigcup\left\{v_{i}: 1 \leq i \leq\right.$ $n\} \bigcup\left\{w_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. Thus, we have $\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right) \geq n+1$.
Case 1. $1 \leq r \leq n$.
Consider the color class $C_{1}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(n+1)}\right\}$ and assign the r-dynamic coloring to $T\left(K_{1, n, n, n}\right)$ by Algorithm 2.3.1. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right)=n+1$, for $1 \leq r \leq n$.

Case 2. $n+1 \leq r \leq \Delta-2$.
Consider the color class $C_{2}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{(2 n-1)}\right\}$ and assign the r-dynamic coloring to $T\left(K_{1, n, n, n}\right)$ by Algorithm 2.3.2. Thus, an easy check shows that the $r-$ adjacency condition is fulfilled. Hence, $\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right)=r+1$, for $n+1 \leq r \leq \Delta-2$.

Case 3. $r=\Delta-1$.
Consider the color class $C_{3}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{2 n}\right\}$ if $r=\Delta-1$ and assign the r-dynamic coloring to $T\left(K_{1, n, n, n}\right)$ by Algorithm 2.3.3. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right)=2 n$ for $r=\Delta-1$.

Case 4. $r=\Delta$.
Consider the color class $C_{4}=\left\{c_{1}, c_{2}, c_{3}, \cdots, c_{2 n+1}\right\}$ if $r=\Delta$ and assign the r-dynamic coloring to $T\left(K_{1, n, n, n}\right)$ by Algorithm 2.3.4. Thus, an easy check shows that the r - adjacency condition is fulfilled. Hence, $\chi_{r}\left(T\left(K_{1, n, n, n}\right)\right)=2 n+1$ for $r \geq \Delta$.

Algorithm 2.3.1

Input: The number " n " of $K_{1, n, n, n}$.

Output: Assigning r-dynamic coloring for the vertices in $T\left(K_{1, n, n, n}\right)$.

```
begin
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{}}
C(ei) = i;
}
V}={v}
C(v)=n+1;
for }i=1\mathrm{ to }n-
{
V}={\mp@subsup{v}{i}{}}
C(vi) =i+3;
}
C(vn-2)=1;
C(vn-1) = 2;
C(vn})=3
for }i=1\mathrm{ to }n-
{
V
C(e)
}
C(em-1
C(efn})=2
for i=1 to n-1
{
V}={\mp@subsup{w}{i}{}}
C(wi)=i+1;
}
C(wn})=1
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{\prime\prime}}
C(eíl})=n+1
}
for }i=1\mathrm{ to }
{
V}={\mp@subsup{u}{i}{}}
C(ui)=i;
}
```

$V=V_{1} \bigcup V_{2} \bigcup V_{3} \bigcup V_{4} \bigcup V_{5} \bigcup V_{6} \bigcup V_{7} ;$
end

Algorithm 2.3.2

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $T\left(K_{1, n, n, n}\right)$.

```
begin
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{}}
C(ei) = i;
}
V}={v}
C(v)=n+1;
for }i=1\mathrm{ to }n-
{
V}={\mp@subsup{v}{i}{}}
C(vi})=r+1
}
C(vn-1) = n+2;
C(vn)=n+3;
for }i=1\mathrm{ to }n-
{
V
C(efi})=n+i+2
}
C(een-2) = n+2;
C(e (en-1})=n+3
C(een
for i=1 to n-1
{
V}={\mp@subsup{w}{i}{}}
C(wi)=i+1;
}
C(wn)=1;
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{\prime\prime}}
C(e, 苙)=n+1;
}
for }i=1\mathrm{ to }
```

```
{
V}={\mp@subsup{u}{i}{}}
C(ui)=i;
}
```



```
end
```

Algorithm 2.3.3
Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $T\left(K_{1, n, n, n}\right)$.

```
begin
for \(i=1\) to \(n\)
\{
\(V_{1}=\left\{e_{i}\right\} ;\)
\(C\left(e_{i}\right)=i\);
\}
\(V_{2}=\{v\} ;\)
\(C(v)=n+1 ;\)
for \(i=1\) to \(n-1\)
\{
\(V_{3}=\left\{v_{i}\right\} ;\)
\(C\left(v_{i}\right)=n+i+1 ;\)
\}
\(C\left(v_{n}\right)=n+2 ;\)
for \(i=1\) to \(n-2\)
\{
\(V_{4}=\left\{e_{i}^{\prime}\right\} ;\)
\(C\left(e_{i}^{\prime}\right)=n+i+2 ;\)
\}
\(C\left(e_{n-1}^{\prime}\right)=n+2 ;\)
\(C\left(e_{n}^{\prime}\right)=n+3\);
for \(i=1\) to \(n-1\)
\{
\(V_{5}=\left\{w_{i}\right\} ;\)
\(C\left(w_{i}\right)=i+1 ;\)
\}
\(C\left(w_{n}\right)=1 ;\)
for \(i=1\) to \(n\)
\{
\(V_{6}=\left\{e_{i}^{\prime \prime}\right\} ;\)
\(C\left(e_{i}^{\prime \prime}\right)=n+1 ;\)
\}
```

```
for }i=1\mathrm{ to }
{
V}={\mp@subsup{u}{i}{}}
C(u, ) = i;
}
```



```
end
```


Algorithm 2.3.4

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $T\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{e_{i}\right\} ;$
$C\left(e_{i}\right)=i$;
\}
$V_{2}=\{v\} ;$
$C(v)=n+1 ;$
for $i=1$ to n
\{
$V_{3}=\left\{v_{i}\right\} ;$
$C\left(v_{i}\right)=n+i+1 ;$
\}
for $i=1$ to $n-1$
\{
$V_{4}=\left\{e_{i}^{\prime}\right\} ;$
$C\left(e_{i}^{\prime}\right)=n+i+2 ;$
\}
$C\left(e_{n}^{\prime}\right)=n+2 ;$
for $i=1$ to $n-1$
\{
$V_{5}=\left\{w_{i}\right\} ;$
$C\left(w_{i}\right)=i+1 ;$
\}
$C\left(w_{n}\right)=1 ;$
for $i=1$ to n
\{
$V_{6}=\left\{e_{i}^{\prime \prime}\right\} ;$
$C\left(e_{i}^{\prime \prime}\right)=n+1 ;$
\}
for $i=1$ to n

```
{
V}={\mp@subsup{u}{i}{}}
C(u, )=i;
}
V= V}\\bigcup\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}\bigcup\mp@subsup{V}{4}{}\bigcup\mp@subsup{V}{5}{}\bigcup\mp@subsup{V}{6}{}\bigcup\mp@subsup{V}{7}{}
```

end

Theorem 2.4 For any triple star graph $K_{1, n, n, n}$, the r-dynamic chromatic number,

$$
\chi_{r}\left(L\left(K_{1, n, n, n}\right)\right)=\left\{\begin{aligned}
n, & 1 \leq r \leq n-1 \\
n+1, & r \geq \Delta
\end{aligned}\right.
$$

Proof First we apply the definition of line graph on $K_{1, n, n, n}$. By the definition of line graph, each edge of $K_{1, n, n, n}$ taken to be as vertex in $L\left(K_{1, n, n, n}\right)$. The vertices $e_{1}, e_{2}, \cdots, e_{n}$ induce a clique of order n in $L\left(K_{1, n, n, n}\right)$. i.e., $V\left(L\left(K_{1, n, n, n}\right)\right)=E\left(K_{1, n, n, n}\right)=\left\{e_{i}: 1 \leq i \leq\right.$ $n\} \bigcup\left\{e_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{e_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. Thus, we have $\chi_{r}\left(L\left(K_{1, n, n, n}\right)\right) \geq n$.

Case 1. $1 \leq r \leq \Delta-1$.
Now consider the vertex set $V\left(L\left(K_{1, n, n, n}\right)\right)$ and color class $C_{1}=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$, assign r dynamic coloring to $L\left(K_{1, n, n, n}\right)$ by Algorithm 2.4.1. Thus, an easy check shows that the $r-$ adjacency condition is fulfilled. Hence, $\chi_{r}\left(L\left(K_{1, n, n, n}\right)\right)=n$, for $1 \leq r \leq \Delta-1$.

Case 2. $r \geq \Delta$.
Now consider the vertex set $V\left(L\left(K_{1, n, n}\right)\right)$ and color class $C_{2}=\left\{c_{1}, c_{2}, \cdots, c_{n}, c_{n+1}\right\}$, assign r dynamic coloring to $L\left(K_{1, n, n, n}\right)$ by Algorithm 2.4.2. Thus, an easy check shows that the $r-$ adjacency condition is fulfilled. Hence, $\chi_{r}\left(L\left(K_{1, n, n, n}\right)\right)=n+1$ for $r \geq \Delta$.

Algorithm 2.4.1

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $L\left(K_{1, n, n, n}\right)$.
begin
for $i=1$ to n
\{
$V_{1}=\left\{e_{i}\right\} ;$
$C\left(e_{i}\right)=i$;
\}
for $i=1$ to $n-1$
\{
$V_{2}=\left\{e_{i}^{\prime}\right\} ;$
$C\left(e_{i}^{\prime}\right)=i+1 ;$
\}
$C\left(e_{n}^{\prime}\right)=1 ;$

```
for \(i=1\) to \(n-2\)
\{
\(V_{3}=\left\{e_{i}^{\prime \prime}\right\} ;\)
\(C\left(e_{i}^{\prime \prime}\right)=i+2 ;\)
\}
\(C\left(e_{n-1}^{\prime \prime}\right)=1 ;\)
\(C\left(e_{n}^{\prime \prime}\right)=2\);
\(V=V_{1} \bigcup V_{2} \bigcup V_{3} ;\)
end
```


Algorithm 2.4.2

Input: The number " n " of $K_{1, n, n, n}$.
Output: Assigning r-dynamic coloring for the vertices in $L\left(K_{1, n, n, n}\right)$.

```
begin
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{}}
C(e i) = i;
}
for }i=1\mathrm{ to }
{
V}={\mp@subsup{e}{i}{\prime}}
C(éri})=n+1
}
for i=1 to n-1
{
```



```
}
C(en
V=V}\\bigcup\mp@subsup{V}{2}{}\bigcup\mp@subsup{V}{3}{}
end
```


References

[1] A. Ahadi, S. Akbari, A. Dehghana, M. Ghanbari, On the difference between chromatic number and dynamic chromatic number of graphs, Discrete Math. 312 (2012), 2579-2583.
[2] S. Akbari, M. Ghanbari, S. Jahanbakam, On the dynamic chromatic number of graphs, Contemp. Math. (Amer. Math. Soc.), 531 (2010), 11-18.
[3] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math. 157 (2009), 3005-3007
[4] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160 (2012), 2098-2103.
[5] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008.
[6] Danuta Michalak, On middle and total graphs with coarseness number equal 1, Springer Verlag, Graph Theory, Lagow Proceedings, Berlin Heidelberg, New York, Tokyo, (1981), 139-150.
[7] A. Dehghan, A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Appl. Math. 160(15) (2012), 2142-2146.
[8] H. J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003), 193-201.
[9] X. Li, W. Zhou, The 2nd-order conditional 3-coloring of claw-free graphs, Theoret. Comput. Sci. 396 (2008), 151-157.
[10] X. Li, X. Yao, W. Zhou, H. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009), 320-324.
[11] N. Mohanapriya, J. Vernold Vivin and M. Venkatachalam, δ - dynamic chromatic number of helm graph families, Cogent Mathematics, 3(2016), No. 1178411.
[12] N. Mohanapriya, J. Vernold Vivin and M. Venkatachalam, On dynamic coloring of Fan graphs, Int J of Pure Appl Math, 106(2016), 169-174.
[13] N. Mohanapriya, Ph.D thesis, A Study on Dynamic Coloring of Graphs, Bharathiar University, (2017), Coimbatore, India.
[14] B. Montgomery, Dynamic Coloring of Graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
[15] A. Taherkhani, r-Dynamic chromatic number of graphs, Discrete Appl. Math., 201(2016), 222-227.
[16] J. Vernold Vivin, Ph.D Thesis, Harmonious Coloring of Total Graphs, n-Leaf, Central Graphs and Circumdetic Graphs, Bharathiar University, (2007), Coimbatore, India.
[17] A. T. White, Graphs, Groups and Surfaces, American Elsevier, New York, 1973.

[^0]: ${ }^{1}$ Received September 9, 2017, Accepted May 26, 2018.

