Direct Product of Multigroups and Its Generalization

P.A. Ejegwa
(Department of Mathematics/Statistics/Computer Science, University of Agriculture, P.M.B. 2373, Makurdi, Nigeria)
A. M. Ibrahim
(Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria)
E-mail: ejegwa.augustine@uam.edu.ng, amibrahim@abu.edu.ng

Abstract

This paper proposes the concept of direct product of multigroups and its generalization. Some results are obtained with reference to root sets and cuts of multigroups. We prove that the direct product of multigroups is a multigroup. Finally, we introduce the notion of homomorphism and explore some of its properties in the context of direct product of multigroups and its generalization.

Key Words: Multisets, multigroups, direct product of multigroups.
AMS(2010): 03E72, 06D72, 11E57, 19A22.

§1. Introduction

In set theory, repetition of objects are not allowed in a collection. This perspective rendered set almost irrelevant because many real life problems admit repetition. To remedy the handicap in the idea of sets, the concept of multiset was introduced in [10] as a generalization of set wherein objects repeat in a collection. Multiset is very promising in mathematics, computer science, website design, etc. See $[14,15]$ for details.

Since algebraic structures like groupoids, semigroups, monoids and groups were built from the idea of sets, it is then natural to introduce the algebraic notions of multiset. In [12], the term multigroup was proposed as a generalization of group in analogous to some non-classical groups such as fuzzy groups [13], intuitionistic fuzzy groups [3], etc. Although the term multigroup was earlier used in $[4,11]$ as an extension of group theory, it is only the idea of multigroup in [12] that captures multiset and relates to other non-classical groups. In fact, every multigroup is a multiset but the converse is not necessarily true and the concept of classical groups is a specialize multigroup with a unit count [5].

In furtherance of the study of multigroups, some properties of multigroups and the analogous of isomorphism theorems were presented in [2]. Subsequently, in [1], the idea of order of an element with respect to multigroup and some of its related properties were discussed. A complete account on the concept of multigroups from different algebraic perspectives was outlined in [8]. The notions of upper and lower cuts of multigroups were proposed and some of

[^0]their algebraic properties were explicated in [5]. In continuation to the study of homomorphism in multigroup setting (cf. [2, 12]), some homomorphic properties of multigroups were explored in [6]. In [9], the notion of multigroup actions on multiset was proposed and some results were established. An extensive work on normal submultigroups and comultisets of a multigroup were presented in [7].

In this paper, we explicate the notion of direct product of multigroups and its generalization. Some homomorphic properties of direct product of multigroups are also presented. This paper is organized as follows; in Section 2, some preliminary definitions and results are presented to be used in the sequel. Section 3 introduces the concept of direct product between two multigroups and Section 4 considers the case of direct product of $k^{t h}$ multigroups. Meanwhile, Section 5 contains some homomorphic properties of direct product of multigroups.

§2. Preliminaries

Definition 2.1([14]) Let $X=\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$ be a set. A multiset A over X is a cardinalvalued function, that is, $C_{A}: X \rightarrow \mathbb{N}$ such that for $x \in \operatorname{Dom}(A)$ implies $A(x)$ is a cardinal and $A(x)=C_{A}(x)>0$, where $C_{A}(x)$ denoted the number of times an object x occur in A. Whenever $C_{A}(x)=0$, implies $x \notin \operatorname{Dom}(A)$.

The set of all multisets over X is denoted by $M S(X)$.

Definition 2.2([15]) Let $A, B \in M S(X)$, A is called a submultiset of B written as $A \subseteq B$ if $C_{A}(x) \leq C_{B}(x)$ for $\forall x \in X$. Also, if $A \subseteq B$ and $A \neq B$, then A is called a proper submultiset of B and denoted as $A \subset B$. A multiset is called the parent in relation to its submultiset.

Definition 2.3([12]) Let X be a group. A multiset G is called a multigroup of X if it satisfies the following conditions:
(i) $C_{G}(x y) \geq C_{G}(x) \wedge C_{G}(y) \forall x, y \in X$;
(ii) $C_{G}\left(x^{-1}\right)=C_{G}(x) \forall x \in X$,
where C_{G} denotes count function of G from X into a natural number \mathbb{N} and \wedge denotes minimum, respectively.

By implication, a multiset G is called a multigroup of a group X if

$$
C_{G}\left(x y^{-1}\right) \geq C_{G}(x) \wedge C_{G}(y), \quad \forall x, y \in X
$$

It follows immediately from the definition that,

$$
C_{G}(e) \geq C_{G}(x), \quad \forall x \in X
$$

where e is the identity element of X.
The count of an element in G is the number of occurrence of the element in G. While the
order of G is the sum of the count of each of the elements in G, and is given by

$$
|G|=\sum_{i=1}^{n} C_{G}\left(x_{i}\right), \quad \forall x_{i} \in X
$$

We denote the set of all multigroups of X by $M G(X)$.

Definition $2.4([5])$ Let $A \in M G(X)$. A nonempty submultiset B of A is called a submultigroup of A denoted by $B \sqsubseteq A$ if B form a multigroup. A submultigroup B of A is a proper submultigroup denoted by $B \sqsubset A$, if $B \sqsubseteq A$ and $A \neq B$.

Definition 2.5([5]) Let $A \in M G(X)$. Then the sets $A_{[n]}$ and $A_{(n)}$ defined as
(i) $A_{[n]}=\left\{x \in X \mid C_{A}(x) \geq n, n \in \mathbb{N}\right\}$ and
(ii) $A_{(n)}=\left\{x \in X \mid C_{A}(x)>n, n \in \mathbb{N}\right\}$
are called strong upper cut and weak upper cut of A.
Definition 2.6([5]) Let $A \in M G(X)$. Then the sets $A^{[n]}$ and $A^{(n)}$ defined as
(i) $A^{[n]}=\left\{x \in X \mid C_{A}(x) \leq n, n \in \mathbb{N}\right\} \quad$ and
(ii) $A^{(n)}=\left\{x \in X \mid C_{A}(x)<n, n \in \mathbb{N}\right\}$
are called strong lower cut and weak lower cut of A.
Definition 2.7([12]) Let $A \in M G(X)$. Then the sets A_{*} and A^{*} are defined as
(i) $A_{*}=\left\{x \in X \mid C_{A}(x)>0\right\} \quad$ and
(ii) $A^{*}=\left\{x \in X \mid C_{A}(x)=C_{A}(e)\right\}$, where e is the identity element of X.

Proposition 2.8([12]) Let $A \in M G(X)$. Then A_{*} and A^{*} are subgroups of X.
Theorem 2.9([5]) Let $A \in M G(X)$. Then $A_{[n]}$ is a subgroup of $X \forall n \leq C_{A}(e)$ and $A^{[n]}$ is a subgroup of $X \forall n \geq C_{A}(e)$, where e is the identity element of X and $n \in \mathbb{N}$.

Definition $2.10([7])$ Let $A, B \in M G(X)$ such that $A \subseteq B$. Then A is called a normal submultigroup of B if for all $x, y \in X$, it satisfies $C_{A}\left(x y x^{-1}\right) \geq C_{A}(y)$.

Proposition $2.11([7])$ Let $A, B \in M G(X)$. Then the following statements are equivalent:
(i) A is a normal submultigroup of B;
(ii) $C_{A}\left(x y x^{-1}\right)=C_{A}(y) \forall x, y \in X$;
(iii) $C_{A}(x y)=C_{A}(y x) \forall x, y \in X$.

Definition 2.12([7]) Two multigroups A and B of X are conjugate to each other if for all $x, y \in X, C_{A}(x)=C_{B}\left(y x y^{-1}\right)$ and $C_{B}(y)=C_{A}\left(x y x^{-1}\right)$.

Definition 2.13([6]) Let X and Y be groups and let $f: X \rightarrow Y$ be a homomorphism. Suppose A and B are multigroups of X and Y, respectively. Then f induces a homomorphism from A to B which satisfies
(i) $C_{A}\left(f^{-1}\left(y_{1} y_{2}\right)\right) \geq C_{A}\left(f^{-1}\left(y_{1}\right)\right) \wedge C_{A}\left(f^{-1}\left(y_{2}\right)\right) \forall y_{1}, y_{2} \in Y$;
(ii) $C_{B}\left(f\left(x_{1} x_{2}\right)\right) \geq C_{B}\left(f\left(x_{1}\right)\right) \wedge C_{B}\left(f\left(x_{2}\right)\right) \forall x_{1}, x_{2} \in X$,
where
(i) the image of A under f, denoted by $f(A)$, is a multiset of Y defined by

$$
C_{f(A)}(y)= \begin{cases}\bigvee_{x \in f^{-1}(y)} C_{A}(x), & f^{-1}(y) \neq \emptyset \\ 0, & \text { otherwise }\end{cases}
$$

for each $y \in Y$ and
(ii) the inverse image of B under f, denoted by $f^{-1}(B)$, is a multiset of X defined by

$$
C_{f^{-1}(B)}(x)=C_{B}(f(x)) \forall x \in X
$$

Proposition $2.14([12])$ Let X and Y be groups and $f: X \rightarrow Y$ be a homomorphism. If $A \in M G(X)$, then $f(A) \in M G(Y)$.

Corollary 2.15([12]) Let X and Y be groups and $f: X \rightarrow Y$ be a homomorphism. If $B \in$ $M G(Y)$, then $f^{-1}(B) \in M G(X)$.

§3. Direct Product of Multigroups

Given two groups X and Y, the direct product, $X \times Y$ is the Cartesian product of ordered pair (x, y) such that $x \in X$ and $y \in Y$, and the group operation is component-wise, so

$$
\left(x_{1}, y_{1}\right) \times\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right)
$$

The resulting algebraic structure satisfies the axioms for a group. Since the ordered pair (x, y) such that $x \in X$ and $y \in Y$ is an element of $X \times Y$, we simply write $(x, y) \in X \times Y$. In this section, we discuss the notion of direct product of two multigroups defined over X and Y, respectively.

Definition 3.1 Let X and Y be groups, $A \in M G(X)$ and $B \in M G(Y)$, respectively. The direct product of A and B depicted by $A \times B$ is a function

$$
C_{A \times B}: X \times Y \rightarrow \mathbb{N}
$$

defined by

$$
C_{A \times B}((x, y))=C_{A}(x) \wedge C_{B}(y) \forall x \in X, \forall y \in Y
$$

Example 3.2 Let $X=\{e, a\}$ be a group, where $a^{2}=e$ and $Y=\left\{e^{\prime}, x, y, z\right\}$ be a Klein 4-group, where $x^{2}=y^{2}=z^{2}=e^{\prime}$. Then

$$
A=\left[e^{5}, a\right]
$$

and

$$
B=\left[\left(e^{\prime}\right)^{6}, x^{4}, y^{5}, z^{4}\right]
$$

are multigroups of X and Y by Definition 2.3. Now

$$
X \times Y=\left\{\left(e, e^{\prime}\right),(e, x),(e, y),(e, z),\left(a, e^{\prime}\right),(a, x),(a, y),(a, z)\right\}
$$

is a group such that

$$
(e, x)^{2}=(e, y)^{2}=(e, z)^{2}=\left(a, e^{\prime}\right)^{2}=(a, x)^{2}=(a, y)^{2}=(a, z)^{2}=\left(e, e^{\prime}\right)
$$

is the identity element of $X \times Y$. Then using Definition 3.1,

$$
A \times B=\left[\left(e, e^{\prime}\right)^{5},(e, x)^{4},(e, y)^{5},(e, z)^{4},\left(a, e^{\prime}\right),(a, x),(a, y),(a, z)\right]
$$

is a multigroup of $X \times Y$ satisfying the conditions in Definition 2.3.
Example 3.3 Let X and Y be groups as in Example 3.2. Let

$$
A=\left[e^{5}, a^{4}\right]
$$

and

$$
B=\left[\left(e^{\prime}\right)^{7}, x^{9}, y^{6}, z^{5}\right]
$$

be multisets of X and Y, respectively. Then

$$
A \times B=\left[\left(e, e^{\prime}\right)^{5},(e, x)^{5},(e, y)^{5},(e, z)^{5},\left(a, e^{\prime}\right)^{4},(a, x)^{4},(a, y)^{4},(a, z)^{4}\right] .
$$

By Definition 2.3, it follows that $A \times B$ is a multigroup of $X \times Y$ although B is not a multigroup of Y while A is a multigroup of X.

From the notion of direct product in multigroup context, we observe that

$$
|A \times B|<|A||B|
$$

unlike in classical group where $|X \times Y|=|X||Y|$.

Theorem 3.4 Let $A \in M G(X)$ and $B \in M G(Y)$, respectively. Then for all $n \in \mathbb{N},(A \times B)_{[n]}=$ $A_{[n]} \times B_{[n]}$.

Proof Let $(x, y) \in(A \times B)_{[n]}$. Using Definition 2.5, we have

$$
C_{A \times B}((x, y))=\left(C_{A}(x) \wedge C_{B}(y)\right) \geq n .
$$

This implies that $C_{A}(x) \geq n$ and $C_{B}(y) \geq n$, then $x \in A_{[n]}$ and $y \in B_{[n]}$. Thus,

$$
(x, y) \in A_{[n]} \times B_{[n]} .
$$

Also, let $(x, y) \in A_{[n]} \times B_{[n]}$. Then $C_{A}(x) \geq n$ and $C_{B}(y) \geq n$. That is,

$$
\left(C_{A}(x) \wedge C_{B}(y)\right) \geq n
$$

This yields us $(x, y) \in(A \times B)_{[n]}$. Therefore, $(A \times B)_{[n]}=A_{[n]} \times B_{[n]} \forall n \in \mathbb{N}$.
Corollary 3.5 Let $A \in M G(X)$ and $B \in M G(Y)$, respectively. Then for all $n \in \mathbb{N},(A \times B)^{[n]}=$ $A^{[n]} \times B^{[n]}$.

Proof Straightforward from Theorem 3.4.
Corollary 3.6 Let $A \in M G(X)$ and $B \in M G(Y)$, respectively. Then
(i) $(A \times B)_{*}=A_{*} \times B_{*}$;
(ii) $(A \times B)^{*}=A^{*} \times B^{*}$.

Proof Straightforward from Theorem 3.4.
Theorem 3.7 Let A and B be multigroups of X and Y, respectively, then $A \times B$ is a multigroup of $X \times Y$.

Proof Let $(x, y) \in X \times Y$ and let $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. We have

$$
\begin{aligned}
C_{A \times B}(x y) & =C_{A \times B}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right) \\
& =C_{A \times B}\left(\left(x_{1} y_{1}, x_{2} y_{2}\right)\right) \\
& =C_{A}\left(x_{1} y_{1}\right) \wedge C_{B}\left(x_{2} y_{2}\right) \\
& \geq \wedge\left(C_{A}\left(x_{1}\right) \wedge C_{A}\left(y_{1}\right), C_{B}\left(x_{2}\right) \wedge C_{B}\left(y_{2}\right)\right) \\
& =\wedge\left(C_{A}\left(x_{1}\right) \wedge C_{B}\left(x_{2}\right), C_{A}\left(y_{1}\right) \wedge C_{B}\left(y_{2}\right)\right) \\
& =C_{A \times B}\left(\left(x_{1}, x_{2}\right)\right) \wedge C_{A \times B}\left(\left(y_{1}, y_{2}\right)\right) \\
& =C_{A \times B}(x) \wedge C_{A \times B}(y) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
C_{A \times B}\left(x^{-1}\right) & =C_{A \times B}\left(\left(x_{1}, x_{2}\right)^{-1}\right)=C_{A \times B}\left(\left(x_{1}^{-1}, x_{2}^{-1}\right)\right) \\
& =C_{A}\left(x_{1}^{-1}\right) \wedge C_{B}\left(x_{2}^{-1}\right)=C_{A}\left(x_{1}\right) \wedge C_{B}\left(x_{2}\right) \\
& =C_{A \times B}\left(\left(x_{1}, x_{2}\right)\right)=C_{A \times B}(x) .
\end{aligned}
$$

Hence, $A \times B \in M G(X \times Y)$.

Corollary 3.8 Let $A_{1}, B_{1} \in M G\left(X_{1}\right)$ and $A_{2}, B_{2} \in M G\left(X_{2}\right)$, respectively such that $A_{1} \subseteq B_{1}$ and $A_{2} \subseteq B_{2}$. If A_{1} and A_{2} are normal submultigroups of B_{1} and B_{2}, then $A_{1} \times A_{2}$ is a normal submultigroup of $B_{1} \times B_{2}$.

Proof By Theorem 3.7, $A_{1} \times A_{2}$ is a multigroup of $X_{1} \times X_{2}$. Also, $B_{1} \times B_{2}$ is a multigroup of $X_{1} \times X_{2}$. We show that $A_{1} \times A_{2}$ is a normal submultigroup of $B_{1} \times B_{2}$. Let $(x, y) \in X_{1} \times X_{2}$
such that $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Then we get

$$
\begin{aligned}
C_{A_{1} \times A_{2}}(x y) & =C_{A_{1} \times A_{2}}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right) \\
& =C_{A_{1} \times A_{2}}\left(\left(x_{1} y_{1}, x_{2} y_{2}\right)\right) \\
& =C_{A_{1}}\left(x_{1} y_{1}\right) \wedge C_{A_{2}}\left(x_{2} y_{2}\right) \\
& =C_{A_{1}}\left(y_{1} x_{1}\right) \wedge C_{A_{2}}\left(y_{2} x_{2}\right) \\
& =C_{A_{1} \times A_{2}}\left(\left(y_{1} x_{1}, y_{2} x_{2}\right)\right) \\
& =C_{A_{1} \times A_{2}}\left(\left(y_{1}, y_{2}\right)\left(x_{1}, x_{2}\right)\right) \\
& =C_{A_{1} \times A_{2}}(y x) .
\end{aligned}
$$

Hence $A_{1} \times A_{2}$ is a normal submultigroup of $B_{1} \times B_{2}$ by Proposition 2.11.

Theorem 3.9 Let A and B be multigroups of X and Y, respectively. Then
(i) $(A \times B)_{*}$ is a subgroup of $X \times Y$;
(ii) $(A \times B)^{*}$ is a subgroup of $X \times Y$;
(iii) $(A \times B)_{[n]}, n \in \mathbb{N}$ is a subgroup of $X \times Y, \forall n \leq C_{A \times B}\left(e, e^{\prime}\right)$;
(iv) $(A \times B)^{[n]}, n \in \mathbb{N}$ is a subgroup of $X \times Y, \forall n \geq C_{A \times B}\left(e, e^{\prime}\right)$.

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 3.7, the results follow.

Corollary 3.10 Let $A, C \in M G(X)$ such that $A \subseteq C$ and $B, D \in M G(Y)$ such that $B \subseteq D$, respectively. If A and B are normal, then
(i) $(A \times B)_{*}$ is a normal subgroup of $(C \times D)_{*}$;
(ii) $(A \times B)^{*}$ is a normal subgroup of $(C \times D)^{*}$;
(iii) $(A \times B)_{[n]}, n \in \mathbb{N}$ is a normal subgroup of $(C \times D)_{[n]}, \forall n \leq C_{A \times B}\left(e, e^{\prime}\right)$;
(iv) $(A \times B)^{[n]}, n \in \mathbb{N}$ is a normal subgroup of $(C \times D)^{[n]}, \forall n \geq C_{A \times B}\left(e, e^{\prime}\right)$.

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 3.7 and Corollary 3.8, the results follow.

Proposition 3.11 Let $A \in M G(X), B \in M G(Y)$ and $A \times B \in M G(X \times Y)$. Then $\forall(x, y) \in$ $X \times Y$, we have
(i) $C_{A \times B}\left(\left(x^{-1}, y^{-1}\right)\right)=C_{A \times B}((x, y))$;
(ii) $C_{A \times B}\left(\left(e, e^{\prime}\right)\right) \geq C_{A \times B}((x, y))$;
(iii) $C_{A \times B}\left((x, y)^{n}\right) \geq C_{A \times B}((x, y))$, where e and e^{\prime} are the identity elements of X and Y, respectively and $n \in \mathbb{N}$.

Proof For $x \in X, y \in Y$ and $(x, y) \in X \times Y$, we get
(i) $C_{A \times B}\left(\left(x^{-1}, y^{-1}\right)\right)=C_{A}\left(x^{-1}\right) \wedge C_{B}\left(y^{-1}\right)=C_{A}(x) \wedge C_{B}(y)=C_{A \times B}((x, y))$.

Clearly, $C_{A \times B}\left(\left(x^{-1}, y^{-1}\right)\right)=C_{A \times B}((x, y)) \forall(x, y) \in X \times Y$.
(ii)

$$
\begin{aligned}
C_{A \times B}\left(\left(e, e^{\prime}\right)\right) & =C_{A \times B}\left((x, y)\left(x^{-1}, y^{-1}\right)\right) \\
& \geq C_{A \times B}((x, y)) \wedge C_{A \times B}\left(\left(x^{-1}, y^{-1}\right)\right) \\
& =C_{A \times B}((x, y)) \wedge C_{A \times B}((x, y)) \\
& =C_{A \times B}((x, y)) \forall(x, y) \in X \times Y .
\end{aligned}
$$

Hence, $C_{A \times B}\left(\left(e, e^{\prime}\right)\right) \geq C_{A \times B}((x, y))$.
(iii)

$$
\begin{aligned}
C_{A \times B}\left((x, y)^{n}\right) & =C_{A \times B}\left(\left(x^{n}, y^{n}\right)\right) \\
& =C_{A \times B}\left(\left(x^{n-1}, y^{n-1}\right)(x, y)\right) \\
& \geq C_{A \times B}\left(\left(x^{n-1}, y^{n-1}\right)\right) \wedge C_{A \times B}((x, y)) \\
& \geq C_{A \times B}\left(\left(x^{n-2}, y^{n-2}\right)\right) \wedge C_{A \times B}((x, y)) \wedge C_{A \times B}((x, y)) \\
& \geq C_{A \times B}((x, y)) \wedge C_{A \times B}((x, y)) \wedge \ldots \wedge C_{A \times B}((x, y)) \\
& =C_{A \times B}((x, y))
\end{aligned}
$$

which implies that $C_{A \times B}\left((x, y)^{n}\right)=C_{A \times B}\left(\left(x^{n}, y^{n}\right)\right) \geq C_{A \times B}((x, y)) \forall(x, y) \in X \times Y$.

Theorem 3.12 Let A and B be multisets of groups X and Y, respectively. Suppose that e and e^{\prime} are the identity elements of X and Y, respectively. If $A \times B$ is a multigroup of $X \times Y$, then at least one of the following statements hold.
(i) $C_{B}\left(e^{\prime}\right) \geq C_{A}(x) \forall x \in X$;
(ii) $C_{A}(e) \geq C_{B}(y) \forall y \in Y$.

Proof Let $A \times B \in M G(X \times Y)$. By contrapositive, suppose that none of the statements holds. Then suppose we can find a in X and b in Y such that

$$
C_{A}(a)>C_{B}\left(e^{\prime}\right) \text { and } C_{B}(b)>C_{A}(e) .
$$

From these we have

$$
\begin{aligned}
C_{A \times B}((a, b)) & =C_{A}(a) \wedge C_{B}(b) \\
& >C_{A}(e) \wedge C_{B}\left(e^{\prime}\right) \\
& =C_{A \times B}\left(\left(e, e^{\prime}\right)\right)
\end{aligned}
$$

Thus, $A \times B$ is not a multigroup of $X \times Y$ by Proposition 3.11. Hence, either $C_{B}\left(e^{\prime}\right) \geq$ $C_{A}(x) \forall x \in X$ or $C_{A}(e) \geq C_{B}(y) \forall y \in Y$. This completes the proof.

Theorem 3.13 Let A and B be multisets of groups X and Y, respectively, such that $C_{A}(x) \leq$ $C_{B}\left(e^{\prime}\right) \forall x \in X$, e^{\prime} being the identity element of Y. If $A \times B$ is a multigroup of $X \times Y$, then A is a multigroup of X.

Proof Let $A \times B$ be a multigroup of $X \times Y$ and $x, y \in X$. Then $\left(x, e^{\prime}\right),\left(y, e^{\prime}\right) \in X \times Y$. Now, using the property $C_{A}(x) \leq C_{B}\left(e^{\prime}\right) \forall x \in X$, we get

$$
\begin{aligned}
C_{A}(x y) & =C_{A}(x y) \wedge C_{B}\left(e^{\prime} e^{\prime}\right) \\
& =C_{A \times B}\left(\left(x, e^{\prime}\right)\left(y, e^{\prime}\right)\right) \\
& \geq C_{A \times B}\left(\left(x, e^{\prime}\right)\right) \wedge C_{A \times B}\left(\left(y, e^{\prime}\right)\right) \\
& =\wedge\left(C_{A}(x) \wedge C_{B}\left(e^{\prime}\right), C_{A}(y) \wedge C_{B}\left(e^{\prime}\right)\right) \\
& =C_{A}(x) \wedge C_{A}(y)
\end{aligned}
$$

Also,

$$
\begin{aligned}
C_{A}\left(x^{-1}\right) & =C_{A}\left(x^{-1}\right) \wedge C_{B}\left(e^{\prime-1}\right)=C_{A \times B}\left(\left(x^{-1}, e^{\prime-1}\right)\right) \\
& =C_{A \times B}\left(\left(x, e^{\prime}\right)^{-1}\right)=C_{A \times B}\left(\left(x, e^{\prime}\right)\right) \\
& =C_{A}(x) \wedge C_{B}\left(e^{\prime}\right)=C_{A}(x)
\end{aligned}
$$

Hence, A is a multigroup of X. This completes the proof.

Theorem 3.14 Let A and B be multisets of groups X and Y, respectively, such that $C_{B}(x) \leq$ $C_{A}(e) \forall x \in Y$, e being the identity element of X. If $A \times B$ is a multigroup of $X \times Y$, then B is a multigroup of Y.

Proof Similar to Theorem 3.13.

Corollary 3.15 Let A and B be multisets of groups X and Y, respectively. If $A \times B$ is a multigroup of $X \times Y$, then either A is a multigroup of X or B is a multigroup of Y.

Proof Combining Theorems 3.12-3.14, the result follows.

Theorem 3.16 If A and C are conjugate multigroups of a group X, and B and D are conjugate multigroups of a group Y. Then $A \times B \in M G(X \times Y)$ is a conjugate of $C \times D \in M G(X \times Y)$.

Proof Since A and C are conjugate, it implies that for $g_{1} \in X$, we have

$$
C_{A}(x)=C_{C}\left(g_{1}^{-1} x g_{1}\right) \forall x \in X
$$

Also, since B and D are conjugate, for $g_{2} \in Y$, we get

$$
C_{B}(y)=C_{D}\left(g_{2}^{-1} y g_{2}\right) \forall y \in Y
$$

Now,

$$
\begin{aligned}
C_{A \times B}((x, y))=C_{A}(x) \wedge C_{B}(y) & =C_{C}\left(g_{1}^{-1} x g_{1}\right) \wedge C_{D}\left(g_{2}^{-1} y g_{2}\right) \\
& =C_{C \times D}\left(\left(g_{1}^{-1} x g_{1}\right),\left(g_{2}^{-1} y g_{2}\right)\right) \\
& =C_{C \times D}\left(\left(g_{1}^{-1}, g_{2}^{-1}\right)(x, y)\left(g_{1}, g_{2}\right)\right) \\
& =C_{C \times D}\left(\left(g_{1}, g_{2}\right)^{-1}(x, y)\left(g_{1}, g_{2}\right)\right) .
\end{aligned}
$$

Hence, $C_{A \times B}((x, y))=C_{C \times D}\left(\left(g_{1}, g_{2}\right)^{-1}(x, y)\left(g_{1}, g_{2}\right)\right)$. This completes the proof.

$\S 4$. Generalized Direct Product of Multigroups

In this section, we defined direct product of $k^{t h}$ multigroups and obtain some results which generalized the results in Section 3.

Definition 4.1 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multigroups of $X_{1}, X_{2}, \cdots, X_{k}$, respectively. Then the direct product of $A_{1}, A_{2}, \cdots, A_{k}$ is a function

$$
C_{A_{1} \times A_{2} \times \cdots \times A_{k}}: X_{1} \times X_{2} \times \cdots \times X_{k} \rightarrow \mathbb{N}
$$

defined by

$$
C_{A_{1} \times A_{2} \times \cdots \times A_{k}}(x)=C_{A_{1}}\left(x_{1}\right) \wedge C_{A_{2}}\left(x_{2}\right) \wedge \cdots \wedge C_{A_{k-1}}\left(x_{k-1}\right) \wedge C_{A_{k}}\left(x_{k}\right)
$$

where $x=\left(x_{1}, x_{2}, \cdots, x_{k-1}, x_{k}\right), \forall x_{1} \in X_{1}, \forall x_{2} \in X_{2}, \cdots, \forall x_{k} \in X_{k}$. If we denote $A_{1}, A_{2}, \cdots, A_{k}$ by $A_{i},(i \in I), X_{1}, X_{2}, \cdots, X_{k}$ by $X_{i},(i \in I), A_{1} \times A_{2} \times \cdots \times A_{k}$ by $\prod_{i=1}^{k} A_{i}$ and $X_{1} \times X_{2} \times \cdots \times X_{k}$ by $\prod_{i=1}^{k} X_{i}$. Then the direct product of A_{i} is a function

$$
C_{\prod_{i=1}^{k} A_{i}}: \prod_{i=1}^{k} X_{i} \rightarrow \mathbb{N}
$$

defined by

$$
C_{\prod_{i=1}^{k} A_{i}}\left(\left(x_{i}\right)_{i \in I}\right)=\wedge_{i \in I} C_{A_{i}}\left(\left(x_{i}\right)\right) \forall x_{i} \in X_{i}, I=1, \cdots, k
$$

Unless otherwise specified, it is assumed that X_{i} is a group with identity e_{i} for all $i \in I$, $X=\prod_{i \in I}^{k} X_{i}$, and so $e=\left(e_{i}\right)_{i \in I}$.

Theorem 4.2 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multisets of the sets $X_{1}, X_{2}, \cdots, X_{k}$, respectively and let $n \in \mathbb{N}$. Then

$$
\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{[n]}=A_{1[n]} \times A_{2[n]} \times \cdots \times A_{k[n]} .
$$

Proof Let $\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{[n]}$. From Definition 2.5, we have

$$
C_{A_{1} \times A_{2} \times \cdots \times A_{k}}\left(\left(x_{1}, x_{2}, \cdots, x_{k}\right)\right)=\left(C_{A_{1}}\left(x_{1}\right) \wedge C_{A_{2}}\left(x_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k}\right)\right) \geq n
$$

This implies that $C_{A_{1}}\left(x_{1}\right) \geq n, C_{A_{2}}\left(x_{2}\right) \geq n, \cdots, C_{A_{k}}\left(x_{k}\right) \geq n$ and $x_{1} \in A_{1[n]}, x_{2} \in$ $A_{2[n]}, \cdots, x_{k} \in A_{k[n]}$. Thus, $\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in A_{1[n]} \times A_{2[n]} \times \cdots \times A_{k[n]}$.

Again, let $\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in A_{1[n]} \times A_{2[n]} \times \cdots \times A_{k[n]}$. Then $x_{i} \in A_{i[n]}$, for $i=1,2, \cdots, k$, $C_{A_{1}}\left(x_{1}\right) \geq n, C_{A_{2}}\left(x_{2}\right) \geq n, \cdots, C_{A_{k}}\left(x_{k}\right) \geq n$. That is,

$$
\left(C_{A_{1}}\left(x_{1}\right) \wedge C_{A_{2}}\left(x_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k}\right)\right) \geq n .
$$

Implies that

$$
\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in\left(A_{1} \times A_{2} \times \ldots \times A_{k}\right)_{[n]} .
$$

Hence, $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{[n]}=A_{1[n]} \times A_{2[n]} \times \cdots \times A_{k[n]}$.
Corollary 4.3 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multisets of the sets $X_{1}, X_{2}, \cdots, X_{k}$, respectively and let $n \in \mathbb{N}$. Then
(i) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{[n]}=A_{1}^{[n]} \times A_{2}^{[n]} \times \cdots \times A_{k}^{[n]}$;
(ii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{*}=A_{1}^{*} \times A_{2}^{*} \times \cdots \times A_{k}^{*}$;
(iii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{*}=A_{1 *} \times A_{2 *} \times \cdots \times A_{k *}$.

Proof Straightforward from Theorem 4.2.
Theorem 4.4 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multigroups of the groups $X_{1}, X_{2}, \cdots, X_{k}$, respectively. Then $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$.

Proof Let $\left(x_{1}, x_{2}, \cdots, x_{k}\right),\left(y_{1}, y_{2}, \cdots, y_{k}\right) \in X_{1} \times X_{2} \times \cdots \times X_{k}$. We get

$$
\begin{aligned}
& C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{k}\right)\left(y_{1}, \cdots, y_{k}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1} y_{1}, \cdots, x_{k} y_{k}\right)\right) \\
& =C_{A_{1}}\left(x_{1} y_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k} y_{k}\right) \\
& \geq\left(C_{A_{1}}\left(x_{1}\right) \wedge C_{A_{1}}\left(y_{1}\right)\right) \wedge \cdots \wedge\left(C_{A_{k}}\left(x_{k}\right) \wedge C_{A_{k}}\left(y_{k}\right)\right) \\
& =\wedge\left(\wedge\left(C_{A_{1}}\left(x_{1}\right), C_{A_{1}}\left(y_{1}\right)\right), \cdots, \wedge\left(C_{A_{k}}\left(x_{k}\right), C_{A_{k}}\left(y_{k}\right)\right)\right. \\
& =\wedge\left(\wedge\left(C_{A_{1}}\left(x_{1}\right), \cdots, C_{A_{k}}\left(x_{k}\right)\right), \wedge\left(C_{A_{1}}\left(y_{1}\right), \cdots, C_{A_{k}}\left(y_{k}\right)\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{k}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{k}}\left(\left(y_{1}, \cdots, y_{k}\right)\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{k}\right)^{-1}\right) & =C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}^{-1}, \cdots, x_{k}^{-1}\right)\right) \\
& =C_{A_{1}}\left(x_{1}^{-1}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k}^{-1}\right) \\
& =C_{A_{1}}\left(x_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k}\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{k}\right)\right)
\end{aligned}
$$

Hence, $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$.
Corollary 4.5 Let $A_{1}, A_{2}, \cdots, A_{k}$ and $B_{1}, B_{2}, \cdots, B_{k}$ be multigroups of $X_{1}, X_{2}, \cdots, X_{k}$, re-
spectively, such that $A_{1}, A_{2}, \cdots, A_{k} \subseteq B_{1}, B_{2}, \cdots, B_{k}$. If $A_{1}, A_{2}, \cdots, A_{k}$ are normal submultigroups of $B_{1}, B_{2}, \cdots, B_{k}$, then $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a normal submultigroup of $B_{1} \times B_{2} \times \cdots \times B_{k}$.

Proof By Theorem 4.4, $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a multigroup of $X_{1}, X_{2}, \cdots, X_{k}$. Also, $B_{1} \times B_{2} \times \cdots \times B_{k}$ is a multigroup of $X_{1}, X_{2}, \cdots, X_{k}$.

Let $\left(x_{1}, x_{2}, \cdots, x_{k}\right),\left(y_{1}, y_{2}, \cdots, y_{k}\right) \in X_{1} \times X_{2} \times \cdots \times X_{k}$. Then we get

$$
\begin{aligned}
C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{k}\right)\left(y_{1}, \cdots, y_{k}\right)\right) & =C_{A_{1} \times \cdots \times A_{k}}\left(\left(x_{1} y_{1}, \cdots, x_{k} y_{k}\right)\right) \\
& =C_{A_{1}}\left(x_{1} y_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(x_{k} y_{k}\right) \\
& =C_{A_{1}}\left(y_{1} x_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(y_{k} x_{k}\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(y_{1} x_{1}, \cdots, y_{k} x_{k}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(y_{1}, \cdots, y_{k}\right)\left(x_{1}, \cdots, x_{k}\right)\right) .
\end{aligned}
$$

Thus, $A_{1} \times \cdots \times A_{k}$ is a normal submultigroup of $B_{1} \times \cdots \times B_{k}$ by Proposition 2.11.

Theorem 4.6 If $A_{1}, A_{2}, \cdots, A_{k}$ are multigroups of $X_{1}, X_{2}, \cdots, X_{k}$, respectively, then
(i) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{*}$ is a subgroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$;
(ii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{*}$ is a subgroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$;
(iii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{[n]}, n \in \mathbb{N}$ is a subgroup of $X_{1} \times X_{2} \times \cdots \times X_{k}, \quad \forall n \leq C_{A_{1}}\left(e_{1}\right) \wedge$ $C_{A_{2}}\left(e_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right) ;$
(iv) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{[n]}, n \in \mathbb{N}$ is a subgroup of $X_{1} \times X_{2} \times \cdots \times X_{k}, \quad \forall n \geq C_{A_{1}}\left(e_{1}\right) \wedge$ $C_{A_{2}}\left(e_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right)$.

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 4.4, the results follow.

Corollary 4.7 Let $A_{1}, A_{2}, \cdots, A_{k}$ and $B_{1}, B_{2}, \cdots, B_{k}$ be multigroups of $X_{1}, X_{2}, \cdots, X_{k}$ such that $A_{1}, A_{2}, \cdots, A_{k} \subseteq B_{1}, B_{2}, \cdots, B_{k}$. If $A_{1}, A_{2}, \cdots, A_{k}$ are normal submultigroups of B_{1}, B_{2}, \cdots, B_{k}, then
(i) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{*}$ is a normal subgroup of $\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right)_{*}$;
(ii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{*}$ is a normal subgroup of $\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right)^{*}$;
(iii) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)_{[n]}, n \in \mathbb{N}$ is a normal subgroup of $\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right)_{[n]}$, $\forall n \leq C_{A_{1}}\left(e_{1}\right) \wedge C_{A_{2}}\left(e_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right) ;$
(iv) $\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right)^{[n]}, n \in \mathbb{N}$ is a normal subgroup of $\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right)^{[n]}$, $\forall n \geq C_{A_{1}}\left(e_{1}\right) \wedge C_{A_{2}}\left(e_{2}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right)$.

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 4.4 and Corollary 4.5, the results follow.

Theorem 4.8 Let $A_{1}, A_{2}, \cdots, A_{k}$ and $B_{1}, B_{2}, \cdots, B_{k}$ be multigroups of groups $X_{1}, X_{2}, \cdots, X_{k}$, respectively. If $A_{1}, A_{2}, \cdots, A_{k}$ are conjugate to $B_{1}, B_{2}, \cdots, B_{k}$, then the multigroup $A_{1} \times A_{2} \times$ $\cdots \times A_{k}$ of $X_{1} \times X_{2} \times \cdots \times X_{k}$ is conjugate to the multigroup $B_{1} \times B_{2} \times \cdots \times B_{k}$ of $X_{1} \times X_{2} \times \cdots \times X_{k}$.

Proof By Definition 2.12, if multigroup A_{i} of X_{i} conjugates to multigroup B_{i} of X_{i}, then
exist $x_{i} \in X_{i}$ such that for all $y_{i} \in X_{i}$,

$$
C_{A_{i}}\left(y_{i}\right)=C_{B_{i}}\left(x_{i}^{-1} y_{i} x_{i}\right), i=1,2, \cdots, k
$$

Then we have

$$
\begin{aligned}
C_{A_{1} \times \cdots \times A_{k}}\left(\left(y_{1}, \cdots, y_{k}\right)\right) & =C_{A_{1}}\left(y_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(y_{k}\right) \\
& =C_{B_{1}}\left(x_{1}^{-1} y_{1} x_{1}\right) \wedge \cdots \wedge C_{B_{k}}\left(x_{k}^{-1} y_{k} x_{k}\right) \\
& =C_{B_{1} \times \cdots \times B_{k}}\left(\left(x_{1}^{-1} y_{1} x_{1}, \cdots, x_{k}^{-1} y_{k} x_{k}\right)\right)
\end{aligned}
$$

This completes the proof.

Theorem 4.9 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multisets of the groups $X_{1}, X_{2}, \cdots, X_{k}$, respectively. Suppose that $e_{1}, e_{2}, \cdots, e_{k}$ are identities elements of $X_{1}, X_{2}, \cdots, X_{k}$, respectively. If $A_{1} \times A_{2} \times \cdots \times$ A_{k} is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$, then for at least one $i=1,2, \cdots, k$, the statement

$$
C_{A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, e_{2}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \geq C_{A_{i}}\left(\left(x_{i}\right)\right), \quad \forall x_{i} \in X_{i}
$$

holds.

Proof Let $A_{1} \times A_{2} \times \cdots \times A_{k}$ be a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$. By contraposition, suppose that for none of $i=1,2, \cdots, k$, the statement holds. Then we can find $\left(a_{1}, a_{2}, \cdots, a_{k}\right) \in$ $X_{1} \times X_{2} \times \cdots \times X_{k}$, respectively, such that

$$
C_{A_{i}}\left(\left(a_{i}\right)\right)>C_{A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, e_{2}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) .
$$

Then we have

$$
\begin{aligned}
C_{A_{1} \times \cdots \times A_{k}}\left(\left(a_{1}, \cdots, a_{k}\right)\right) & =C_{A_{1}}\left(a_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(a_{k}\right) \\
& >C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \\
& =C_{A_{1}}\left(e_{1}\right) \wedge \cdots \wedge C_{A_{i-1}}\left(e_{i-1}\right) \wedge C_{A_{i+1}}\left(e_{i+1}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right) \\
& =C_{A_{1}}\left(e_{1}\right) \wedge \cdots \wedge C_{A_{k}}\left(e_{k}\right) \\
& =C_{A_{1} \times \cdots \times A_{k}}\left(\left(e_{1}, \ldots, e_{k}\right)\right)
\end{aligned}
$$

So, $A_{1} \times A_{2} \times \ldots \times A_{k}$ is not a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$. Hence, for at least one $i=1,2, \cdots, k$, the inequality

$$
C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \geq C_{A_{i}}\left(\left(x_{i}\right)\right)
$$

is satisfied for all $x_{i} \in X_{i}$.

Theorem 4.10 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multisets of the groups $X_{1}, X_{2}, \cdots, X_{k}$, respectively, such that

$$
C_{A_{i}}\left(\left(x_{i}\right)\right) \leq C_{A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, e_{2}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right)
$$

$\forall x_{i} \in X_{i}$, e_{i} being the identity element of X_{i}. If $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$, then A_{i} is a multigroup of X_{i}.

Proof Let $A_{1} \times A_{2} \times \cdots \times A_{k}$ be a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$ and $x_{i}, y_{i} \in X_{i}$. Then

$$
\left(e_{1}, \cdots, e_{i-1}, x_{i}, e_{i+1}, \cdots, e_{k}\right),\left(e_{1}, \cdots, e_{i-1}, y_{i}, e_{i+1}, \cdots, e_{k}\right) \in X_{1} \times X_{2} \times \cdots \times X_{k}
$$

Now, using the given inequality, we have

$$
\begin{aligned}
C_{A_{i}}\left(\left(x_{i} y_{i}\right)\right)= & C_{A_{i}}\left(\left(x_{i} y_{i}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right. \\
& \left.\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \\
= & C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, x_{i}, \cdots, e_{k}\right)\left(e_{1}, \cdots, y_{i}, \cdots, e_{k}\right)\right) \\
\geq & C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, x_{i}, \cdots, e_{k}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, y_{i}, \cdots, e_{k}\right)\right) \\
= & \wedge\left(C_{A_{i}}\left(\left(x_{i}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right), C_{A_{i}}\left(\left(y_{i}\right)\right)\right. \\
& \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \\
= & C_{A_{i}}\left(\left(x_{i}\right)\right) \wedge C_{A_{i}}\left(\left(y_{i}\right)\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
C_{A_{i}}\left(\left(x_{i}^{-1}\right)\right) & =C_{A_{i}}\left(\left(x_{i}^{-1}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}^{-1}, \cdots, e_{i-1}^{-1}, e_{i+1}^{-1}, \cdots, e_{k}^{-1}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}^{-1}, \cdots, x_{i}^{-1}, \cdots, e_{k}^{-1}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, x_{i}, \cdots, e_{k}\right)^{-1}\right) \\
& =C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, x_{i}, \cdots, e_{k}\right)\right) \\
& =C_{A_{i}}\left(\left(x_{i}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(e_{1}, \cdots, e_{i-1}, e_{i+1}, \cdots, e_{k}\right)\right) \\
& =C_{A_{i}}\left(\left(x_{i}\right)\right) .
\end{aligned}
$$

Hence, $A_{i} \in M G\left(X_{i}\right)$.

Theorem 4.11 Let $A_{1}, A_{2}, \cdots, A_{k}$ be multisets of the groups $X_{1}, X_{2}, \cdots, X_{k}$, respectively, such that

$$
C_{A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, x_{2}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\right) \leq C_{A_{i}}\left(\left(e_{i}\right)\right)
$$

for $\forall\left(x_{1}, x_{2}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right) \in X_{1} \times X_{2} \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_{k}$, e_{i} being the identity element of X_{i}. If $A_{1} \times A_{2} \times \cdots \times A_{k}$ is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$, then $A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}$ is a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_{k}$.

Proof Let $A_{1} \times A_{2} \times \cdots \times A_{k}$ be a multigroup of $X_{1} \times X_{2} \times \cdots \times X_{k}$ and $\left(x_{1}, x_{2}, \cdots, x_{i-1}\right.$, $\left.x_{i+1}, \cdots, x_{k}\right),\left(y_{1}, y_{2}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{k}\right) \in X_{1} \times X_{2} \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_{k}$. Then

$$
\left(x_{1}, \cdots, x_{i-1}, e_{i}, x_{i+1}, \cdots, x_{k}\right),\left(y_{1}, \cdots, y_{i-1}, e_{i}, y_{i+1}, \cdots, y_{k}\right) \in X_{i}
$$

Using the given inequality, we arrive at

$$
\begin{aligned}
& C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\left(y_{1}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{k}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\left(y_{1}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{k}\right)\right) \\
& \quad \wedge C_{A_{i}}\left(\left(e_{i}\right)\right)=C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, e_{i}, \cdots, x_{k}\right)\left(y_{1}, \cdots, e_{i}, \cdots, y_{k}\right)\right) \\
& \geq C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, e_{i}, \cdots, x_{k}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(y_{1}, \cdots, e_{i}, \cdots, y_{k}\right)\right) \\
& =\wedge\left(C_{A_{i}}\left(\left(e_{i}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\right), C_{A_{i}}\left(\left(e_{i}\right)\right)\right. \\
& \left.\quad \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(y_{1}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{k}\right)\right)\right)=C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}} \\
& \quad\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\right) \wedge C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(y_{1}, y_{2}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{k}\right)\right) .
\end{aligned}
$$

Again,

$$
\begin{aligned}
& C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}^{-1}, \cdots, x_{i-1}^{-1}, x_{i+1}^{-1}, \cdots, x_{k}^{-1}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}^{-1}, \cdots, x_{i-1}^{-1}, x_{i+1}^{-1}, \cdots, x_{k}^{-1}\right)\right) \wedge C_{A_{i}}\left(\left(e_{i}^{-1}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(x_{1}^{-1}, \cdots, e_{i}^{-1}, \cdots, x_{k}^{-1}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, e_{i}, \cdots, x_{k}\right)^{-1}\right)=C_{A_{1} \times \cdots \times A_{i} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, e_{i}, \cdots, x_{k}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\right) \wedge C_{A_{i}}\left(\left(e_{i}\right)\right) \\
& =C_{A_{1} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}}\left(\left(x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{k}\right)\right) .
\end{aligned}
$$

Hence, $A_{1} \times A_{2} \times \cdots \times A_{i-1} \times A_{i+1} \times \cdots \times A_{k}$ is the multigroup of $X_{1} \times X_{2} \times \cdots \times X_{i-1} \times$ $X_{i+1} \times \cdots \times X_{k}$.

§5. Homomorphism of Direct Product of Multigroups

In this section, we present some homomorphic properties of direct product of multigroups. This is an extension of the notion of homomorphism in multigroup setting (cf. [6, 12]) to direct product of multigroups.

Definition 5.1 Let $W \times X$ and $Y \times Z$ be groups and let $f: W \times X \rightarrow Y \times Z$ be a homomorphism. Suppose $A \times B \in M S(W \times X)$ and $C \times D \in M S(Y \times Z)$, respectively. Then
(i) the image of $A \times B$ under f, denoted by $f(A \times B)$, is a multiset of $Y \times Z$ defined by

$$
C_{f(A \times B)}((y, z))= \begin{cases}\bigvee_{(w, x) \in f^{-1}((y, z))} C_{A \times B}((w, x)), & f^{-1}((y, z)) \neq \emptyset \\ 0, & \text { otherwise }\end{cases}
$$

for each $(y, z) \in Y \times Z$;
(ii) the inverse image of $C \times D$ under f, denoted by $f^{-1}(C \times D)$, is a multiset of $W \times X$ defined by

$$
C_{f^{-1}(C \times D)}((w, x))=C_{C \times D}(f((w, x))) \forall(w, x) \in W \times X
$$

Theorem 5.2 Let W, X, Y, Z be groups, $A \in M S(W), B \in M S(X), C \in M S(Y)$ and $D \in$ $M S(Z)$. If $f: W \times X \rightarrow Y \times Z$ is a homomorphism, then
(i) $f(A \times B) \subseteq f(A) \times f(B)$;
(ii) $f^{-1}(C \times D)=f^{-1}(C) \times f^{-1}(D)$.

Proof (i) Let $(w, x) \in W \times X$. Suppose $\exists(y, z) \in Y \times Z$ such that

$$
f((w, x))=(f(w), f(x))=(y, z) .
$$

Then we get

$$
\begin{aligned}
C_{f(A \times B)}((y, z)) & =C_{A \times B}\left(f^{-1}((y, z))\right) \\
& =C_{A \times B}\left(\left(f^{-1}(y), f^{-1}(z)\right)\right) \\
& =C_{A}\left(f^{-1}(y)\right) \wedge C_{B}\left(f^{-1}(z)\right) \\
& =C_{f(A)}(y) \wedge C_{f(B)}(z) \\
& =C_{f(A) \times f(B)}((y, z))
\end{aligned}
$$

Hence, we conclude that, $f(A \times B) \subseteq f(A) \times f(B)$.
(ii) For $(w, x) \in W \times X$, we have

$$
\begin{aligned}
C_{f^{-1}(C \times D)}((w, x)) & =C_{C \times D}(f((w, x))) \\
& =C_{C \times D}((f(w), f(x))) \\
& =C_{C}(f(w)) \wedge C_{D}(f(x)) \\
& =C_{f^{-1}(C)}(w) \wedge C_{f^{-1}(D)}(x) \\
& =C_{f^{-1}(C) \times f^{-1}(D)}((w, x)) .
\end{aligned}
$$

Hence, $f^{-1}(C \times D) \subseteq f^{-1}(C) \times f^{-1}(D)$.
Similarly,

$$
\begin{aligned}
C_{f^{-1}(C) \times f^{-1}(D)}((w, x)) & =C_{f^{-1}(C)}(w) \wedge C_{f^{-1}(D)}(x) \\
& =C_{C}(f(w)) \wedge C_{D}(f(x)) \\
& =C_{C \times D}((f(w), f(x))) \\
& =C_{C \times D}(f((w, x))) \\
& =C_{f^{-1}(C \times D)}((w, x)) .
\end{aligned}
$$

Again, $f^{-1}(C) \times f^{-1}(D) \subseteq f^{-1}(C \times D)$. Therefore, the result follows.

Theorem 5.3 Let $f: W \times X \rightarrow Y \times Z$ be an isomorphism, A, B, C and D be multigroups of W, X, Y and Z, respectively. Then the following statements hold:
(i) $f(A \times B) \in M G(Y \times Z)$;
(ii) $f^{-1}(C) \times f^{-1}(D) \in M G(W \times X)$.

Proof (i) Since $A \in M G(W)$ and $B \in M G(X)$, then $A \times B \in M G(W \times X)$ by Theorem 3.7. From Proposition 2.14 and Definition 5.1, it follows that, $f(A \times B) \in M G(Y \times Z)$.
(ii) Combining Corollary 2.15, Theorem 3.7, Definition 5.1 and Theorem 5.2, the result follows.

Corollary 5.4 Let X and Y be groups, $A \in M G(X)$ and $B \in M G(Y)$. If

$$
f: X \times X \rightarrow Y \times Y
$$

be homomorphism, then
(i) $f(A \times A) \in M G(Y \times Y)$;
(ii) $f^{-1}(B \times B) \in M G(X \times X)$.

Proof Straightforward from Theorem 5.3.

Proposition 5.5 Let $X_{1}, X_{2}, \cdots, X_{k}$ and $Y_{1}, Y_{2}, \cdots, Y_{k}$ be groups, and

$$
f: X_{1} \times X_{2} \times \cdots \times X_{k} \rightarrow Y_{1} \times Y_{2} \times \cdots \times Y_{k}
$$

be homomorphism. If $A_{1} \times A_{2} \times \cdots \times A_{k} \in M G\left(X_{1} \times X_{2} \times \cdots \times X_{k}\right)$ and $B_{1} \times B_{2} \times \cdots \times B_{k} \in$ $M G\left(Y_{1} \times Y_{2} \times \cdots \times Y_{k}\right)$, then
(i) $f\left(A_{1} \times A_{2} \times \cdots \times A_{k}\right) \in M G\left(Y_{1} \times Y_{2} \times \cdots \times Y_{k}\right)$;
(ii) $f^{-1}\left(B_{1} \times B_{2} \times \cdots \times B_{k}\right) \in M G\left(X_{1} \times X_{2} \times \cdots \times X_{k}\right)$.

Proof Straightforward from Corollary 5.4.

$\S 6$. Conclusions

The concept of direct product in groups setting has been extended to multigroups. We lucidly exemplified direct product of multigroups and deduced several results. The notion of generalized direct product of multigroups was also introduced in the case of finitely $k^{t h}$ multigroups. Finally, homomorphism and some of its properties were proposed in the context of direct product of multigroups.

References

[1] J. A. Awolola and P. A. Ejegwa, On some algebraic properties of order of an element of a multigroup, Quasi. Related Systems, 25 (2017), 21-26.
[2] J. A. Awolola and A. M. Ibrahim, Some results on multigroups, Quasi. Related Systems, 24 (2016), 169-177.
[3] R. Biswas, Intuitionistic fuzzy subgroups, Mathl. Forum, 10 (1989), 37-46.
[4] M. Dresher and O. Ore, Theory of multigroups, American J. Math. , 60 (1938), 705-733.
[5] P. A. Ejegwa, Upper and lower cuts of multigroups, Prajna Int. J. Mathl. Sci. Appl., 1(1) (2017), 19-26.
[6] P. A. Ejegwa and A. M. Ibrahim, Some homomorphic properties of multigroups, Bul. Acad. Stiinte Repub. Mold. Mat., 83(1) (2017), 67-76.
[7] P. A. Ejegwa and A. M. Ibrahim, Normal submultigroups and comultisets of a multigroup, Quasi. Related Systems, 25 (2017), 231-244.
[8] A. M. Ibrahim and P. A. Ejegwa, A survey on the concept of multigroup theory, J. Nigerian Asso. Mathl. Physics, 38 (2016), 1-8.
[9] A. M. Ibrahim and P. A. Ejegwa, Multigroup actions on multiset, Ann. Fuzzy Math. Inform., 14 (5)(2017), 515-526.
[10] D. Knuth, The Art of Computer Programming, Semi Numerical Algorithms, Second Edition, 2 (1981), Addison-Wesley, Reading, Massachusetts.
[11] L. Mao, Topological multigroups and multifields, Int. J. Math. Combin., 1 (2009), 8-17.
[12] Sk. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Ann. Fuzzy Math. Inform., 6(3) (2013), 643-656.
[13] A. Rosenfeld, Fuzzy subgroups, J. Mathl. Analy. Appl., 35 (1971), 512-517.
[14] D. Singh, A. M. Ibrahim, T. Yohanna, and J. N. Singh, An overview of the applications of multisets, Novi Sad J. of Math., 37(2) (2007), 73-92.
[15] A. Syropoulos, Mathematics of Multisets, Springer-Verlag Berlin Heidelberg, (2001), 347358.

[^0]: ${ }^{1}$ Received April 26, 2017, Accepted November 2, 2017.

