Cohen-Macaulay of Ideal $I_{2}(G)$

Abbas Alilou
(Department of Mathematics Azarbaijan Shahid, Madani University Tabriz, Iran)

E-mail: abbasalilou@yahoo.com

Abstract

In this paper, we study the Cohen-Macaulay of ideal $I_{2}(G)$, where $I_{2}(G)=$ $\langle x y z| x-y-z$ is $2-$ path in $G\rangle$. Also, we determined the 2-projective dimension Rmodule, $R / I_{2}(G)$ denoted by $p d_{2}(G)$ of some graphs.

Key Words: Cohen-Macaulay, projective dimension, ideal, path.
AMS(2010): 05E15

§1. Introduction

A simple graph is a pair $G=(V, E)$, where $V=V(G)$ and $E=E(G)$ are the sets of vertices and edges of G, respectively. A walk is an alternating sequence of vertices and connecting edges. A path is a walk that does not include any vertex twice, except that its first vertex might be the same as its last. A path with length n denotes by $P_{-} n$. In a graph G, the distance between two distinct vertices x and y, denoted by $d(x, y)$, is the length of the shortest path connecting x and y, if such a path exists: otherwise, we set $d(x, y)=\infty$. The diameter of a graph G is $\operatorname{diam}(G)=\sup \{d(x, y): x$ and y are distinct vertices of $G\}$. Also, a cycle is a path that begins and ends on the same vertex. A cycle with length n denotes by C_{n}. A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_{n} to denote the complete graph with n vertices. For a positive integer r, a complete r-partite graph is one in which each vertex is joined to every vertex that is not in the some subset. The complete bipartite graph with part sizes m and n is denoted by $K_{m, n}$. The graph $K_{1, n-1}$ is called a star graph in which the vertex with degree $n-1$ is called the center of the graph. For any graph G, we denote $N[x]=\{y \in V(G):(x, y)$ is an edge of $G\}$. Recall that the projective dimension of an R-module M, denoted by $p d(M)$, is the length of the minimal free resolution of M, that is, $p d(M)=\max \left\{I \mid \beta_{i, j}(M) \neq 0\right.$ for some $\left.j\right\}$. There is a strong connection between the topology of the simplicial complex and the structure of the free resolution of $K[\Delta]$. Let $\beta_{i, j}(\Delta)$ denotes the N-graded Betti numbers of the Stanley-Reisner ring $K[\Delta]$.

To any finite simple graph G with the vertex set $V(G)=\left\{x_{1}, \cdots, x_{n}\right\}$ and the edge set $E(G)$, one can attach an ideal in the Polynomial rings $R=K\left[x_{1}, \cdots, x_{n}\right]$ over the field K, where ideal $l_{2}(G)$ is called the edge ideal of G such that $l_{2}(G)=<x y z \mid x-y-z$ is $2-$

[^0]path in $G>$. Also the edge ring of G, denoted by $K(G)$ is defined to be the quotient ring $K(G)=R / I_{2}(G)$. Edge ideals and edge rings were first introduced by Villarreal [9] and then they have been studied by many authors in order to examine their algebraic properties according to the combinatorial data of graphs. In this paper, we denote S_{n} for a star graph with $n+1$ vertices. Let $R=K\left[x_{1}, \cdots, x_{n}\right]$ be a polynomial ring over a field K with the grading induced by $\operatorname{deg}\left(x_{i}\right)=d_{i}$, where d_{i} is a positive integer. If $M=\bigoplus_{i=0}^{\infty} M_{i}$ is a finitely generated N-graded module over R, its Hilbert function and Hilbert series are defined by $H(M, i)=l\left(M_{i}\right)$ and $F(M, t)=\sum_{i=0}^{\infty} H(M, i) t^{i}$ respectively, where $l\left(M_{i}\right)$ denotes the length of M_{i} as a K-module, in our case $l\left(M_{i}\right)=\operatorname{dim}_{K}\left(M_{i}\right)$.

§2. Cohen-Macaulay of Ideal $I_{2}(G)$ and $p d_{2}(G)$ of Some Graph G

Definition 2.1 Let G be a graph with vertex set V. Then a subset $A \subseteq V$ is a 2-vertex cover for G if for every path $x y z$ of G we have $\{x, y, z\} \cap A \neq \varnothing$. A 2-minimal vertex cover of G is a subset A of V such that A is a 2-vertex cover, and no proper subset of A is a vertex cover for G. The smallest cardinality of a 2-vertex cover of G is called the 2-vertex covering number of G and is denoted by $a_{02}(G)$.

Example 2.2 Let G be a graph shown in the figure. Then the set $\left\{x_{2}, x_{4}, x_{7}\right\}$ is a 2 -minimal vertex cover of G and $a_{02}(G)=3$.

Figure 1
Definition 2.3 Let G be a graph with vertex set V. A subset $\mathcal{A} \subseteq V$ is a k-independent if for even x of \mathcal{A} we have $\operatorname{deg}_{G[S]} \leq k-1$. The maximum possible cardinality of an k-independent set of G, denoted $\beta_{0 k}(G)$, is called the k-independence number of G. It is easy see that

$$
\alpha_{02}(G)+\beta_{02}(G)=|V(G)|
$$

Definition 2.4 Let G be a graph without isolated vertices, Let $\mathcal{S}=K\left[x_{1}, \cdots, x_{n}\right]$ the polynomial ring on the vertices of G over some fixed field K. The 2-pathes ideal $I_{2}(G)$ associated to the graph G is the ideal of \mathcal{S} generated by the set of square-free monomials $x_{i} x_{j} x_{r}$ such that $\nu_{i} \nu_{j} \nu_{r}$
is the path of G, that is $I_{2}(G)=<\left\{x_{i} x_{j} x_{r} \mid\left\{\nu_{i} \nu_{j} \nu_{r}\right\} \in P_{2}(G)\right\}>$.
Proposition 2.5 Let $\mathcal{S}=K\left[x_{1}, \cdots, x_{n}\right]$ be a polynomial ring over a field K and G a graph with vertices ν_{1}, \cdots, ν_{n}. If P is an ideal of R generated by $\mathcal{A}=\left\{x_{i 1}, \cdots, x_{i k}\right\}$ then P is a minimal prime of $I_{2}(G)$ if and only if \mathcal{A} is a 2-minimal vertex cover of G.

Proof It is easy see that $I_{2}(G) \subseteq P$ if and only if \mathcal{A} is a 2 -vertex cover of G. Now, let \mathcal{A} is a 2-minimal vertex cover of G. By Proposition 5.1.3 [9] any minimal prime ideal of $I_{2}(G)$ is a face ideal thus P is a minimal prime of $I_{2}(G)$. The converse is clear.

Corollary 2.6 If G is a graph and $I_{2}(G)$ its 2-path ideal, then

$$
h t\left(I_{2}(G)\right)=\alpha_{02}(G)
$$

Proof It follows from Proposition 5 and the definition of $\alpha_{02}(G)$.
Definition 2.7 A graph G is 2-unmixed if all of its 2-minimal vertex covers have the same cardinality.

Definition 2.8 A graph G with vertex set $V(G)=\left\{\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right\}$ is 2-cohen-Macaullay over field K if the quotient ring $K\left[x_{1}, \cdots, x_{n}\right] / I_{2}(G)$ is cohen-Macaulay.

Proposition 2.9 If G is a 2-cohen-Macaulay graph, then G is 2-unmixed.
Proof By Corollary 1.3.6 [9], $I_{2}(G)=\bigcap_{P \in \min \left(I_{2}(G)\right)} P$. Since $R / I_{2}(G)$ is cohen-Macaullay, all minimal prime ideals of $I_{2}(G)$ have the same height. Then, by Proposition 5, all 2-minimal vertex cover of G have the same cardinality, as desired.

Proposition 2.10 If G is a graph and G_{1}, \cdots, G_{s} are its connected components, then G is 2-cohen- Macaulay if and only if for all i, G_{i} is cohen-Macaulay.

Proof Let $R=K[V(G)]$ and $R_{i}=L\left[V\left(G_{i}\right)\right]$ for all i. Since

$$
R / I_{2}(G) \cong R_{1} / I_{2}\left(G_{1}\right) \otimes_{K} \cdots \otimes_{K} R_{s} / I_{2}\left(G_{s}\right)
$$

Hence the results follow from Corollary 2.2.22 [9].
Definition 2.11 For any graph G one associates the complementary simplicial complex $\Delta_{2}(G)$, which is defined as

$$
\Delta_{2}(G):=\{\mathcal{A} \subset V \mid \mathcal{A} \text { is } 2-\text { independent set in } G\} .
$$

This means that the facets of $\Delta_{2}(G)$ are precisely the maximal 2-independent sets in G, that is the complements in V of the minimal 2-vertex covers. Thus $\Delta_{2}(G)$ precisely the StanleyReisner complex of $I_{2}(G)$.

It is easy see that $\omega\left(\Delta_{2}(G)\right)=\left\{\{x, y, z\} \mid x y z \in P_{3}(G)\right\}$. Therefore $I_{2}(G)=I_{\Delta_{2}(G)}$, and so G is $2-C-M$ graph if and only if the simplicial complex $\Delta_{2}(G)$ is cohen-Macaulay.

Now, we can show the following propositiori.
Proposition 2.12 The following statements hold:
(a) For any $n \geq 1$ the complete graph K_{n} is cohen-Macaulay;
(b) The complete bipartite graph $K_{m, n}$ is cohen-Macaulay if and only if $m+n \leq 4$.

Proof (a) Since $\Delta_{2}\left(K_{n}\right)=<\{x, y\} \mid x, y \in V\left(K_{n}\right)>$, thus $\Delta_{2}\left(K_{n}\right)$ is connected l dimensional simplicial complex, then by Corohary $5.3 .7[9], \Delta_{2}\left(K_{n}\right)$ is cohen-Macaula so K_{n} is cohen-Macaulay.
(b) If $m+n \leq 4$, then $K_{m, n} \cong P_{2}, P_{3}, C_{4}$. It is easy to see that $\Delta_{2}\left(K_{m, n}\right)$ is c. So $K_{m, n}$ is cohen-Macaulay.

Conversely, let $K_{m, n}$ is cohen-Macaulay and $m+n \geq 5$. Take $V_{1}=\left\{x_{1}, \cdots, x_{n}\right\}$ and $V_{2}=\left\{y_{1}, \cdots, y_{m}\right\}$ are the partite sets of $K_{m, n}$. One has

$$
\Delta_{2}\left(K_{m, n}\right)=<\left\{x_{1}, \cdots, x_{n}\right\},\left\{y_{1}, \cdots, y_{m}\right\},\left\{x_{i}, y_{j}\right\} \mid 1 \leq i \leq n, 1 \leq j \leq m>
$$

Since $m+n \geq 5, \Delta_{2}\left(K_{m, n}\right)$ is not pure simplicial complex. Then, by 5.3.12 [9] $\Delta_{2}\left(K_{m, n}\right)$ is not cohen-Macaulay, a contradiction, as desired.

Now, we present a result about the Hilbert series of $K\left[\Delta_{2}\left(K_{n}\right)\right]$ and $K\left[\Delta_{2}\left(K_{m, n}\right)\right]$.
Proposition 2.13 If $\Delta_{2}\left(K_{n}\right)$ and $\Delta_{2}\left(K_{m, n}\right)$ are the complementary simplicial complexes K_{n} and $K_{m, n}$ respectively, then
(a) $F\left(K\left[\Delta_{2}\left(K_{n}\right)\right], z\right)=1+n z /(1-z)+n(n-1) / 2(1-z)^{2}$;
(b) $F\left(K\left[\Delta_{2}\left(K_{n, m}\right)\right], z\right)=1 /(1-z)^{n}+1 /(1-z)^{m}+m \cdot n z^{2} /(1-z)^{2}-1$.

Proof (a) Since $\Delta_{2}\left(K_{n}\right)=<\{x, y\} \mid x, y \in V\left(K_{n}\right)>$ hence dime $\Delta_{2}\left(K_{n}\right)=1$ and $f_{-1}\left(K_{n}\right)=1, f_{0},\left(K_{n}\right)=n$ and $f_{1}\left(K_{n}\right)=\binom{n}{2}=n(n-1) / 2$. By Corollary 5.4.5 [9]. We have

$$
F\left(K\left[\Delta_{2}\left(K_{n}\right)\right], z\right)=1+n z / 1-z+n(n-1) / 2 . z^{2} / 2(1-z)^{2} .
$$

(b) Let $\left\{x_{1}, \cdots, x_{n}\right\}$ and $\left\{y_{1}, \cdots, y_{m}\right\}$ are the parties sets of $K_{m, n}$. Since

$$
\Delta_{2}\left(K_{m, n}\right)=<\left\{x_{1}, \cdots, x_{n}\right\},\left\{y_{1}, \cdots, y_{m}\right\},\left\{x_{i}, y_{j}\right\} \mid 1 \leq i \leq n, 1 \leq j \leq m>
$$

Then it is easy see that $f_{1}\left(\Delta_{2}\left(K_{m, n}\right)\right)=f_{1}\left(\Delta\left(K_{m, n}\right)\right)+m n$ and $f_{i}\left(\Delta_{2}\left(K_{m, n}\right)\right)=f_{i}\left(\Delta\left(K_{m, n}\right)\right)$ for all $i \neq 1$. In the other hand, by 6.6.6[9], $F\left(K\left[\Delta_{2}\left(K_{n}\right)\right], z\right)=1 /(1-z)^{n}-1$., Thus

$$
F\left(K\left[\Delta_{2}\left(K_{n}\right)\right], z\right)=1 /(1-z)^{n}+1 /(1-z)^{m}+m \cdot n z^{2} /(1-z)^{2}-1 .
$$

This completes the proof.
Corollary $2.14 F\left(K\left[\Delta_{2}\left(S_{n}\right)\right], z\right)=1 /(1-z)^{n}+n z^{2} /(1-z)^{2}+z /(1-z)$.

Proof It follows from Proposition 2.13 with assume $m=1$.

In this section we mainly present basic properties of 2-shellable graphs.

Lemma 2.15 Let G be a graph and x be a vertex of degree 1 in G and let $y \in N(x)$ and $G^{\prime}=G-(\{y\} \cup N(y))$. Then $\Delta_{2}\left(G^{\prime}\right)=l K_{\Delta_{2}(G)}(\{x, y\})$. Moreover F is a facet of $\Delta_{2}\left(G^{\prime}\right)$ if and only if $F \cup\{x, y\}$ is a facet of $\Delta_{2}(G)$.

Proof (a) Let $F \in l K_{\Delta_{2}(G)}(\{x, y\})$. Then $F \in \Delta_{2}(G), x, y \notin F$ and $F \cup\{x, y\} \in \Delta_{2}(G)$. This implies that $(F \cup\{x, y\}) \cap N[y]=\varnothing$ and $F \subseteq(V-\{x, y\}) \cup N[y]=(V-y) \cup N[y]=$ $V\left(G^{\prime}\right)$. Thus F is 2 -independent in G^{\prime}, it follows that $F \in \Delta_{2}\left(G^{\prime}\right)$. Conversely let $F \in \Delta_{2}\left(G^{\prime}\right)$, then F is 2-independent in G^{\prime} and $F \cap(x \cup[y])=\varnothing$. Therefore $F \cup\{x, y\}$ is 2-independent in G and so $F \cup\{x, y\} \in \Delta_{2}(G), F \cup\{x, y\}=\varnothing$. Thus $F \in l K_{\Delta_{2}(G)}(\{x, y\})$. Finaly from part one follows that F is a facet of $\Delta_{2}\left(G^{\prime}\right)$ if and only if $F \cup\{x, y\}$ is a facet of $\Delta_{2}(G)$.

Definition 2.16 Fix a field K and set $R=K\left[x_{1}, \cdots, x_{n}\right]$. If G is a graph with vertex set $V(G)=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$, we define the projective dimension of G to be the 2-projective dimension R - module $R / I_{2}(G)$, and we will write $p d_{2}(G)=p d\left(R / l_{2}(G)\right)$.

Proposition 2.17 If G is a graph and $\{x, y\}$ is a edge of G, then

$$
\begin{aligned}
P_{2}(G) \leq & \max \left\{P_{2}(G-(N[x] \cup N[y]))+\operatorname{deg}(x)+\operatorname{deg}(y)\right. \\
& \left.-|N[x] \cap N[y]|, P_{2}(G-x)+1, P_{2}(G-y)+1\right\} .
\end{aligned}
$$

Proof Let $N[x]=\left\{x_{1}, \cdots, x_{\xi}\right\}$ and $N[y]=\left\{y_{1}, \cdots, y_{r}\right\}$. It is easy to see that

$$
I_{2}(G): x y=\left(I_{2}(G)-(N[x] \cup N[y]), x_{1}, \cdots, x_{\xi}, y_{1}, \cdots, y_{r}\right) .
$$

Now, let

$$
R^{\prime}=K[V(G-(N[x] \bigcup N[y]))] .
$$

Then

$$
\operatorname{depth}\left(R / I_{2}(G): x y\right)=\operatorname{depth}\left(R^{\prime} / I_{2}(G-(N[x] \cup N[y]) .\right.
$$

And so by Auslander-Buchsbaum formula, we have

$$
\begin{aligned}
p d_{2}\left(R / I_{2}(x): x y\right) & =p d_{2}(G-(N[x] \cup N[y])+\operatorname{deg}(x)+\operatorname{deg}(y)-|N[x] \cap N[y]|, \\
p d_{2}\left(R / I_{2}(x), x\right) & =p d_{2}(G-x)+1, \\
p d_{2}\left(R / I_{2}(x), y\right) & =p d_{2}(G-y)+1 .
\end{aligned}
$$

On the other hand by Proposition 2.10, together with the exact sequence

$$
0 \longrightarrow R / I_{2}(G): x y \longrightarrow R / I_{2}(G) \longrightarrow R / I_{2}(G) x y \longrightarrow 0,
$$

it follows that

$$
\begin{aligned}
P_{2}(G) \leq & \max \left\{P_{2}(G-(N[x] \cup N[y]))+\operatorname{deg}(x)+\operatorname{deg}(y)\right. \\
& \left.-|N[x] \cap N[y]|, P_{2}(G-x)+1, P_{2}(G-y)+1\right\}
\end{aligned}
$$

Proposition 2.18 Let G be a graph and $I_{2}(G)$ is path ideal of G. Then

$$
\operatorname{Bight}\left(I_{2}(G)\right) \leq p d_{2}(G)
$$

Proof Let P be a minimal vertex cover with maximal cardinality. Then by Proposition $2.5, P$ is an associated prime of $R / I_{2}(G)$, so

$$
p d_{2}(G)=p d\left(R / I_{2}(G)\right) \geq p d_{R_{p}}\left(R_{p} / I_{2}(G) R_{p}\right)=\operatorname{dim}_{p}=h t P
$$

Proposition 2.19 Let K_{n} denote the complete graph on n vertices and let $K_{m, n}$ denote the complete bipartite graph on $m+n$ vertices.
(a) $p d_{2}\left(K_{n}\right)=n-2$;
(b) $p d_{2}\left(K_{m, n}\right)=m+n-2$.

Proof (a) The proof is by induction on n. If $n=2$ or 3 , then the result easy follows. Let $n \geq 4$ and suppose that for every complete graphs K_{n} of other less than n the result is true. Since $\operatorname{Bight}\left(I_{2}\left(K_{n}\right)\right)=n-2$ then by Proposition $p d_{2}\left(K_{n}\right) \geq n-2$. On the other hand by the inductive hypothesis, we have $p d_{2}\left(K_{n-1}\right)=n-3$. So by Proposition 2.17,

$$
p d_{2}\left(K_{n}\right) \leq \max \{n-2, n-2\}
$$

(b) Again we use by induction on $m+n$. If $m+n=2$ or 3 , then it is easy to see that $p d_{2}\left(K_{m, n}\right)=0$ or 1 . Let $m+n \geq 4$ and suppose that for every complete bipartite graph $K_{m, n}$ of order less than $m+n$ the result is true. Since $\operatorname{Bight}\left(I_{2}\left(K_{m, n}\right)\right)=m+n-2$ then $p d_{2}\left(K_{m, n}\right) \geq m+n-2$. Also, by the inductive hypothesis we have $p d_{2}\left(K_{m-1, n}\right)=m+n-3$ and $p d_{2}\left(K_{m, n-1}\right)=m+n-3$. So by Proposition2.17,

$$
p d_{2}\left(K_{m, n}\right) \leq \max \left\{m+n-2, p d_{2}\left(K_{m-1, n}\right)+1, p d_{2}\left(K_{m, n-1}\right)+1=m+n-2\right\}
$$

This completes the proof.

Corollary 2.20 Let S_{n} denote the star graph on $n+1$ vertices and $S_{m, n}$ denote the double star, then $\operatorname{pd}_{2}\left(S_{m, n}\right)=m+n$.

Proof It follows from Proposition 2.19 with assume $m=1$ and it is easy to see that $\operatorname{BightI}_{2}\left(S_{m, n}\right)=m+n$, and so by Proposition 2.17, it follows that

$$
p d_{2}\left(S_{m, n}\right)=m+n
$$

References

[1] A. Conca, J. Herzog, Castelnuovo Mumford regularity of products of ideals, Collect. Math., 54, (2003), No. 2, 137-152.
[2] H. Dao, C. Huneke, and J. Schweig, Projective dimension and independence complex homology, (to appear).
[3] A. Dochtermann and A. Engstrom, Algebraic properties of edge via combinatorial topology, Electron. J. Combin., 16 (2009), Special volume in honor of Anders Bjorneg Reseearch Paper 2.
[4] D. Ferrarello, The complement of a dtree is cohen-Macaulay, Math. Scand., 99(2006), 161167.
[5] J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, Springer-Verlag, 2011.
[6] J. Herzog, T. Hibi, X. Zheng, Monomial ideals whose powers have a linear resolution, Math. Scand., 95 (2004), 23-32.
[7] C. Peskine and L. Szpiro, Dimension projective iinite et oohomologie locale, Inst. Hautes Etudes Sci. Publ. Math., 42 (1973) 47-119.
[8] N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998), Surhiaisekikenkyusho Kokyurokn, No. 1078 (I999), 174-184.
[9] R. Villarreal, Monomial Algebras(Second edition), March 26, 2015 by Chapman and Hall/CRC.

[^0]: ${ }^{1}$ Received December 19, 2016, Accepted August 13, 2017.

