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Abstract: In this paper, we study the Cohen-Macaulay of ideal I (G), where 7 (G) =
(xryz | x —y — 2z is 2 — path in G). Also, we determined the 2-projective dimension R-
module, R/I> (G) denoted by pda (G) of some graphs.
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§1. Introduction

A simple graph is a pair G = (V, E), where V = V(G) and E = E(G) are the sets of vertices
and edges of G, respectively. A walk is an alternating sequence of vertices and connecting
edges. A path is a walk that does not include any vertex twice, except that its first vertex
might be the same as its last. A path with length n denotes by P_n. In a graph G, the
distance between two distinct vertices « and y, denoted by d(z,y), is the length of the shortest
path connecting x and y, if such a path exists: otherwise, we set d(z,y) = oo. The diameter
of a graph G is diam(G) = sup{d(z,y) : « and y are distinct vertices of G}. Also, a cycle
is a path that begins and ends on the same vertex. A cycle with length n denotes by C,.
A graph G is said to be connected if there exists a path between any two distinct vertices,
and it is complete if it is connected with diameter one. We use K,, to denote the complete
graph with n vertices. For a positive integer r, a complete r-partite graph is one in which
each vertex is joined to every vertex that is not in the some subset. The complete bipartite
graph with part sizes m and n is denoted by K,, . The graph K ,_; is called a star graph
in which the vertex with degree n — 1 is called the center of the graph. For any graph G, we
denote Nz] = {y € V(G) : (x,y) is an edge of G}. Recall that the projective dimension of an
R-module M, denoted by pd(M), is the length of the minimal free resolution of M, that is,
pd(M) = maz {I| §; ;(M) # 0 for some j}. There is a strong connection between the topology
of the simplicial complex and the structure of the free resolution of K[A]. Let 3; ;(A) denotes
the N-graded Betti numbers of the Stanley-Reisner ring K[A].

To any finite simple graph G with the vertex set V(G) = {1, -+ ,x,} and the edge set
E(G), one can attach an ideal in the Polynomial rings R = K [z1,--- ,x,] over the field K,
where ideal lI3(G) is called the edge ideal of G such that I3(G) =< zyz| ¢ —y — z is 2 —
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path in G >. Also the edge ring of G, denoted by K(G) is defined to be the quotient ring
K(G) = R/I5(G). Edge ideals and edge rings were first introduced by Villarreal [9] and then
they have been studied by many authors in order to examine their algebraic properties according
to the combinatorial data of graphs. In this paper, we denote S,, for a star graph with n + 1
vertices. Let R = K [x1,- -+ ,x,] be a polynomial ring over a field K with the grading induced by
deg(x;) = d;, where d; is a positive integer. If M = @;’io M; is a finitely generated N-graded
module over R, its Hilbert function and Hilbert series are defined by H(M,i) = I(M;) and
F(M,t) =2, H(M,i)t" respectively, where [(M;) denotes the length of M; as a K-module,
in our case I(M;) = dimg (M;).

§2. Cohen-Macaulay of Ideal I2(G) and pdy(G) of Some Graph G

Definition 2.1 Let G be a graph with vertex set V.. Then a subset A CV is a 2-vertex cover
for G if for every path xyz of G we have {x,y, 2z} N A # &. A 2-minimal vertex cover of G is a
subset A of V' such that A is a 2-vertex cover, and no proper subset of A is a vertex cover for
G. The smallest cardinality of a 2-vertex cover of G is called the 2-vertex covering number of
G and is denoted by ag2(QG).

Example 2.2 Let G be a graph shown in the figure. Then the set {x2, x4, 27} is a 2-minimal
vertex cover of G and ag2(G) = 3.
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X7 Z1

Figure 1

Definition 2.3 Let G be a graph with vertex set V. A subset A C 'V is a k-independent if for
even z of A we have deggis) < k — 1. The mazimum possible cardinality of an k-independent
set of G, denoted Bor(G), is called the k-independence number of G. It is easy see that

a02(G) + Bo2(G) = [V(G)].
Definition 2.4 Let G be a graph without isolated vertices, Let S = K [x1,- -+ , ] the polynomial

ring on the vertices of G over some fized field K. The 2-pathes ideal I2(G) associated to the

graph G is the ideal of S generated by the set of square-free monomials x;x;x, such that v;v;v,
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is the path of G, that is Io(G) =< {x;zjz,| {vivjv,} € Py(G)} > .

Proposition 2.5 Let S = K [x1,- -+ ,z,] be a polynomial ring over a field K and G a graph
with vertices v1,--+ ,vy. If P is an ideal of R generated by A = {x;1, -+ ,xix} then P is a

minimal prime of Io(G) if and only if A is a 2-minimal vertex cover of G.

Proof Tt is easy see that Io(G) C P if and only if A is a 2-vertex cover of G. Now, let A
is a 2-minimal vertex cover of G. By Proposition 5.1.3 [9] any minimal prime ideal of I3(G) is

a face ideal thus P is a minimal prime of I3(G). The converse is clear. O
Corollary 2.6 If G is a graph and I5(G) its 2-path ideal, then

ht (IQ(G)) = O[OQ(G).

Proof Tt follows from Proposition 5 and the definition of ag2(G). O

Definition 2.7 A graph G is 2-unmized if all of its 2-minimal vertez covers have the same

cardinality.

Definition 2.8 A graph G with vertez set V(G) = {v1,va, - ,vn} s 2-cohen-Macaullay over
field K if the quotient ring K [x1,- - ,x,] /I2(G) is cohen-Macaulay.

Proposition 2.9 If G is a 2-cohen-Macaulay graph, then G is 2-unmized.

Proof By Corollary 1.3.6 [9], 12(G) = pemin(1,(c)) I Since R/I>(G) is cohen-Macaullay,
all minimal prime ideals of I5(G) have the same height. Then, by Proposition 5, all 2-minimal

vertex cover of G have the same cardinality, as desired. O

Proposition 2.10 If G is a graph and G1,--- ,Gs are its connected components, then G is
2-cohen- Macaulay if and only if for all i, G; is cohen-Macaulay.

Proof Let R= K [V(G)] and R; = L[V (G;)] for all i. Since
R/I(G) = R /1:(G1) ®k - - @k Rs/I2(Gs).
Hence the results follow from Corollary 2.2.22 [9]. O

Definition 2.11 For any graph G one associates the complementary simplicial complex Ao (G),
which is defined as

As (G) :={A C V| Ais 2 —independent set in G} .
This means that the facets of Ag(G) are precisely the maximal 2-independent sets in G,

that is the complements in V' of the minimal 2-vertex covers. Thus A, (G) precisely the Stanley-
Reisner complex of I>(G).
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It is easy see that w (A2(G)) = {{z,y,2}| zyz € P3(G)}. Therefore I(G) = Ia,(q), and
so G is 2 — C — M graph if and only if the simplicial complex As(G) is cohen-Macaulay.

Now, we can show the following propositiori.

Proposition 2.12 The following statements hold:

(a) For any n > 1 the complete graph K,, is cohen-Macaulay;
(b) The complete bipartite graph K, n is cohen-Macaulay if and only if m +n < 4.

Proof (a) Since Aq(K,) =< {z,y}| =,y € V(K,) >, thus Ay(K,) is connected I-
dimensional simplicial complex, then by Corohary 5.3.7 [9], A2(K,,) is cohen-Macaula so K, is
cohen-Macaulay.

() Ifm+n <4, then K, ,, = Ps, P3,Cy. It is easy to see that Ay(K,, ) is ¢. So Ky p
is cohen-Macaulay.

Conversely, let K, , is cohen-Macaulay and m +n > 5. Take V} = {z1, - ,2,} and
Vo ={y1, - ,ym} are the partite sets of K,, . One has

AQ(Km-,n) =< {Ila"' 7xn}a{y15"' ayﬂ’L}a{xivyj}| lglgnvl §]§m>

Since m+n > 5, Ag(Kp, ) is not pure simplicial complex. Then, by 5.3.12 [9] Ax(Kpm )
is not cohen-Macaulay, a contradiction, as desired. O

Now, we present a result about the Hilbert series of K[Aq(K,,)] and K[Aq (K, p)].

Proposition 2.13 If Ax(K,) and Ag(Kp,n) are the complementary simplicial complexes K,

and K,, » respectively, then

(a) F(K[A2(Ky)],2) =1+nz/(1—2)+nn—1)/2(1 —2)%;
(b) F(K[Ay(Kpm)),2) =1/(1—2)"+1/(1 = 2)™ + m.nz?/(1 — 2)? — 1.

Proof (a) Since Ay(K,) =< {z,y}| z,y € V(K,) > hence dime Ay(K,) = 1 and
f-1(Kn) =1, fo,(Kyn) =nand fi(K,) = (3) = n(n —1)/2. By Corollary 5.4.5 [9]. We have

2
F(K[A2(K,)],2) =14+nz/1 —z+n(n—1)/2.2%/2(1 — )%
(b) Let {x1,---,xn} and {y1, - ,ym} are the parties sets of K, ,,. Since

AQ(Km,n) =< {,Tl,"- 7$n},{y1,"' 7ym}7{xi7yj}| 1§7’§n71 §]§m>

Then it is easy see that fi (Ao(Km.n)) = f1 (A(Kmn))+mnand fi (A2(Kmn)) = fi (A(Kmn))
for all ¢ # 1. In the other hand, by 6.6.6[9], F(K[A2(K},)],z) =1/(1 — 2)™ — 1., Thus

F(K[A2(K,)],2)=1/(1 = 2)"+1/(1 = 2)™ +m.nz?/(1 — 2)* — 1.
This completes the proof. O

Corollary 2.14 F (K [A2(S,)],2) =1/(1 — 2)" +nz2/(1 — 2)2 + 2/(1 — 2).
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Proof Tt follows from Proposition 2.13 with assume m = 1. O

In this section we mainly present basic properties of 2-shellable graphs.

Lemma 2.15 Let G be a graph and x be a vertex of degree 1 in G and let y € N(x) and
G =G - ({y}UN(y)). Then Ao(G') = IKay ) ({7, y}) . Moreover F'is a facet of Ao (G if
and only if F U {x,y} is a facet of Aa(QG).

Proof (a) Let F € IKa,) ({z,y}). Then F' € Ao(G), z,y ¢ F and F U {z,y} € Ax(G).
This implies that (FU{z,y}) " N[yl = @ and F C (V —{a,y}) UN[y] = (V—y)UN[y] =
V(G'). Thus F is 2-independent in G, it follows that F' € Ay(G"). Conversely let F € Aq(G'),
then F is 2-independent in G and F N (z U [y]) = @. Therefore F U {z,y} is 2-independent in
G and so F'U {z,y} € Ay(G), FU{z,y} = @. Thus F € [Kn, ) ({z,y}). Finaly from part
one follows that F is a facet of As(G') if and only if F U {z,y} is a facet of Ay(G). O

Definition 2.16 Fiz a field K and set R = Klx1, -+ ,x,]. If G is a graph with vertex
set V(G) = {x1,29, - ,2n}, we define the projective dimension of G to be the 2-projective
dimension R- module R/I5(G), and we will write pda(G) = pd (R/12(@G)).

Proposition 2.17 If G is a graph and {z,y} is a edge of G, then
Py(G) < max{P (G — (N[z] UN[y])) + deg(x) + deg(y)

— [NZINNyll, Pa(G = z) + 1, Pa(G —y) + 1} .

Proof Let Nz] ={x1,---,z¢} and Ny] = {y1, - ,yr}. It is easy to see that
I(G) s ay = (L(G) = (N[2] UNy]) 21, e, 915 yr) -

Now, let
R =K [V (G - (N[:z:] UN[y]))} .
Then
depth(R/Ix(G) : ay) = depth(R /I,(G — (N[z] U N[y]).

And so by Auslander-Buchsbaum formula, we have

pda(R/Iz(x) : xy) = pda(G — (N[z] U Ny]) + deg(z) + deg(y) — [N[z] N Ny]|,
pda(R/Ix(z),z) = pda(G—2x)+1,
pda(R/Iz(x),y) = pd2(G—y)+1.

On the other hand by Proposition 2.10, together with the exact sequence

0 — R/I:(G) : 2y — R/I:(G) — R/I1(G)xy — 0,
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it follows that

P(G) < max{P(G — (N[z] U N[y])) + deg(x) + deg(y)
— |N[z] N Nyl|, P2(G —x) + 1, P2(G — y) + 1}. O

Proposition 2.18 Let G be a graph and I2(G) is path ideal of G. Then

Bight (IQ(G)) S de(G)

Proof Let P be a minimal vertex cover with maximal cardinality. Then by Proposition
2.5, P is an associated prime of R/I3(G), so

pds(G) = pd (R/15(G)) > pdr, (Ry/I2(G)R,) = dimR,, = htP. O

Proposition 2.19 Let K,, denote the complete graph on n vertices and let K, , denote the

complete bipartite graph on m + n vertices.

(a) pda(Ky) =n—2;

Proof (a) The proof is by induction on n. If n = 2 or 3, then the result easy follows. Let
n > 4 and suppose that for every complete graphs K, of other less than n the result is true.
Since Bight (I2 (K,,)) = n — 2 then by Proposition pda(K,,) > n — 2. On the other hand by the
inductive hypothesis, we have pday(K,,—1) = n — 3. So by Proposition 2.17,

pda(K,) < max{n —2,n—2}.

(b) Again we use by induction on m +n. If m +n = 2 or 3, then it is easy to see that
pde(Kpmpn) = 0 or 1. Let m +n > 4 and suppose that for every complete bipartite graph
K, of order less than m + n the result is true. Since Bight (I (K,,n)) = m +n — 2 then
pda (K pn) > m+mn — 2. Also, by the inductive hypothesis we have pda(Kp—1,n) = m+n—3
and pda (K n—1) = m+n — 3. So by Proposition2.17,

pde (K n) <max{m+n—2,pde(Kp—1n)+ 1,pdo(Kpn-1)+1=m+n—2}.
This completes the proof. O

Corollary 2.20 Let S, denote the star graph on n + 1 vertices and Sy, denote the double
star, then pda(Sm n) =m + n.

Proof 1t follows from Proposition 2.19 with assume m = 1 and it is easy to see that
BightIy (Sm.n) = m + n, and so by Proposition 2.17, it follows that

pda (Sm.n) =m + n. |
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