Even Modular Edge Irregularity Strength of Graphs

K.Muthugurupackiam
(Department of Mathematics, Rajah Serfoji Government College, Thanjavur, India)
\section*{S.Ramya}
(Department of Mathematics, Bharathidasan University Constituent College, Orathanadu, India)

gurupackiam@yahoo.com, manoramya.8036@gmail.com

Abstract

A new graph characteristic, even modular edge irregularity strength of graphs is introduced. Estimation on this parameter is obtained and the precise values of this parameter are obtained for some families of graphs.

Key Words: Irregular labeling, modular irregular labeling, even modular edge irregular labeling, vertex k-labeling, irregularity strength, modular irregularity strength, even modular edge irregularity strength, Smarandachely p-modular edge irregularity strength.
AMS(2010): 05C78.

§1. Introduction

Let $G=(V, E)$ be a simple graph, having at most one isolated vertex and no component of order 2. A map that carries vertex set (edge set or both) as domain to the positive integers $\{1,2, \cdots, k\}$ is called vertex k-labeling (edge k-labeling or total k-labeling). Well-known parameter irregularity strength of a graph introduced by Chartrand et al. [6]. A simple graph G is called irregular if there exists an edge k-labeling $\lambda: E(G) \rightarrow\{1,2, \cdots, k\}$ such that the weight of a vertex v under the labeling defined by $w_{\lambda}(v)=\sum \lambda(u v)$, are pairwise distinct. The minimum value of k , for which G is irregular, called irregularity strength of G denoted by $s(G)$.

The parameter irregularity strength of a graph is attracted by numerous authors. Aigner and Triesh [1] proved that $\mathrm{s}(G) \leqslant n-1$ if G is a connected graph of order n, and $\mathrm{s}(G) \leqslant n+1$ otherwise. Nierhoff [15] refined their method and showed that $\mathrm{s}(G) \leqslant n-1$ for all graphs with finite irregularity strength, except for K_{3}. This bound is tight e.g. for stars. In particular Faudree and Lehel [8] showed that if G is d-regular $(d \geqslant 2)$, then $\left\lceil\frac{n+d-1}{d}\right\rceil \leqslant \mathrm{s}(G) \leqslant\left\lceil\frac{n}{2}\right\rceil+9$, and they conjectured that $\mathrm{s}(G) \leqslant\left\lceil\frac{n}{d}\right\rceil+c$ for some constant c. Przybylo in [16] proved that $\mathrm{s}(\mathrm{G}) \leqslant 16 \frac{\mathrm{n}}{\mathrm{d}}+6$. Kalkowski, Karonski and Pfender [12] showed that $\mathrm{s}(G) \leqslant 6 \frac{n}{\delta}+6$, where δ is the minimum degree of graph G. Currently Majerski and Przybylo [13] proved that s $(G) \leqslant$ $(4+o(1)) \frac{n}{\delta}+4$ for graphs with minimum degree $\delta \geqslant \sqrt{n} \ln n$. Other interesting results on the irregularity strength can be found in $[3,4,5,7,9]$. For recent survey of graph labeling refer the paper [10].

[^0]Ali Ahmad et al.[2] introduced edge irregularity strength of a graph as follows: Consider a simple graph G together with a vertex k-labeling $\chi: V(G) \rightarrow\{1,2, \cdots, k\}$. The weight of an edge $x y$ in G, denoted by $w t(x y)=\chi(x)+\chi(y)$. A vertex k-labeling is defined to be an edge irregular k-labeling of the graph G if for every two different edges e and f there is $w t(e) \neq w t(f)$. The minimum k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, denoted by $\operatorname{es}(G)$. The lower bound of $e s(G)$ was given by the following inequality

$$
e s(G) \geqslant \max \left\{\left\lceil\frac{E(G)+1}{2}\right\rceil, \Delta\right\}
$$

where Δ is the maximum degree of graph G. Ibrahim Tarawneh et al. [11], determined the exact value of edge irregularity strength of corona graphs of path P_{n} with P_{2}, P_{n} with K_{1} and P_{n} with S_{m}.

Martin Bac̆a et al. [14] introduced modular irregularity strength of a graph. An edge labeling $\psi: E(G) \rightarrow\{1,2, \cdots, k\}$ is called modular irregular k-labeling if there exists a bijective weight function $\sigma: V(G) \rightarrow Z_{n}$ defined by $\sigma(x)=\sum \psi(x y)$ called modular weight of the vertex x, where Z_{n} is the group of integers modulo n and the sum is over all vertices y adjacent to x. They defined the modular irregularity strength of a graph G, denoted by $\operatorname{ms}(G)$, as the minimum k for which G has a modular irregular k-labeling.

Motivated by the edge irregularity strength of graphs we introduce a new parameter, an even modular edge irregularity strength of graph, a modular version of edge irregularity strength.

Let $G=(V, E)$ be a (n, m)-graph together with a vertex k-labeling $\rho: V(G) \rightarrow\{1,2, \cdots, k\}$. Define a set of edge weight $W=\{w t(u v): w t(u v)=\rho(u)+\rho(v), \forall u v \in E\}$. Vertex labeling ρ is called even modular edge irregular labeling if there exists a bijective map $\sigma: W \rightarrow M$ defined for each edge weight $w t(u v)$ there corresponds an element $x \in M$ such that $w t(u v) \equiv x$ $(\bmod 2 m)$, where $M=\{0,2,4, \cdots, 2(m-1)\}$. We define the even modular edge irregularity strength of a graph G, denoted by $\operatorname{emes}(G)$, as the minimum k for which G has an even modular edge irregular labeling. If there doesn't exist an even modular edge irregular labeling for G, we define emes $(G)=\infty$. Generally, if $M=\{0, p, 2 p, \cdots,(m-1) p\}$ for a prime number p, such a modular edge irregular labeling is called a Smarandache p-modular edge irregular labeling and the minimum k for which G has a Smarandachely p-modular edge irregular labeling is denoted by $\operatorname{emes}^{p}(G)$. Clearly, $\operatorname{emes}^{2}(G)=\operatorname{emes}(G)$.

The main aim of this paper is to show a lower bound of the even modular edge irregularity strength and determine the precise values of this parameter for some families of graphs.

§2. Main Results

Following theorem gives the lower bound of even modular edge irregularity strength of a graph.
Theorem 2.1 Let G be a (n, m)-graph. Then emes $(G) \geq m$.
Proof Let G be a (n, m)-graph together with an even modular edge irregular labeling
$\rho: V(G) \rightarrow\{1,2, \cdots, k\}$. Consider the even edge weights of G, there should be an edge e such that $w t(e) \equiv 0(\bmod 2 m)$. Since the weight of e must be at least $2 m, \operatorname{emes}(G) \geq m$.

Lemma 2.1 Let $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ be the degree sequence of a graph G and let $\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ be the corresponding vertex labels of an even modular edge irregular labeling of G. Then the sum of all the edge weights denoted as S is equal to the sum of the product of degree with its corresponding labels, that is,

$$
S=\sum_{e \in E} w t(e)=\sum_{i=1}^{n} d_{i} l_{i}
$$

Lemma 2.2 In any even modular edge irregular labeling of C_{n}, labels of all vertices are of same parity.

Proof By definition, weight of an edge is sum of the labels of its end vertices. To obtain an even edge weight, both the labels must be either odd or even, and hence all the vertex labels of C_{n} are of same parity.

Theorem 2.2 Let C_{n} be a cycle of order $n \geq 3$. Then

$$
\operatorname{emes}\left(C_{n}\right)= \begin{cases}n+1, & \text { if } n \equiv 0(\bmod 4) \\ n, & \text { if } n \equiv 1(\bmod 4) \\ n+2, & \text { if } n \equiv 3(\bmod 4) \\ \infty, & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof Let $V\left(C_{n}\right)=\left\{v_{i}: i=1,2, \cdots, n\right\}$ be the vertex set and let $E\left(C_{n}\right)=\left\{e_{i}=\right.$ $\left.v_{i} v_{i+1}: i=1,2, \cdots, n\right\}$ be the edge set of the cycle C_{n}. Define the vertex labeling $\rho: V \rightarrow$ $\{1,2, \cdots, n+2\}$ as follows:

$$
\rho\left(v_{i}\right)=2 i-1,1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil
$$

If $n \equiv 0,1(\bmod 4)$, then, for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
\rho\left(v_{n+1-i}\right)= \begin{cases}2 i-1, & \mathrm{i} \text { is odd } \\ 2 i+1, & \mathrm{i} \text { is even }\end{cases}
$$

If $n \equiv 3(\bmod 4)$, then for $2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$,

$$
\rho\left(v_{n+2-i}\right)= \begin{cases}2 i-1, & \mathrm{i} \text { is odd } \\ 2 i+1, & \mathrm{i} \text { is even }\end{cases}
$$

We can easily check that the above labeling ρ, is an even modular edge irregular labeling of C_{n}. Thus,

$$
\operatorname{emes}\left(C_{n}\right) \leq \begin{cases}n+1, & \text { if } n \equiv 0(\bmod 4) \\ n, & \text { if } n \equiv 1(\bmod 4) \\ n+2, & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

Now let us find the lower bound of $\operatorname{emes}\left(C_{n}\right)$ as follows:
Case 1. Suppose $n \equiv 0(\bmod 4)$. Consider the set of even edge weights $W\left(C_{n}\right)=\{2,4,6, \cdots$, $2 n\}$. To obtain the weight 2 for an edge, we must assign label 1 to both of its end vertices, and hence all the vertices of C_{n} must receive odd labels by Lemma 2.2. Since the heaviest weight is $2 n$, emes $\left(C_{n}\right) \geq n+1$.

Case 2. Suppose $n \equiv 1(\bmod 4)$. By Theorem 2.1, $\operatorname{emes}\left(C_{n}\right) \geq n$.
Case 3. Suppose $n \equiv 3(\bmod 4)$. Assume that the cycle C_{n} has the set of even edge weights $W\left(C_{n}\right)=\{2,4, \cdots, 2 n\}$, then $\frac{S}{2}$ is even, where S is the sum of the weights. Since the least weight is 2 , by Lemma 2.2 all the vertex labels of C_{n} must be odd and hence $\sum_{i=1}^{n} l_{i}$ is odd, which is a contradiction to $\sum_{i=1}^{n} l_{i}=\frac{S}{2}$ by Lemma 2.1.

Assume that C_{n} has the set of even edge weights $W\left(C_{n}\right)=\{4,6, \cdots, 2 n+2\}$. Now the sum of the labels,

$$
\sum_{i=1}^{n} l_{i}=\frac{S}{2}=\frac{(n+1)(n+2)}{2}-1
$$

is odd and hence each label must odd. Heaviest weight $2 n+2$ can be obtained by assigning the label at least $n+2$. Thus, $\operatorname{emes}\left(C_{n}\right) \geq n+2$.

Case 4. Suppose $n \equiv 2(\bmod 4)$. If the cycle C_{n} has an even modular edge irregular labeling, then the sum of the edge weights $S \equiv 2(\bmod 4)$, and hence $\frac{S}{2}$ is odd. When $n \equiv 2(\bmod 4)$, sum of the labels $\sum_{i=1}^{n} l_{i}$ is even, which is a contradiction to $\sum_{i=1}^{n} l_{i}=\frac{S}{2}$. Thus, $\operatorname{emes}\left(C_{n}\right)=\infty$, if $n \equiv 2(\bmod 4)$.

Theorem 2.3 Let P_{n} be a path of order $n \geq 2$. Then

$$
\operatorname{emes}\left(P_{n}\right)= \begin{cases}n, & \text { if } n \text { is odd } \\ n-1, & \text { if } n \text { is even } .\end{cases}
$$

Proof Let $V\left(P_{n}\right)=\left\{v_{i}: i=1,2, \cdots, n\right\}$ be the vertex set and let $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1}\right.$: $i=1,2, \cdots, n\}$ be the edge set of the path P_{n}.

Define the vertex n-labeling $\theta: V \rightarrow\{1,2, \cdots, n\}$ as follows:
For $1 \leq i \leq n$,

$$
\theta\left(v_{i}\right)= \begin{cases}i, & \mathrm{i} \text { is odd } \\ i-1, & \mathrm{i} \text { is even }\end{cases}
$$

Clearly, θ is an even modular edge irregular labeling of P_{n}. Thus, the upper bound of
$\operatorname{emes}\left(P_{n}\right)$ can be obtained as follows:

$$
\operatorname{emes}\left(P_{n}\right) \leq \begin{cases}n, & \text { if } \mathrm{n} \text { is odd } \\ n-1, & \text { if } \mathrm{n} \text { is even }\end{cases}
$$

Let us find the lower bound of $\operatorname{emes}\left(P_{n}\right)$.
Case 1. Assume that n is odd. Consider the optimal even edge weight $W\left(P_{n}\right)=\{2,4, \cdots$, $2(n-1)\}$. Since the least weight is 2 , all the vertices of P_{n} must receive odd labels. To obtain the heaviest weight $2(n-1)$, we must assign vertex label at least n. Thus, emes $\left(P_{n}\right) \geq n$.

Case 2. Assume that n is even. In this case, the lower bound can be obtain directly from Theorem 2.1.

Theorem 2.4 Let $K_{1, n}$ be a star graph of order $n+1, n \geq 1$. Then emes $\left(K_{1, n}\right)=2 n-1$.

Proof Let $V\left(K_{1, n}\right)=\left\{x, v_{i}: i=1,2, \cdots, n\right\}$ be the vertex set and let $E\left(K_{1, n}\right)=\left\{e_{i}=\right.$ $\left.x v_{i}: i=1,2, \cdots, n\right\}$ be the edge set of the path $K_{1, n}$.

Define the vertex labeling $\lambda_{1}: V \rightarrow\{1,2, \cdots, 2 n-1\}$ as follows:
$\lambda_{1}(x)=1$,
$\lambda_{1}\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
From the above even modular edge irregular labeling λ_{1}, upper bound of emes $\left(K_{1, n}\right)$ is obtained as follows, emes $\left(K_{1, n}\right) \leq 2 n-1$.

Consider the optimal even edge weights $W\left(K_{1, n}\right)=\{2,4, \ldots, 2 n\}$. Since the least weight is 2 , the vertex x must be label with 1 . To obtain the heaviest weight $2 n$, we must assign label at least $2 n-1$ to other end vertex. Thus, $\operatorname{emes}\left(K_{1, n}\right) \geq 2 n-1$. Hence the theorem.

Theorem 2.5 Let $K_{2, n}$ be the complete bipartite graph of order $n+2, n \geq 2$. Then emes $\left(K_{2, n}\right)=$ $2 n+1$.

Proof Let $V\left(K_{2, n}\right)=\left\{x, y, v_{i}: i=1,2, \cdots, n\right\}$ be the vertex set and let $E\left(K_{2, n}\right)=$ $\left\{x v_{i}, y v_{i}: i=1,2, \cdots, n\right\}$ be the edge set of the complete bipartite graph $K_{2, n}$.

Define the vertex labeling $\lambda_{2}: V \rightarrow\{1,2, \cdots, 2 n+1\}$ as follows:
$\lambda_{2}(x)=1, \quad \lambda_{2}(y)=2 n+1$
$\lambda_{2}\left(v_{i}\right)=2 i-1,1 \leq i \leq n$.
From the above even modular edge irregular labeling λ_{2}, upper bound of $\operatorname{emes}\left(K_{2, n}\right)$ is obtained as follows: $\operatorname{emes}\left(K_{2, n}\right) \leq 2 n+1$.

Consider the even edge weights of $K_{2, n}$ as $2,4, \cdots, 4 n$. Since the least edge weight is 2 , all the vertices must receive odd labels. Therefore, we must assign label at least $2 n+1$, to obtain the heaviest weight $4 n$. Hence $\operatorname{emes}\left(K_{2, n}\right) \geq 2 n+1$.

A rectangular graph $R_{n}, n \geq 2$, is a graph obtained from the path P_{n+1} by replacing each
edge of the path by a rectangle C_{4}. Let

$$
V\left(R_{n}\right)=\left\{v_{i}: i=1,2, \cdots, 2 n\right\} \bigcup\left\{u_{j}: j=1,2, \cdots, n+1\right\}
$$

be the vertex set and let

$$
\begin{aligned}
E\left(R_{n}\right)= & \left\{v_{2 i-1} v_{2 i}: i=1,2, \cdots, n\right\} \bigcup\left\{u_{i} u_{i+1}: i=1,2, \cdots, n\right\} \\
& \bigcup\left\{v_{2 i-1} u_{i}: i=1,2, \cdots, n\right\} \bigcup\left\{v_{2 i-2} u_{i}: i=2,3, \cdots, n+1\right\}
\end{aligned}
$$

be the edge set of the the rectangular graph R_{n}. The following theorem gives the precise value of even modular edge irregularity strength of rectangular graph.

Theorem 2.6 Let R_{n} be a rectangular graph of order $3 n+1$, $n \geq 2$. Then emes $\left(R_{n}\right)=4 n+1$.
Proof Define the vertex labeling $\alpha: V \rightarrow\{1,2, \cdots, 4 n+1\}$ as follows:
$\alpha\left(v_{i}\right)=2 i-1,1 \leq i \leq 2 n$,
$\alpha\left(u_{i}\right)=4 i-3,1 \leq i \leq n+1$.
Upper bound $\operatorname{emes}\left(R_{n}\right) \leq 4 n+1$ can be obtained from the above labeling α.
Consider the even edge weights of R_{n} as $2,4, \cdots, 8 n$. Since the least weight is 2 , all the vertex labels must be odd. Therefore, we must assign label at least $4 n+1$, to obtain the heaviest weight $8 n$. Hence, $\operatorname{emes}\left(R_{n}\right) \geq 4 n+1$.

Theorem 2.7 Let $t P_{4}, t \geq 1$, denote the disjoint union of t copies of path P_{4}. Then $\operatorname{emes}\left(t P_{4}\right)=3 t$.

Proof Let $V\left(t P_{4}\right)=\left\{u_{i j}: 1 \leq i \leq t, 1 \leq j \leq 4\right\}$ be the vertex set and let $E\left(t P_{4}\right)=$ $\left\{u_{i 1} u_{i 2}, u_{i 2} u_{i 3}, u_{i 3} u_{i 4}: 1 \leq i \leq t\right\}$ be the edge set of $t P_{4}$. Define the vertex labeling $\beta: V \rightarrow$ $\{1,2, \cdots, 3 t\}$ as follows:

$$
\begin{aligned}
& \beta\left(u_{i 1}\right)=\beta\left(u_{i 2}\right)=3 i-2,1 \leq i \leq t \\
& \beta\left(u_{i 3}\right)=\beta\left(u_{i 4}\right)=3 i, 1 \leq i \leq t
\end{aligned}
$$

Clearly, β is an even modular edge irregular labeling of $t P_{4}$ and hence emes $\left(t P_{4}\right) \leq 3 t$. The lower bound emes $\left(t P_{4}\right) \geq 3 t$ can be obtained directly from Theorem 2.1. Hence, we get that emes $\left(t P_{4}\right)=3 t$.

Theorem 2.8 Let $t C_{3}, t \geq 2$, denote the disjoint union of t copies of cycle C_{3}. Then $\operatorname{emes}\left(t C_{3}\right)=3 t+2$.

Proof Let $V\left(t C_{3}\right)=\left\{v_{i j}: 1 \leq i \leq t, 1 \leq j \leq 3\right\}$ be the vertex set and let $E\left(t C_{3}\right)=$ $\left\{v_{i 1} v_{i 2}, v_{i 2} v_{i 3}, v_{i 1} v_{i 3}: 1 \leq i \leq t\right\}$ be the edge set of $t C_{3}$. Define the vertex labeling $\theta: V \rightarrow$ $\{1,2, \cdots, 3 t+2\}$ as follows:
$\theta\left(v_{i 1}\right)=\left\{\begin{array}{ll}1, & i=1 \\ 3 t, & 2 \leq i \leq t,\end{array} \quad \theta\left(v_{i 2}\right)=3 i+2,1 \leq i \leq t, \quad\right.$ and $\quad \theta\left(v_{i 3}\right)= \begin{cases}3, & i=1 \\ 3 i+1, & 2 \leq i \leq t,\end{cases}$

Clearly, θ is an even modular edge irregular labeling of $t P_{4}$ and hence emes $\left(t C_{3}\right) \leq 3 t+2$.
Consider the optimal edge weights of $t C_{3}$ as $4,6,8, \cdots, 6 t+2$. Since any two adjacent vertices of $t C_{3}$ can not receive the same labels, we must assign label at least $3 t+2$ to get the heaviest label $6 t+2$. Hence, $\operatorname{emes}\left(t C_{3}\right) \geq 3 t+2$.

Ladder graph $L_{n}=K_{2} \times P_{n}, n \geq 3$ is formed by taking two isomorphic copies of P_{n} and joining the corresponding vertices by an edge. Let $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ be the vertex set and let

$$
E=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}
$$

be the edge set of L_{n}. The following theorem gives the precise value of even modular edge irregularity strength of ladder graph.

Theorem 2.9 Let $L_{n}=K_{2} \times P_{n}, n \geq 3$ be the ladder graph. Then

$$
\text { emes }\left(L_{n}\right)= \begin{cases}3 n-2, & \text { if } n \text { is odd, } \\ 3 n-1, & \text { if } n \text { is even }\end{cases}
$$

Proof Defined the vertex labeling $\phi: V \rightarrow\{1,2, \cdots, 3 n-1\}$ as follows:
$\phi\left(u_{i}\right)=\left\{\begin{array}{l}3 i-2, \text { if } \mathrm{i} \text { is odd } \\ 3 i-3, \text { if } \mathrm{i} \text { is even }\end{array} \quad 1 \leq i \leq n\right.$,
$\phi\left(v_{i}\right)=\left\{\begin{array}{l}3 i-2, \text { if } \mathrm{i} \text { is odd } \\ 3 i-1, \text { if } \mathrm{i} \text { is even. }\end{array} \quad 1 \leq i \leq n\right.$.
Clearly, ϕ is an even modular edge irregular labeling of L_{n} and hence

$$
\operatorname{emes}\left(L_{n}\right) \leq \begin{cases}3 n-2, & \text { if } \mathrm{n} \text { is odd } \\ 3 n-1, & \text { if } \mathrm{n} \text { is even }\end{cases}
$$

Lower bound $\operatorname{emes}\left(L_{n}\right) \geq 3 n-2$, can be obtained directly from Theorem 2.1, when n is odd.

Suppose n is even. Consider optimal edge weights of L_{n} as $2,4, \cdots, 6 n-4$. Since L_{n} has a span cycle, all the vertices of L_{n} must receive the labels of same parity. Furthermore, to obtain the edge weight 2 , the corresponding end vertices must be label 1 , and hence all the labels must be odd. Thus $\operatorname{emes}\left(L_{n}\right) \geq 3 n-1$. Hence the theorem.

§3. Conclusion

In this paper we introduced a new graph parameter, the even modular edge irregularity strength, emes (G), as a modular version of edge irregularity strength. We determined the exact value of even modular edge irregularity strength of some families of graphs and a lower bound of emes is obtained. However, the determination of upper bound is still open.

References

[1] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math., 3 (1990), 439-449.
[2] Ali Ahmad, Omar Bin Saeed Al-Mushayt, Martin Bac̆a, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607-610.
[3] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15-38.
[4] M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. ,312 (2012), 3461-3466.
[5] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory, 45 (2004), 241-254.
[6] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer., 64 (1988), 187-192.
[7] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math., 76 (1988), 223240.
[8] R.J. Faudree and J. Lehel, Bound on the irregularity strength of regular graphs, Combinatorica, 52 (1987), 247-256.
[9] A. Frieze, R.J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, J. Graph Theory, 41 (2002), 120-137.
[10] J. Gallian, A dynamic survey of graph labeling, The Electronic J. Combin., 19 (2012), \#DS6.
[11] Ibrahim Tarawneh, Roslan Hasni, Ali Ahmad, On the edge irregularity strength of corona product of graphs with paths, Appl. Math. E-Notes, 16 (2016), 80-87.
[12] M. Kalkowski, M. Karonski and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math., 25(3) (2011), 1319-1321.
[13] P. Majerski and J. Przybylo, On the irregularity strength of dense graphs, SIAM J. Discrete Math., 28(1) (2014), 197-205.
[14] Martin Bac̆a, K. Muthugurupackiam, KM. Kathiresan, S. Ramya, Modular irregularity strength of graphs, Communicated.
[15] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math., 13 (2000), 313-323.
[16] J. Przybylo, Irregularity strength of regular graphs, Electron. J. Combin., 15 (2008), R82.

[^0]: ${ }^{1}$ Received April 18, 2017, Accepted February 25, 2018.

