Intrinsic Geometry of the Special Equations in Galilean 3-Space G_{3}

Handan Oztekin
(Firat University, Science Faculty, Department of Mathematics, Elazig, Turkey)
Sezin Aykurt Sepet
(Ahi Evran University, Art and Science Faculty, Department of Mathematics, Kirsehir, Turkey)
E-mail: saykurt@ahievran.edu.tr

Abstract

In this study, we investigate a general intrinsic geometry in 3-dimensional Galilean space G_{3}. Then, we obtain some special equations by using intrinsic derivatives of orthonormal triad in G_{3}.

Key Words: NLS Equation, Galilean Space.
AMS(2010): 53A04, 53A05.

§1. Introduction

A Galilean space is a three dimensional complex projective space, where $\left\{w, f, I_{1}, I_{2}\right\}$ consists of a real plane w (the absolute plane), real line $f \subset w$ (the absolute line) and two complex conjugate points $I_{1}, I_{2} \in f$ (the absolute points). We shall take as a real model of the space G_{3}, a real projective space P_{3} with the absolute $\{w, f\}$ consisting of a real plane $w \subset G_{3}$ and a real line $f \subset w$ on which an elliptic involution ε has been defined. The Galilean scalar product between two vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$ is defined [3]

$$
(a . b)_{G}= \begin{cases}a_{1} b_{1}, & \text { if } a_{1} \neq 0 \text { or } b_{1} \neq 0 \\ a_{2} b_{2}+a_{3} b_{3}, & \text { if } a_{1}=b_{1}=0\end{cases}
$$

and the Galilean vector product is defined

$$
(a \wedge b)_{G}= \begin{cases}\left|\begin{array}{ccc}
0 & e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|, & \text { if } a_{1} \neq 0 \text { or } b_{1} \neq 0 \\
\left|\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|, & \text { if } a_{1}=b_{1}=0 .\end{cases}
$$

[^0]Let $\alpha: I \rightarrow G_{3}, I \subset R$ be an unit speed curve in Galilean space G_{3} parametrized by the invariant parameter $s \in I$ and given in the coordinate form
$\alpha(s)=(s, y(s), z(s))$. Then the curvature and the torsion of the curve α are given by

$$
\kappa(s)=\left\|\alpha^{\prime \prime}(s)\right\|, \quad \tau(s)=\frac{1}{\kappa^{2}(s)} \operatorname{Det}\left(\alpha^{\prime}(s), \alpha^{\prime \prime}(s), \alpha^{\prime \prime \prime}(s)\right)
$$

respectively. The Frenet frame $\{t, n, b\}$ of the curve α is given by

$$
\begin{aligned}
t(s) & =\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s)\right) \\
n(s) & =\frac{\alpha^{\prime \prime}(s)}{\left\|\alpha^{\prime \prime}(s)\right\|}=\frac{1}{\kappa(s)}\left(1, y^{\prime \prime}(s), z^{\prime \prime}(s)\right) \\
b(s) & =(t(s) \wedge n(s))_{G}=\frac{1}{\kappa(s)}\left(1,-z^{\prime \prime}(s), y^{\prime \prime}(s)\right)
\end{aligned}
$$

where $t(s), n(s)$ and $b(s)$ are called the tangent vector, principal normal vector and binormal vector, respectively. The Frenet formulas for $\alpha(s)$ given by [3] are

$$
\left[\begin{array}{c}
t^{\prime}(s) \tag{1.1}\\
n^{\prime}(s) \\
b^{\prime}(s)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa(s) & 0 \\
0 & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right]\left[\begin{array}{c}
t(s) \\
n(s) \\
b(s)
\end{array}\right] .
$$

The binormal motion of curves in the Galilean 3-space is equivalent to the nonlinear Schrödinger equation (NLS^{-}) of repulsive type

$$
\begin{equation*}
i q_{b}+q_{s s}-\frac{1}{2}|\langle q, q\rangle|^{2} \bar{q}=0 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\kappa \exp \left(\int_{0}^{s} \sigma d s\right), \quad \sigma=\kappa \exp \left(\int_{0}^{s} r d s\right) . \tag{1.3}
\end{equation*}
$$

§2. Basic Properties of Intrinsic Geometry

Intrinsic geometry of the nonlinear Schrodinger equation was investigated in E^{3} by Rogers and Schief. According to anholonomic coordinates, characterization of three dimensional vector field was introduced in E^{3} by Vranceau [5], and then analyse Marris and Passman [3].

Let ϕ be a 3-dimensional vector field according to anholonomic coordinates in G_{3}. The $\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}$ is the tangent, principal normal and binormal directions to the vector lines of ϕ. Intrinsic derivatives of this orthonormal triad are given by following

$$
\frac{\delta}{\delta s}\left[\begin{array}{l}
t \tag{2.1}\\
n \\
b
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
0 & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]
$$

$$
\begin{align*}
& \frac{\delta}{\delta n}\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \theta_{n s} & \left(\Omega_{b}+\tau\right) \\
-\theta_{n s} & 0 & -\operatorname{div} \boldsymbol{b} \\
-\left(\Omega_{b}+\tau\right) & \operatorname{div} \boldsymbol{b} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right] \tag{2.2}\\
& \frac{\delta}{\delta b}\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\left(\Omega_{n}+\tau\right) & \theta_{b s} \\
\left(\Omega_{n}+\tau\right) & 0 & \operatorname{div} \boldsymbol{n} \\
-\theta_{b s} & -\operatorname{div} \boldsymbol{n} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right], \tag{2.3}
\end{align*}
$$

where $\frac{\delta}{\delta s}, \frac{\delta}{\delta n}$ and $\frac{\delta}{\delta b}$ are directional derivatives in the tangential, principal normal and binormal directions in G_{3}. Thus, the equation (2.1) show the usual Serret-Frenet relations, also (2.2) and (2.3) give the directional derivatives of the orthonormal triad $\{\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}\}$ in the n - and b-directions, respectively. Accordingly,

$$
\begin{equation*}
\operatorname{grad}=\boldsymbol{t} \frac{\delta}{\delta s}+\boldsymbol{n} \frac{\delta}{\delta n}+\boldsymbol{b} \frac{\delta}{\delta b}, \tag{2.4}
\end{equation*}
$$

where $\theta_{b s}$ and $\theta_{n s}$ are the quantities originally introduced by Bjorgum in 1951 [2] via

$$
\begin{equation*}
\theta_{n s}=\boldsymbol{n} \cdot \frac{\delta \boldsymbol{t}}{\delta n}, \quad \theta_{b s}=\boldsymbol{b} \cdot \frac{\delta \boldsymbol{t}}{\delta b} . \tag{2.5}
\end{equation*}
$$

From the usual Serret Frenet relations in G_{3}, we obtain the following equations

$$
\begin{align*}
& \operatorname{div} \boldsymbol{t}=\left(\boldsymbol{t} \frac{\delta}{\delta s}+\boldsymbol{n} \frac{\delta}{\delta n}+\boldsymbol{b} \frac{\delta}{\delta b}\right) \boldsymbol{t}=\boldsymbol{t}(\kappa \boldsymbol{n})+\boldsymbol{n} \frac{\delta \boldsymbol{t}}{\delta n}+\boldsymbol{b} \frac{\delta \boldsymbol{t}}{\delta b}=\theta_{n s}+\theta_{b s} \tag{2.6}\\
& \operatorname{div} \boldsymbol{n}=\left(\boldsymbol{t} \frac{\delta}{\delta s}+\boldsymbol{n} \frac{\delta}{\delta n}+\boldsymbol{b} \frac{\delta}{\delta b}\right) \boldsymbol{n}=\boldsymbol{t}(\tau \boldsymbol{b})+\boldsymbol{n} \frac{\delta \boldsymbol{n}}{\delta n}+\boldsymbol{b} \frac{\delta \boldsymbol{n}}{\delta b}=\boldsymbol{b} \frac{\delta \boldsymbol{n}}{\delta b} \tag{2.7}\\
& \operatorname{div} \boldsymbol{b}=\left(\boldsymbol{t} \frac{\delta}{\delta s}+\boldsymbol{n} \frac{\delta}{\delta n}+\boldsymbol{b} \frac{\delta}{\delta b}\right) \boldsymbol{b}=\boldsymbol{t}(-\tau \boldsymbol{n})+\boldsymbol{n} \frac{\delta \boldsymbol{b}}{\delta n}+\boldsymbol{b} \frac{\delta \boldsymbol{b}}{\delta b}=\boldsymbol{n} \frac{\delta \boldsymbol{b}}{\delta n} \tag{2.8}
\end{align*}
$$

Moreover, we get

$$
\begin{align*}
\operatorname{curl} \boldsymbol{t} & =\left(\boldsymbol{t} \times \frac{\delta}{\delta s}+\boldsymbol{n} \times \frac{\delta}{\delta n}+\boldsymbol{b} \times \frac{\delta}{\delta b}\right) \boldsymbol{t} \\
& =\boldsymbol{t} \times(\kappa \boldsymbol{n})+\boldsymbol{n} \times \frac{\delta \boldsymbol{t}}{\delta n}+\boldsymbol{b} \times \frac{\delta \boldsymbol{t}}{\delta b} \\
& =\left[\frac{\delta \boldsymbol{t}}{\delta n} \boldsymbol{b}-\frac{\delta \boldsymbol{t}}{\delta b} \boldsymbol{n}\right](1,0,0)+\kappa \boldsymbol{b} \\
& \Rightarrow \text { curl } \boldsymbol{t}=\Omega_{s}(1,0,0)+\kappa \boldsymbol{b} \tag{2.9}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{s}=\boldsymbol{t} \cdot \operatorname{curl} \boldsymbol{t}=\boldsymbol{b} \cdot \frac{\delta \boldsymbol{t}}{\delta n}-\boldsymbol{n} \cdot \frac{\delta \boldsymbol{t}}{\delta b} \tag{2.10}
\end{equation*}
$$

is defined the abnormality of the \boldsymbol{t}-field. Firstly, the relation (2.9) was obtained in E^{3} by

Masotti. Also, we find

$$
\begin{align*}
\operatorname{curl} \boldsymbol{n} & =\left(\boldsymbol{t} \times \frac{\delta}{\delta s}+\boldsymbol{n} \times \frac{\delta}{\delta n}+\boldsymbol{b} \times \frac{\delta}{\delta b}\right) \boldsymbol{n} \\
& =\boldsymbol{t} \times(\tau \boldsymbol{b})+\boldsymbol{n} \times \frac{\delta \boldsymbol{n}}{\delta n}+\boldsymbol{b} \times \frac{\delta \boldsymbol{n}}{\delta b} \\
& =\left[\boldsymbol{t} \cdot \frac{\delta \boldsymbol{n}}{\delta b}-\tau\right] \boldsymbol{n}+\left(\boldsymbol{b} \frac{\delta \boldsymbol{n}}{\delta n}\right)(1,0,0)-\left(\boldsymbol{t} \frac{\delta \boldsymbol{n}}{\delta n}\right) \boldsymbol{b} \\
& \Rightarrow \text { curl } \boldsymbol{n}=-(\text { div } \boldsymbol{b})(1,0,0)+\Omega_{n} \boldsymbol{n}+\theta_{n s} \boldsymbol{b} \tag{2.11}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{n}=\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{n}=\boldsymbol{t} \cdot \frac{\delta \boldsymbol{n}}{\delta b}-\tau \tag{2.12}
\end{equation*}
$$

is defined the abnormality of the \boldsymbol{n}-field and

$$
\begin{align*}
\text { curl } \boldsymbol{b}= & \left(\boldsymbol{t} \times \frac{\delta}{\delta s}+\boldsymbol{n} \times \frac{\delta}{\delta n}+\boldsymbol{b} \times \frac{\delta}{\delta b}\right) \boldsymbol{b} \\
= & \boldsymbol{t} \times(-\tau \boldsymbol{n})+\boldsymbol{n} \times\left[\left(\boldsymbol{t} \frac{\delta \boldsymbol{b}}{\delta n}\right) \boldsymbol{t}\right]+\boldsymbol{b} \times\left[\left(\boldsymbol{t} \frac{\delta \boldsymbol{b}}{\delta b}\right) \boldsymbol{t}+\left(\boldsymbol{n} \frac{\delta \boldsymbol{b}}{\delta b}\right) \boldsymbol{n}\right] \\
= & -\left[\tau+\boldsymbol{t} \cdot \frac{\delta \boldsymbol{b}}{\delta n}\right] \boldsymbol{b}+\left(\boldsymbol{t} \frac{\delta \boldsymbol{b}}{\delta b}\right) \boldsymbol{n}+\left(\boldsymbol{b} \frac{\delta \boldsymbol{n}}{\delta b}\right)(1,0,0) \\
& \Rightarrow \operatorname{curl} \boldsymbol{b}=\Omega_{b} \boldsymbol{b}-\theta_{b s} \boldsymbol{n}+(\operatorname{div} \boldsymbol{n})(1,0,0) \tag{2.13}
\end{align*}
$$

where

$$
\begin{equation*}
\Omega_{b}=\boldsymbol{b} \cdot \operatorname{curl} \boldsymbol{b}=-\left(\tau+\boldsymbol{t} \cdot \frac{\delta \boldsymbol{b}}{\delta n}\right) \tag{2.14}
\end{equation*}
$$

is defined the abnormality of the \boldsymbol{b}-field. By using the identity curlgrad $\varphi=0$, we have

$$
\begin{gather*}
\left(\frac{\delta^{2} \varphi}{\delta n \delta b}-\frac{\delta^{2} \varphi}{\delta b \delta n}\right) \boldsymbol{t}+\left(\frac{\delta^{2} \varphi}{\delta b \delta s}-\frac{\delta^{2} \varphi}{\delta s \delta b}\right) \boldsymbol{n}+\left(\frac{\delta^{2} \varphi}{\delta s \delta n}-\frac{\delta^{2} \varphi}{\delta n \delta s}\right) \boldsymbol{b} \\
+\frac{\delta \varphi}{\delta s} \operatorname{curl} \boldsymbol{t}+\frac{\delta \varphi}{\delta n} \operatorname{curl} \boldsymbol{n}+\frac{\delta \varphi}{\delta b} \operatorname{curl} \boldsymbol{b}=0 \tag{2.15}
\end{gather*}
$$

Substituting (2.9), (2.11) and (2.13) in (2.15), we find

$$
\begin{align*}
\frac{\delta^{2} \phi}{\delta n \delta b}-\frac{\delta^{2} \phi}{\delta n \delta b} & =-\frac{\delta \phi}{\delta s} \Omega_{s}+\frac{\delta \phi}{\delta n}(\text { divb })-\frac{\delta \phi}{\delta b}(\text { div } \boldsymbol{n}) \\
\frac{\delta^{2} \phi}{\delta b \delta s}-\frac{\delta^{2} \phi}{\delta s \delta b} & =-\frac{\delta \phi}{\delta n} \Omega_{n}+\frac{\delta \phi}{\delta b} \theta_{b s} \\
\frac{\delta^{2} \phi}{\delta s \delta n}-\frac{\delta^{2} \phi}{\delta n \delta s} & =-\frac{\delta \phi}{\delta s} \kappa-\frac{\delta \phi}{\delta n} \theta_{n s}-\frac{\delta \phi}{\delta b} \Omega_{b} \tag{2.16}
\end{align*}
$$

By using the linear system (2.1), (2.2) and (2.3) we can write the following nine relations in terms of the eight parameters $\kappa, \tau, \Omega_{s}, \Omega_{n}$, divn, divb,$\theta_{n s}$ and $\theta_{b s}$. But we take (2.20),
(2.21) and (2.22) relations for this work.

$$
\begin{align*}
& \frac{\delta}{\delta b} \theta_{n s}+\frac{\delta}{\delta n}\left(\Omega_{n}+\tau\right)=(\operatorname{div} \boldsymbol{n})\left(\Omega_{s}-2 \Omega_{n}-2 \tau\right)+\left(\theta_{b s}-\theta_{n s}\right) \operatorname{div} \boldsymbol{b}+\kappa \Omega_{s}, \tag{2.17}\\
& \frac{\delta}{\delta b}\left(\Omega_{n}-\Omega_{s}+\tau\right)+\frac{\delta}{\delta n} \theta_{b s}=\operatorname{div} \boldsymbol{n}\left(\theta_{n s}-\theta_{b s}\right)+\operatorname{div} \boldsymbol{b}\left(\Omega_{s}-2 \Omega_{n}-2 \tau\right), \tag{2.18}\\
& \frac{\delta}{\delta b}(\operatorname{div} \boldsymbol{b})+\frac{\delta}{\delta n}(\operatorname{div} \boldsymbol{n})=\left(\tau+\Omega_{n}\right)\left(\tau+\Omega_{n}-\Omega_{s}\right)-\theta_{n s} \theta_{b s}-\tau \Omega_{s} \\
& -(\operatorname{div} \boldsymbol{b})^{2}-(\operatorname{div} \boldsymbol{n})^{2}, \tag{2.19}\\
& \frac{\delta}{\delta s}\left(\tau+\Omega_{n}\right)+\frac{\delta \kappa}{\delta b}=-\Omega_{n} \theta_{n s}-\left(2 \tau+\Omega_{n}\right) \theta_{b s}, \tag{2.20}\\
& \frac{\delta}{\delta s} \theta_{b s}=-\theta_{b s}^{2}+\kappa \text { diven }-\Omega_{n}\left(\tau+\Omega_{n}-\Omega_{s}\right)+\tau\left(\tau+\Omega_{n}\right), \tag{2.21}\\
& \frac{\delta}{\delta s}(\operatorname{div} \boldsymbol{n})-\frac{\delta \tau}{\delta b}=-\Omega_{n}(\operatorname{div} \boldsymbol{b})-\theta_{b s}(\kappa+\operatorname{div} \boldsymbol{n}), \tag{2.22}\\
& \frac{\delta \kappa}{\delta n}-\frac{\delta}{\delta s} \theta_{n s}=\kappa^{2}+\theta_{n s}^{2}+\left(\tau+\Omega_{n}\right)\left(3 \tau+\Omega_{n}\right)-\Omega_{s}\left(2 \tau+\Omega_{n}\right), \tag{2.23}\\
& \frac{\delta}{\delta s}\left(\tau+\Omega_{n}-\Omega_{s}\right)=-\theta_{n s}\left(\Omega_{n}-\Omega_{s}\right)+\theta_{b s}\left(-2 \tau-\Omega_{n}+\Omega_{s}\right)+\kappa d i v \boldsymbol{b}, \tag{2.24}\\
& \frac{\delta \tau}{\delta n}+\frac{\delta}{\delta s}(\operatorname{div} \boldsymbol{b})=-\kappa\left(\Omega_{n}-\Omega_{s}\right)-\theta_{n s} \operatorname{div} \boldsymbol{b}+(\operatorname{div} \boldsymbol{n})\left(-2 \tau+\Omega_{n}+\Omega_{s}\right) . \tag{2.25}
\end{align*}
$$

§3. General Properties

The relation

$$
\begin{equation*}
\frac{\delta \boldsymbol{n}}{\delta n}=\kappa_{n} \boldsymbol{n}_{n}=-\theta_{n s} \boldsymbol{t}-(\operatorname{div} \boldsymbol{b}) \boldsymbol{b} \tag{3.1}
\end{equation*}
$$

gives that the unit normal to the n-lines and their curvatures are given, respectively, by

$$
\begin{gather*}
\boldsymbol{n}_{n}=\frac{-\theta_{n s} \boldsymbol{t}-(\operatorname{div} \boldsymbol{b}) \boldsymbol{b}}{\left\|-\theta_{n s}-(\operatorname{div} \boldsymbol{b}) \boldsymbol{b}\right\|}=\frac{-\theta_{n s} \boldsymbol{t}-(\operatorname{div} \boldsymbol{b}) \boldsymbol{b}}{-\theta_{n s}} \tag{3.2}\\
\kappa_{n}=-\theta_{n s} \tag{3.3}
\end{gather*}
$$

In addition, from the relation (2.11) can be written,

$$
\begin{equation*}
\operatorname{curl} \boldsymbol{n}=\Omega_{n} \boldsymbol{n}+\kappa_{n} \boldsymbol{b}_{n} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{b}_{n}=\boldsymbol{n} \times \boldsymbol{n}_{n}=\frac{-(\operatorname{div} \boldsymbol{b})(1,0,0)+\theta_{n s} \boldsymbol{b}}{-\theta_{n s}} \tag{3.5}
\end{equation*}
$$

gives the unit binormal to the n-lines. Similarly, the relation

$$
\begin{equation*}
\frac{\delta \boldsymbol{b}}{\delta b}=\kappa_{b} \boldsymbol{n}_{b}=-\theta_{b s} \boldsymbol{t}-(\operatorname{div} \boldsymbol{n}) \boldsymbol{n} \tag{3.6}
\end{equation*}
$$

gives that the unit normal to the b-lines and their curvature are given, respectively, by

$$
\begin{gather*}
\boldsymbol{n}_{b}=\frac{\theta_{b s} \boldsymbol{t}+(\operatorname{div} \boldsymbol{n}) \boldsymbol{n}}{\theta_{b s}}, \tag{3.7}\\
\kappa_{b}=-\theta_{b s} \tag{3.8}
\end{gather*}
$$

Moreover, from the relation (2.13) we can be written as

$$
\begin{equation*}
c u r l \boldsymbol{b}=\Omega_{b} \boldsymbol{b}+\kappa_{b} \boldsymbol{b}_{b} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{b}_{b}=\boldsymbol{b} \times \boldsymbol{n}_{b}=\frac{\theta_{b s} \boldsymbol{n}-(\operatorname{div} \boldsymbol{n})(1,0,0)}{\theta_{b s}} \tag{3.10}
\end{equation*}
$$

is the unit binormal to the b-line. To determine the torsions of the n-lines and b-lines, we take the relations

$$
\begin{align*}
& \frac{\delta \boldsymbol{b}_{n}}{\delta n}=-\tau_{n} \boldsymbol{n}_{n} \tag{3.11}\\
& \frac{\delta \boldsymbol{b}_{b}}{\delta b}=-\tau_{b} \boldsymbol{n}_{b} \tag{3.12}
\end{align*}
$$

respectively. Thus, from (3.11) we have

$$
\begin{gather*}
-\frac{\delta}{\delta n}\left(\ln \left|\kappa_{n}\right|\right)(\operatorname{div} \boldsymbol{b})-\frac{\delta}{\delta n}(\operatorname{div} \boldsymbol{b})-\theta_{n s}\left(\Omega_{b}+\tau\right)=\tau_{n} \theta_{n s} \tag{3.13}\\
-\frac{\delta}{\delta n} \ln \left|\kappa_{n}\right| \theta_{n s}+\frac{\delta}{\delta n} \theta_{n s}=\tau_{n}(\operatorname{div} \boldsymbol{b}) \tag{3.14}
\end{gather*}
$$

Accordingly,

$$
\tau_{n}=\left\{\begin{array}{lc}
-\left(\Omega_{b}+\tau\right)+\frac{\operatorname{divb}}{\theta_{n s}} \frac{\delta}{\delta n} \ln \left|\frac{\theta_{n s}}{\operatorname{div} \boldsymbol{b}}\right| & \text { if } \operatorname{div} \boldsymbol{b} \neq 0, \theta_{n s} \neq 0 \tag{3.15}\\
-\left(\Omega_{b}+\tau\right) & \text { if } \operatorname{div} \boldsymbol{b}=0, \theta_{n s} \neq 0 \\
& \text { or } \theta_{n s}=0, \operatorname{div} \boldsymbol{b} \neq 0
\end{array}\right.
$$

Similarly, from (3.12) we have

$$
\begin{gather*}
-\frac{\delta}{\delta b}\left(\ln \kappa_{b}\right)(\text { divn })+\frac{\delta}{\delta b}(\text { div } \boldsymbol{n})-\theta_{b s}\left(\Omega_{n}+\tau\right)=\tau_{b} \theta_{b s} \tag{3.16}\\
\frac{\delta}{\delta b}\left(\ln \kappa_{b}\right) \theta_{b s}-\frac{\delta}{\delta b} \theta_{b s}=\tau_{b}(\text { divn }) \tag{3.17}
\end{gather*}
$$

Thus,

$$
\tau_{b}= \begin{cases}-\left(\Omega_{n}+\tau\right)-\frac{(\operatorname{div} \boldsymbol{n})}{\theta_{b s}} \frac{\delta}{\delta b} \ln \left|\frac{\theta_{b s}}{\text { divn }}\right| & \text { if div } \boldsymbol{n} \neq 0, \theta_{b s} \neq 0 \tag{3.18}\\ \left(\Omega_{n}+\tau\right) & \text { if divn}=0, \theta_{b s} \neq 0 \\ & \text { or } \theta_{b s}=0, \operatorname{div} \boldsymbol{n} \neq 0\end{cases}
$$

Also, we obtain an important relation

$$
\begin{equation*}
\Omega_{s}-\tau=\frac{1}{2}\left(\Omega_{s}+\Omega_{n}+\Omega_{b}\right) \tag{3.19}
\end{equation*}
$$

is obtained by combining the equations (2.10), (2.12) and (2.14). Ω_{s}, Ω_{n} and Ω_{b} are defined the total moments of the $\boldsymbol{t}, \boldsymbol{n}$ and \boldsymbol{b} congruences, respectively.

In conclusion, we see that the relation (3.19) has cognate relations

$$
\begin{align*}
\Omega_{n}-\tau_{n} & =\frac{1}{2}\left(\Omega_{n}+\Omega_{n_{n}}+\Omega_{b_{n}}\right) \tag{3.20}\\
\Omega_{b}-\tau_{b} & =\frac{1}{2}\left(\Omega_{b}+\Omega_{n_{b}}+\Omega_{b_{b}}\right) \tag{3.21}
\end{align*}
$$

where

$$
\begin{align*}
& \Omega_{n_{n}}=\boldsymbol{n}_{n} \cdot \operatorname{curl}_{n}, \quad \Omega_{\boldsymbol{b}_{n}}=\boldsymbol{b}_{n} \cdot \operatorname{curl}_{n} \tag{3.22}\\
& \Omega_{n_{b}}=\boldsymbol{n}_{b} \cdot \operatorname{curl} \boldsymbol{n}_{b}, \quad \Omega_{b_{b}}=\boldsymbol{b}_{b} \cdot \operatorname{curl}_{b}
\end{align*}
$$

§4. The Nonlinear Schrödinger Equation

In geometric restriction

$$
\begin{equation*}
\Omega_{n}=0 \tag{4.1}
\end{equation*}
$$

imposed. Here, our purpose is to obtain the nonlinear Schrodinger equation with such a restriction in G_{3}. The condition indicate the necessary and sufficient restriction for the existence of a normal congruence of Σ surfaces containing the s-lines and b-lines. If the s-lines and b-lines are taken as parametric curves on the member surfaces $U=$ constant of the normal congruence, then the surface metric is given by [4]

$$
\begin{equation*}
I_{U}=d s^{2}+g(s, b) d b^{2} \tag{4.2}
\end{equation*}
$$

where $g_{11}=g(s, s), g_{12}=g(s, b), g_{22}=g(b, b)$, and

$$
\begin{equation*}
\operatorname{grad}_{U}=\boldsymbol{t} \frac{\delta}{\delta s}+\boldsymbol{b} \frac{\delta}{\delta b}=\boldsymbol{t} \frac{\partial}{\partial s}+\frac{b}{g^{1 / 2}} \frac{\partial}{\partial b} \tag{4.3}
\end{equation*}
$$

Therefore, from equation (2.1) and (2.3), we have

$$
\frac{\partial}{\partial s}\left[\begin{array}{l}
\boldsymbol{t} \tag{4.4}\\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
0 & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right]
$$

$$
g^{-1 / 2} \frac{\partial}{\partial b}\left[\begin{array}{l}
\boldsymbol{t} \tag{4.5}\\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\left(\Omega_{n}+\tau\right) & \theta_{b s} \\
\left(\Omega_{n}+\tau\right) & 0 & \operatorname{div} \boldsymbol{n} \\
-\theta_{b s} & -\operatorname{div} \boldsymbol{n} & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right] .
$$

Also, if r shows the position vector to the surface then (4.4) and (4.5) implies that

$$
\begin{equation*}
r_{b s}=\frac{\partial \boldsymbol{t}}{\partial b}=g^{1 / 2}\left[-\tau \boldsymbol{n}+\theta_{b s} \boldsymbol{b}\right] \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{s b}=\frac{\partial}{\partial s}\left(g^{1 / 2} \boldsymbol{b}\right)=-g^{1 / 2} \tau \boldsymbol{n}+\frac{\partial g^{1 / 2}}{\partial s} \boldsymbol{b} \tag{4.7}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\theta_{b s}=\frac{1}{2} \frac{\partial \ln g}{\partial s} \tag{4.8}
\end{equation*}
$$

In the case $\Omega_{n}=0$, the compatibility conditions equations (2.20)-(2.22) become the nonlinear system

$$
\begin{gather*}
\frac{\partial \tau}{\partial s}+\frac{\partial \kappa}{\partial b}=-2 \tau \theta_{b s} \tag{4.9}\\
\frac{\partial}{\partial s} \theta_{b s}=-\theta_{b s}^{2}+\kappa \operatorname{div} \boldsymbol{n}+\tau^{2} \tag{4.10}\\
\frac{\partial}{\partial s}(\text { divn })-\frac{\partial \tau}{\partial b}=-\theta_{b s}(\kappa+\text { divn }) \tag{4.11}
\end{gather*}
$$

The Gauss-Mainardi-Codazzi equations become with (4.8)

$$
\begin{gather*}
\frac{\partial}{\partial s}\left(g^{1 / 2} \operatorname{div} \boldsymbol{n}\right)+\kappa \frac{\partial}{\partial s}\left(g^{1 / 2}\right)-\frac{\partial \tau}{\partial b}=0 \tag{4.12}\\
\frac{\partial}{\partial s}(g \tau)+g^{1 / 2} \frac{\partial \kappa}{\partial b}=0 \tag{4.13}\\
\left(g^{1 / 2}\right)_{s s}=g^{1 / 2}\left(\kappa d i v \boldsymbol{n}+\tau^{2}\right) \tag{4.14}
\end{gather*}
$$

With elimination of divn of between (4.12) and (4.14), we have

$$
\begin{equation*}
\frac{\partial \tau}{\partial b}=\frac{\partial}{\partial s}\left[\frac{\left(g^{1 / 2}\right)_{s s}-\tau^{2} g^{1 / 2}}{\kappa}\right]+\kappa \frac{\partial}{\partial s}\left(g^{1 / 2}\right) \tag{4.15}
\end{equation*}
$$

If we accept

$$
g^{1 / 2}=\lambda \kappa
$$

where λ varies only in the direction normal congruence, then $\lambda b \rightarrow b$, thus the pair equations (4.13) and (4.15) reduces to

$$
\begin{gather*}
\kappa_{b}=2 \kappa_{s} \tau+\kappa \tau_{s} \tag{4.16}\\
\tau_{b}=\left(\tau^{2}-\frac{\kappa_{s s}}{\kappa}+\frac{\kappa^{2}}{2}\right)_{s} \tag{4.17}
\end{gather*}
$$

By using equations (4.16) and (4.17), we obtain

$$
\begin{equation*}
i q_{b}+q_{s s}-\frac{1}{2}|\langle q, q\rangle|^{2} \bar{q}-\Phi(b) q=0 \tag{4.18}
\end{equation*}
$$

where $\Phi(b)=\left(\tau^{2}-\frac{\kappa_{s s}}{\kappa}+\frac{\kappa^{2}}{2}\right)_{s=s_{0}}$. This is nonlinear Schrodinger equation of repulsive type.

References

[1] C. Rogers and W.K. Schief, Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Studies in Applied Mathematics, 101(1998), 267-287.
[2] N.Gurbuz, Intrinsic geometry of the NLS equation and heat system in 3-dimensional Minkowski space, Adv. Studies Theor. Phys., Vol. 4, 557-564, (2010).
[3] A.T. Ali, Position vectors of curves in the Galilean space G_{3}, Matematički Vesnik, 64, 200-210, (2012).
[4] D.W. Yoon, Some classification of translation surfaces in Galilean 3-space, Int. Journal of Math. Analysis, Vol.6, 1355-1361, (2012).
[5] M.G. Vranceanu, Les espaces non-holonomes et leurs applications mecaniques, Mem. Sci., Math., (1936), Comput. Math. Appl., 61, 1786-1799, (2011).

[^0]: ${ }^{1}$ Received May 4, 2017, Accepted November 16, 2017.

