Cohen-Macaulay of Ideal $I_2(G)$

Abbas Alilou

(Department of Mathematics Azarbaijan Shahid, Madani University Tabriz, Iran)

E-mail: abbasalilou@yahoo.com

Abstract: In this paper, we study the Cohen-Macaulay of ideal $I_2(G)$, where $I_2(G) = \langle xyz | x - y - z \text{ is } 2 - \text{path in } G \rangle$. Also, we determined the 2-projective dimension R-module, $R/I_2(G)$ denoted by $pd_2(G)$ of some graphs.

Key Words: Cohen-Macaulay, projective dimension, ideal, path.

AMS(2010): 05E15

§1. Introduction

A simple graph is a pair G = (V, E), where V = V(G) and E = E(G) are the sets of vertices and edges of G, respectively. A walk is an alternating sequence of vertices and connecting edges. A path is a walk that does not include any vertex twice, except that its first vertex might be the same as its last. A path with length n denotes by P_n . In a graph G, the distance between two distinct vertices x and y, denoted by d(x, y), is the length of the shortest path connecting x and y, if such a path exists: otherwise, we set $d(x,y) = \infty$. The diameter of a graph G is $diam(G) = \sup \{ d(x, y) : x \text{ and } y \text{ are distinct vertices of } G \}$. Also, a cycle is a path that begins and ends on the same vertex. A cycle with length n denotes by C_n . A graph G is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use K_n to denote the complete graph with n vertices. For a positive integer r, a complete r-partite graph is one in which each vertex is joined to every vertex that is not in the some subset. The complete bipartite graph with part sizes m and n is denoted by $K_{m,n}$. The graph $K_{1,n-1}$ is called a star graph in which the vertex with degree n-1 is called the center of the graph. For any graph G, we denote $N[x] = \{y \in V(G) : (x, y) \text{ is an edge of } G\}$. Recall that the projective dimension of an *R*-module M, denoted by pd(M), is the length of the minimal free resolution of M, that is, $pd(M) = max \{I \mid \beta_{i,j}(M) \neq 0 \text{ for some } j\}$. There is a strong connection between the topology of the simplicial complex and the structure of the free resolution of $K[\Delta]$. Let $\beta_{i,j}(\Delta)$ denotes the N-graded Betti numbers of the Stanley-Reisner ring $K[\Delta]$.

To any finite simple graph G with the vertex set $V(G) = \{x_1, \dots, x_n\}$ and the edge set E(G), one can attach an ideal in the Polynomial rings $R = K[x_1, \dots, x_n]$ over the field K, where ideal $l_2(G)$ is called the edge ideal of G such that $l_2(G) = \langle xyz | x - y - z$ is 2 - Q

¹Received December 19, 2016, Accepted August 13, 2017.

path in G >. Also the edge ring of G, denoted by K(G) is defined to be the quotient ring $K(G) = R/I_2(G)$. Edge ideals and edge rings were first introduced by Villarreal [9] and then they have been studied by many authors in order to examine their algebraic properties according to the combinatorial data of graphs. In this paper, we denote S_n for a star graph with n + 1 vertices. Let $R = K[x_1, \dots, x_n]$ be a polynomial ring over a field K with the grading induced by $deg(x_i) = d_i$, where d_i is a positive integer. If $M = \bigoplus_{i=0}^{\infty} M_i$ is a finitely generated N-graded module over R, its Hilbert function and Hilbert series are defined by $H(M, i) = l(M_i)$ and $F(M, t) = \sum_{i=0}^{\infty} H(M, i)t^i$ respectively, where $l(M_i)$ denotes the length of M_i as a K-module, in our case $l(M_i) = dim_K(M_i)$.

§2. Cohen-Macaulay of Ideal $I_2(G)$ and $pd_2(G)$ of Some Graph G

Definition 2.1 Let G be a graph with vertex set V. Then a subset $A \subseteq V$ is a 2-vertex cover for G if for every path xyz of G we have $\{x, y, z\} \cap A \neq \emptyset$. A 2-minimal vertex cover of G is a subset A of V such that A is a 2-vertex cover, and no proper subset of A is a vertex cover for G. The smallest cardinality of a 2-vertex cover of G is called the 2-vertex covering number of G and is denoted by $a_{02}(G)$.

Example 2.2 Let G be a graph shown in the figure. Then the set $\{x_2, x_4, x_7\}$ is a 2-minimal vertex cover of G and $a_{02}(G) = 3$.

Definition 2.3 Let G be a graph with vertex set V. A subset $A \subseteq V$ is a k-independent if for even x of A we have $\deg_{G[S]} \leq k-1$. The maximum possible cardinality of an k-independent set of G, denoted $\beta_{0k}(G)$, is called the k-independence number of G. It is easy see that

$$\alpha_{02}(G) + \beta_{02}(G) = |V(G)|$$

Definition 2.4 Let G be a graph without isolated vertices, Let $S = K[x_1, \dots, x_n]$ the polynomial ring on the vertices of G over some fixed field K. The 2-pathes ideal $I_2(G)$ associated to the graph G is the ideal of S generated by the set of square-free monomials $x_i x_j x_r$ such that $\nu_i \nu_j \nu_r$ is the path of G, that is $I_2(G) = \langle \{x_i x_j x_r | \{\nu_i \nu_j \nu_r\} \in P_2(G) \} \rangle$.

Proposition 2.5 Let $S = K[x_1, \dots, x_n]$ be a polynomial ring over a field K and G a graph with vertices ν_1, \dots, ν_n . If P is an ideal of R generated by $\mathcal{A} = \{x_{i1}, \dots, x_{ik}\}$ then P is a minimal prime of $I_2(G)$ if and only if \mathcal{A} is a 2-minimal vertex cover of G.

Proof It is easy see that $I_2(G) \subseteq P$ if and only if \mathcal{A} is a 2-vertex cover of G. Now, let \mathcal{A} is a 2-minimal vertex cover of G. By Proposition 5.1.3 [9] any minimal prime ideal of $I_2(G)$ is a face ideal thus P is a minimal prime of $I_2(G)$. The converse is clear. \Box

Corollary 2.6 If G is a graph and $I_2(G)$ its 2-path ideal, then

$$ht\left(I_2(G)\right) = \alpha_{02}(G).$$

Proof It follows from Proposition 5 and the definition of $\alpha_{02}(G)$.

Definition 2.7 A graph G is 2-unmixed if all of its 2-minimal vertex covers have the same cardinality.

Definition 2.8 A graph G with vertex set $V(G) = \{\nu_1, \nu_2, \dots, \nu_n\}$ is 2-cohen-Macaullay over field K if the quotient ring $K[x_1, \dots, x_n]/I_2(G)$ is cohen-Macaulay.

Proposition 2.9 If G is a 2-cohen-Macaulay graph, then G is 2-unmixed.

Proof By Corollary 1.3.6 [9], $I_2(G) = \bigcap_{P \in \min(I_2(G))} P$. Since $R/I_2(G)$ is cohen-Macaullay, all minimal prime ideals of $I_2(G)$ have the same height. Then, by Proposition 5, all 2-minimal vertex cover of G have the same cardinality, as desired.

Proposition 2.10 If G is a graph and G_1, \dots, G_s are its connected components, then G is 2-cohen-Macaulay if and only if for all i, G_i is cohen-Macaulay.

Proof Let R = K[V(G)] and $R_i = L[V(G_i)]$ for all *i*. Since

$$R/I_2(G) \cong R_1/I_2(G_1) \otimes_K \cdots \otimes_K R_s/I_2(G_s).$$

Hence the results follow from Corollary 2.2.22 [9].

Definition 2.11 For any graph G one associates the complementary simplicial complex $\triangle_2(G)$, which is defined as

$$\Delta_2 (G) := \{ \mathcal{A} \subset V | \mathcal{A} \text{ is } 2 - independent \text{ set in } G \}.$$

This means that the facets of $\Delta_2(G)$ are precisely the maximal 2-independent sets in G, that is the complements in V of the minimal 2-vertex covers. Thus $\Delta_2(G)$ precisely the Stanley-Reisner complex of $I_2(G)$.

It is easy see that $\omega(\Delta_2(G)) = \{\{x, y, z\} \mid xyz \in P_3(G)\}$. Therefore $I_2(G) = I_{\Delta_2(G)}$, and so G is 2 - C - M graph if and only if the simplicial complex $\Delta_2(G)$ is cohen-Macaulay.

Now, we can show the following proposition.

Proposition 2.12 The following statements hold:

- (a) For any $n \ge 1$ the complete graph K_n is cohen-Macaulay;
- (b) The complete bipartite graph $K_{m,n}$ is cohen-Macaulay if and only if $m + n \leq 4$.

Proof (a) Since $\Delta_2(K_n) = \langle \{x, y\} | x, y \in V(K_n) \rangle$, thus $\Delta_2(K_n)$ is connected *l*-dimensional simplicial complex, then by Corohary 5.3.7 [9], $\Delta_2(K_n)$ is cohen-Macaula so K_n is cohen-Macaulay.

(b) If $m + n \leq 4$, then $K_{m,n} \cong P_2, P_3, C_4$. It is easy to see that $\Delta_2(K_{m,n})$ is c. So $K_{m,n}$ is cohen-Macaulay.

Conversely, let $K_{m,n}$ is cohen-Macaulay and $m + n \ge 5$. Take $V_1 = \{x_1, \dots, x_n\}$ and $V_2 = \{y_1, \dots, y_m\}$ are the partite sets of $K_{m,n}$. One has

. Since $m+n \ge 5$, $\Delta_2(K_{m,n})$ is not pure simplicial complex. Then, by 5.3.12 [9] $\Delta_2(K_{m,n})$ is not cohen-Macaulay, a contradiction, as desired.

Now, we present a result about the Hilbert series of $K[\Delta_2(K_n)]$ and $K[\Delta_2(K_{m,n})]$.

Proposition 2.13 If $\Delta_2(K_n)$ and $\Delta_2(K_{m,n})$ are the complementary simplicial complexes K_n and $K_{m,n}$ respectively, then

(a) $F(K[\Delta_2(K_n)], z) = 1 + nz/(1-z) + n(n-1)/2(1-z)^2;$ (b) $F(K[\Delta_2(K_{n,m})], z) = 1/(1-z)^n + 1/(1-z)^m + m nz^2/(1-z)^2 - 1.$

Proof (a) Since $\Delta_2(K_n) = \langle \{x, y\} | x, y \in V(K_n) \rangle$ hence dime $\Delta_2(K_n) = 1$ and $f_{-1}(K_n) = 1, f_0, (K_n) = n$ and $f_1(K_n) = \binom{n}{2} = n(n-1)/2$. By Corollary 5.4.5 [9]. We have

$$F(K[\Delta_2(K_n)], z) = 1 + nz/1 - z + n(n-1)/2 \cdot z^2/2(1-z)^2.$$

(b) Let $\{x_1, \dots, x_n\}$ and $\{y_1, \dots, y_m\}$ are the parties sets of $K_{m,n}$. Since

$$\Delta_2(K_{m,n}) = < \{x_1, \cdots, x_n\}, \{y_1, \cdots, y_m\}, \{x_i, y_j\} \mid 1 \le i \le n, 1 \le j \le m > 1$$

Then it is easy see that $f_1(\Delta_2(K_{m,n})) = f_1(\Delta(K_{m,n})) + mn$ and $f_i(\Delta_2(K_{m,n})) = f_i(\Delta(K_{m,n}))$ for all $i \neq 1$. In the other hand, by 6.6.6[9], $F(K[\Delta_2(K_n)], z) = 1/(1-z)^n - 1$. Thus

$$F(K[\Delta_2(K_n)], z) = 1/(1-z)^n + 1/(1-z)^m + m \cdot n z^2/(1-z)^2 - 1.$$

This completes the proof.

Corollary 2.14 $F(K[\Delta_2(S_n)], z) = 1/(1-z)^n + nz^2/(1-z)^2 + z/(1-z).$

Proof It follows from Proposition 2.13 with assume m = 1.

In this section we mainly present basic properties of 2-shellable graphs.

Lemma 2.15 Let G be a graph and x be a vertex of degree 1 in G and let $y \in N(x)$ and $G' = G - (\{y\} \cup N(y))$. Then $\Delta_2(G') = lK_{\Delta_2(G)}(\{x, y\})$. Moreover F is a facet of $\Delta_2(G')$ if and only if $F \cup \{x, y\}$ is a facet of $\Delta_2(G)$.

Proof (a) Let $F \in lK_{\Delta_2(G)}(\{x, y\})$. Then $F \in \Delta_2(G)$, $x, y \notin F$ and $F \cup \{x, y\} \in \Delta_2(G)$. This implies that $(F \cup \{x, y\}) \cap N[y] = \emptyset$ and $F \subseteq (V - \{x, y\}) \cup N[y] = (V - y) \cup N[y] = V(G')$. Thus F is 2-independent in G', it follows that $F \in \Delta_2(G')$. Conversely let $F \in \Delta_2(G')$, then F is 2-independent in G' and $F \cap (x \cup [y]) = \emptyset$. Therefore $F \cup \{x, y\}$ is 2-independent in G and so $F \cup \{x, y\} \in \Delta_2(G)$, $F \cup \{x, y\} = \emptyset$. Thus $F \in lK_{\Delta_2(G)}(\{x, y\})$. Finally from part one follows that F is a facet of $\Delta_2(G')$ if and only if $F \cup \{x, y\}$ is a facet of $\Delta_2(G)$.

Definition 2.16 Fix a field K and set $R = K[x_1, \dots, x_n]$. If G is a graph with vertex set $V(G) = \{x_1, x_2, \dots, x_n\}$, we define the projective dimension of G to be the 2-projective dimension R- module $R/I_2(G)$, and we will write $pd_2(G) = pd(R/l_2(G))$.

Proposition 2.17 If G is a graph and $\{x, y\}$ is a edge of G, then

$$P_2(G) \leq \max \{ P_2(G - (N[x] \cup N[y])) + deg(x) + deg(y) - |N[x] \cap N[y]|, P_2(G - x) + 1, P_2(G - y) + 1 \}.$$

Proof Let $N[x] = \{x_1, \dots, x_{\xi}\}$ and $N[y] = \{y_1, \dots, y_r\}$. It is easy to see that

$$I_2(G): xy = (I_2(G) - (N[x] \cup N[y]), x_1, \cdots, x_{\xi}, y_1, \cdots, y_r)$$

Now, let

$$R' = K \left[V \left(G - \left(N[x] \bigcup N[y] \right) \right) \right].$$

Then

$$depth(R/I_2(G): xy) = depth(R'/I_2(G - (N[x] \cup N[y])).$$

And so by Auslander-Buchsbaum formula, we have

$$pd_2(R/I_2(x):xy) = pd_2(G - (N[x] \cup N[y]) + deg(x) + deg(y) - |N[x] \cap N[y]|,$$

$$pd_2(R/I_2(x),x) = pd_2(G - x) + 1,$$

$$pd_2(R/I_2(x),y) = pd_2(G - y) + 1.$$

On the other hand by Proposition 2.10, together with the exact sequence

$$0 \longrightarrow R/I_2(G) : xy \longrightarrow R/I_2(G) \longrightarrow R/I_2(G)xy \longrightarrow 0,$$

it follows that

$$P_2(G) \leq \max \{ P_2(G - (N[x] \cup N[y])) + deg(x) + deg(y) \\ - |N[x] \cap N[y]|, P_2(G - x) + 1, P_2(G - y) + 1 \}.$$

Proposition 2.18 Let G be a graph and $I_2(G)$ is path ideal of G. Then

$$Bight(I_2(G)) \le pd_2(G)$$

Proof Let P be a minimal vertex cover with maximal cardinality. Then by Proposition 2.5, P is an associated prime of $R/I_2(G)$, so

$$pd_2(G) = pd\left(R/I_2(G)\right) \ge pd_{R_p}\left(R_p/I_2(G)R_p\right) = dimR_p = htP.$$

Proposition 2.19 Let K_n denote the complete graph on n vertices and let $K_{m,n}$ denote the complete bipartite graph on m + n vertices.

(a) $pd_2(K_n) = n - 2;$ (b) $pd_2(K_{m,n}) = m + n - 2.$

Proof (a) The proof is by induction on n. If n = 2 or 3, then the result easy follows. Let $n \ge 4$ and suppose that for every complete graphs K_n of other less than n the result is true. Since $Bight(I_2(K_n)) = n - 2$ then by Proposition $pd_2(K_n) \ge n - 2$. On the other hand by the inductive hypothesis, we have $pd_2(K_{n-1}) = n - 3$. So by Proposition 2.17,

$$pd_2(K_n) \le \max\{n-2, n-2\}$$

(b) Again we use by induction on m + n. If m + n = 2 or 3, then it is easy to see that $pd_2(K_{m,n}) = 0$ or 1. Let $m + n \ge 4$ and suppose that for every complete bipartite graph $K_{m,n}$ of order less than m + n the result is true. Since $Bight(I_2(K_{m,n})) = m + n - 2$ then $pd_2(K_{m,n}) \ge m + n - 2$. Also, by the inductive hypothesis we have $pd_2(K_{m-1,n}) = m + n - 3$ and $pd_2(K_{m,n-1}) = m + n - 3$. So by Proposition2.17,

$$pd_2(K_{m,n}) \le \max\{m+n-2, pd_2(K_{m-1,n})+1, pd_2(K_{m,n-1})+1=m+n-2\}$$

This completes the proof.

Corollary 2.20 Let S_n denote the star graph on n + 1 vertices and $S_{m,n}$ denote the double star, then $pd_2(S_{m,n}) = m + n$.

Proof It follows from Proposition 2.19 with assume m = 1 and it is easy to see that $BightI_2(S_{m,n}) = m + n$, and so by Proposition 2.17, it follows that

$$pd_2\left(S_{m,n}\right) = m + n.$$

References

- A. Conca, J. Herzog, Castelnuovo Mumford regularity of products of ideals, *Collect. Math.*, 54, (2003), No. 2, 137-152.
- [2] H. Dao, C. Huneke, and J. Schweig, Projective dimension and independence complex homology, (to appear).
- [3] A. Dochtermann and A. Engstrom, Algebraic properties of edge via combinatorial topology, *Electron. J. Combin.*, 16 (2009), Special volume in honor of Anders Bjorneg Research Paper 2.
- [4] D. Ferrarello, The complement of a dtree is cohen-Macaulay, Math. Scand., 99(2006), 161-167.
- [5] J. Herzog, T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, Springer-Verlag, 2011.
- [6] J. Herzog, T. Hibi, X. Zheng, Monomial ideals whose powers have a linear resolution, *Math. Scand.*, 95 (2004), 23-32.
- [7] C. Peskine and L. Szpiro, Dimension projective iinite et oohomologie locale, Inst. Hautes Etudes Sci. Publ. Math., 42 (1973) 47-119.
- [8] N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998), Surhiaisekikenkyusho Kokyurokn, No. 1078 (I999), 174-184.
- [9] R. Villarreal, Monomial Algebras (Second edition), March 26, 2015 by Chapman and Hall/CRC.