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Abstract: In this paper, we study the Cohen-Macaulay of ideal I2 (G), where I2 (G) =

〈xyz | x − y − z is 2 − path in G〉. Also, we determined the 2-projective dimension R-

module, R/I2 (G) denoted by pd2 (G) of some graphs.
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§1. Introduction

A simple graph is a pair G = (V, E), where V = V (G) and E = E(G) are the sets of vertices

and edges of G, respectively. A walk is an alternating sequence of vertices and connecting

edges. A path is a walk that does not include any vertex twice, except that its first vertex

might be the same as its last. A path with length n denotes by P−n. In a graph G, the

distance between two distinct vertices x and y, denoted by d(x, y), is the length of the shortest

path connecting x and y, if such a path exists: otherwise, we set d(x, y) = ∞. The diameter

of a graph G is diam(G) = sup {d(x, y) : x and y are distinct vertices of G}. Also, a cycle

is a path that begins and ends on the same vertex. A cycle with length n denotes by Cn.

A graph G is said to be connected if there exists a path between any two distinct vertices,

and it is complete if it is connected with diameter one. We use Kn to denote the complete

graph with n vertices. For a positive integer r, a complete r-partite graph is one in which

each vertex is joined to every vertex that is not in the some subset. The complete bipartite

graph with part sizes m and n is denoted by Km,n. The graph K1,n−1 is called a star graph

in which the vertex with degree n − 1 is called the center of the graph. For any graph G, we

denote N [x] = {y ∈ V (G) : (x, y) is an edge of G}. Recall that the projective dimension of an

R-module M , denoted by pd(M), is the length of the minimal free resolution of M , that is,

pd(M) = max {I| βi,j(M) 6= 0 for some j}. There is a strong connection between the topology

of the simplicial complex and the structure of the free resolution of K[∆]. Let βi,j(∆) denotes

the N -graded Betti numbers of the Stanley-Reisner ring K[∆].

To any finite simple graph G with the vertex set V (G) = {x1, · · · , xn} and the edge set

E(G), one can attach an ideal in the Polynomial rings R = K [x1, · · · , xn] over the field K,

where ideal l2(G) is called the edge ideal of G such that l2(G) =< xyz| x − y − z is 2 −
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path in G >. Also the edge ring of G, denoted by K(G) is defined to be the quotient ring

K(G) = R/I2(G). Edge ideals and edge rings were first introduced by Villarreal [9] and then

they have been studied by many authors in order to examine their algebraic properties according

to the combinatorial data of graphs. In this paper, we denote Sn for a star graph with n + 1

vertices. Let R = K [x1, · · · , xn] be a polynomial ring over a field K with the grading induced by

deg(xi) = di, where di is a positive integer. If M =
⊕∞

i=0 Mi is a finitely generated N -graded

module over R, its Hilbert function and Hilbert series are defined by H(M, i) = l(Mi) and

F (M, t) =
∑∞

i=0 H(M, i)ti respectively, where l(Mi) denotes the length of Mi as a K-module,

in our case l(Mi) = dimK(Mi).

§2. Cohen-Macaulay of Ideal I2(G) and pd2(G) of Some Graph G

Definition 2.1 Let G be a graph with vertex set V . Then a subset A ⊆ V is a 2-vertex cover

for G if for every path xyz of G we have {x, y, z}∩A 6= ∅. A 2-minimal vertex cover of G is a

subset A of V such that A is a 2-vertex cover, and no proper subset of A is a vertex cover for

G. The smallest cardinality of a 2-vertex cover of G is called the 2-vertex covering number of

G and is denoted by a02(G).

Example 2.2 Let G be a graph shown in the figure. Then the set {x2, x4, x7} is a 2-minimal

vertex cover of G and a02(G) = 3.
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x3
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x6

x7

Figure 1

Definition 2.3 Let G be a graph with vertex set V. A subset A ⊆ V is a k-independent if for

even x of A we have degG[S] ≤ k − 1. The maximum possible cardinality of an k-independent

set of G, denoted β0k(G), is called the k-independence number of G. It is easy see that

α02(G) + β02(G) = |V (G)|.

Definition 2.4 Let G be a graph without isolated vertices, Let S = K [x1, · · · , xn] the polynomial

ring on the vertices of G over some fixed field K. The 2-pathes ideal I2(G) associated to the

graph G is the ideal of S generated by the set of square-free monomials xixjxr such that νiνjνr
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is the path of G, that is I2(G) =< {xixjxr| {νiνjνr} ∈ P2(G)} > .

Proposition 2.5 Let S = K [x1, · · · , xn] be a polynomial ring over a field K and G a graph

with vertices ν1, · · · , νn. If P is an ideal of R generated by A = {xi1, · · · , xik} then P is a

minimal prime of I2(G) if and only if A is a 2-minimal vertex cover of G.

Proof It is easy see that I2(G) ⊆ P if and only if A is a 2-vertex cover of G. Now, let A
is a 2-minimal vertex cover of G. By Proposition 5.1.3 [9] any minimal prime ideal of I2(G) is

a face ideal thus P is a minimal prime of I2(G). The converse is clear. 2
Corollary 2.6 If G is a graph and I2(G) its 2-path ideal, then

ht (I2(G)) = α02(G).

Proof It follows from Proposition 5 and the definition of α02(G). 2
Definition 2.7 A graph G is 2-unmixed if all of its 2-minimal vertex covers have the same

cardinality.

Definition 2.8 A graph G with vertex set V (G) = {ν1, ν2, · · · , νn} is 2-cohen-Macaullay over

field K if the quotient ring K [x1, · · · , xn] /I2(G) is cohen-Macaulay.

Proposition 2.9 If G is a 2-cohen-Macaulay graph, then G is 2-unmixed.

Proof By Corollary 1.3.6 [9], I2(G) =
⋂

P∈min(I2(G)) P. Since R/I2(G) is cohen-Macaullay,

all minimal prime ideals of I2(G) have the same height. Then, by Proposition 5, all 2-minimal

vertex cover of G have the same cardinality, as desired. 2
Proposition 2.10 If G is a graph and G1, · · · , Gs are its connected components, then G is

2-cohen- Macaulay if and only if for all i, Gi is cohen-Macaulay.

Proof Let R = K [V (G)] and Ri = L [V (Gi)] for all i. Since

R/I2(G) ∼= R1/I2(G1) ⊗K · · · ⊗K Rs/I2(Gs).

Hence the results follow from Corollary 2.2.22 [9]. 2
Definition 2.11 For any graph G one associates the complementary simplicial complex △2 (G),

which is defined as

△2 (G) := {A ⊂ V | A is 2 − independent set in G} .

This means that the facets of ∆2(G) are precisely the maximal 2-independent sets in G,

that is the complements in V of the minimal 2-vertex covers. Thus ∆2(G) precisely the Stanley-

Reisner complex of I2(G).
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It is easy see that ω (∆2(G)) = {{x, y, z} | xyz ∈ P3(G)}. Therefore I2(G) = I∆2(G), and

so G is 2 − C − M graph if and only if the simplicial complex ∆2(G) is cohen-Macaulay.

Now, we can show the following propositiori.

Proposition 2.12 The following statements hold:

(a) For any n ≥ 1 the complete graph Kn is cohen-Macaulay;

(b) The complete bipartite graph Km,n is cohen-Macaulay if and only if m + n ≤ 4.

Proof (a) Since ∆2(Kn) =< {x, y} | x, y ∈ V (Kn) >, thus ∆2(Kn) is connected l-

dimensional simplicial complex, then by Corohary 5.3.7 [9], ∆2(Kn) is cohen-Macaula so Kn is

cohen-Macaulay.

(b) If m + n ≤ 4, then Km,n
∼= P2, P3, C4. It is easy to see that ∆2(Km,n) is c. So Km,n

is cohen-Macaulay.

Conversely, let Km,n is cohen-Macaulay and m + n ≥ 5. Take V1 = {x1, · · · , xn} and

V2 = {y1, · · · , ym} are the partite sets of Km,n. One has

∆2(Km,n) =< {x1, · · · , xn} , {y1, · · · , ym} , {xi, yj} | 1 ≤ i ≤ n, 1 ≤ j ≤ m >

. Since m+n ≥ 5, ∆2(Km,n) is not pure simplicial complex. Then, by 5.3.12 [9] ∆2(Km,n)

is not cohen-Macaulay, a contradiction, as desired. 2
Now, we present a result about the Hilbert series of K[∆2(Kn)] and K[∆2(Km,n)].

Proposition 2.13 If ∆2(Kn) and ∆2(Km,n) are the complementary simplicial complexes Kn

and Km,n respectively, then

(a) F (K[∆2(Kn)], z) = 1 + nz/(1 − z) + n(n − 1)/2(1 − z)2;

(b) F (K[∆2(Kn,m)], z) = 1/(1 − z)n + 1/(1 − z)m + m.nz2/(1 − z)2 − 1.

Proof (a) Since ∆2(Kn) =< {x, y} | x, y ∈ V (Kn) > hence dime ∆2(Kn) = 1 and

f−1(Kn) = 1, f0, (Kn) = n and f1(Kn) =
(
n
2

)
= n(n − 1)/2. By Corollary 5.4.5 [9]. We have

F (K[∆2(Kn)], z) = 1 + nz/1 − z + n(n − 1)/2.z2/2(1 − z)2.

(b) Let {x1, · · · , xn} and {y1, · · · , ym} are the parties sets of Km,n. Since

∆2(Km,n) =< {x1, · · · , xn} , {y1, · · · , ym} , {xi, yj} | 1 ≤ i ≤ n, 1 ≤ j ≤ m >

Then it is easy see that f1 (∆2(Km,n)) = f1 (∆(Km,n))+mn and fi (∆2(Km,n)) = fi (∆(Km,n))

for all i 6= 1. ln the other hand, by 6.6.6[9], F (K[∆2(Kn)], z) = 1/(1 − z)n − 1., Thus

F (K[∆2(Kn)], z) = 1/(1 − z)n + 1/(1 − z)m + m.nz2/(1 − z)2 − 1.

This completes the proof. 2
Corollary 2.14 F (K [∆2(Sn)] , z) = 1/(1 − z)n + nz2/(1 − z)2 + z/(1 − z).
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Proof It follows from Proposition 2.13 with assume m = 1. 2
In this section we mainly present basic properties of 2-shellable graphs.

Lemma 2.15 Let G be a graph and x be a vertex of degree 1 in G and let y ∈ N(x) and

G
′

= G − ({y} ∪ N(y)) . Then ∆2(G
′

) = lK∆2(G) ({x, y}) . Moreover F is a facet of ∆2(G
′

) if

and only if F ∪ {x, y} is a facet of ∆2(G).

Proof (a) Let F ∈ lK∆2(G) ({x, y}) . Then F ∈ ∆2(G), x, y /∈ F and F ∪ {x, y} ∈ ∆2(G).

This implies that (F ∪ {x, y}) ∩ N [y] = ∅ and F ⊆ (V − {x, y}) ∪ N [y] = (V − y) ∪ N [y] =

V (G
′

). Thus F is 2-independent in G
′

, it follows that F ∈ ∆2(G
′

). Conversely let F ∈ ∆2(G
′

),

then F is 2-independent in G
′

and F ∩ (x ∪ [y]) = ∅. Therefore F ∪ {x, y} is 2-independent in

G and so F ∪ {x, y} ∈ ∆2(G), F ∪ {x, y} = ∅. Thus F ∈ lK∆2(G) ({x, y}) . Finaly from part

one follows that F is a facet of ∆2(G
′

) if and only if F ∪ {x, y} is a facet of ∆2(G). 2
Definition 2.16 Fix a field K and set R = K[x1, · · · , xn]. If G is a graph with vertex

set V (G) = {x1, x2, · · · , xn}, we define the projective dimension of G to be the 2-projective

dimension R- module R/I2(G), and we will write pd2(G) = pd (R/l2(G)).

Proposition 2.17 If G is a graph and {x, y} is a edge of G, then

P2(G) ≤ max {P2 (G − (N [x] ∪ N [y])) + deg(x) + deg(y)

− |N [x] ∩ N [y]|, P2(G − x) + 1, P2(G − y) + 1} .

Proof Let N [x] = {x1, · · · , xξ} and N [y] = {y1, · · · , yr}. It is easy to see that

I2(G) : xy = (I2(G) − (N [x] ∪ N [y]) , x1, · · · , xξ, y1, · · · , yr) .

Now, let

R
′

= K
[
V
(
G −

(
N [x]

⋃
N [y]

))]
.

Then

depth(R/I2(G) : xy) = depth(R
′

/I2(G − (N [x] ∪ N [y]).

And so by Auslander-Buchsbaum formula, we have

pd2(R/I2(x) : xy) = pd2(G − (N [x] ∪ N [y]) + deg(x) + deg(y) − |N [x] ∩ N [y]|,
pd2(R/I2(x), x) = pd2(G − x) + 1,

pd2(R/I2(x), y) = pd2(G − y) + 1.

On the other hand by Proposition 2.10, together with the exact sequence

0 −→ R/I2(G) : xy −→ R/I2(G) −→ R/I2(G)xy −→ 0,
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it follows that

P2(G) ≤ max {P2(G − (N [x] ∪ N [y])) + deg(x) + deg(y)

− |N [x] ∩ N [y]|, P2(G − x) + 1, P2(G − y) + 1} . 2
Proposition 2.18 Let G be a graph and I2(G) is path ideal of G. Then

Bight (I2(G)) ≤ pd2(G).

Proof Let P be a minimal vertex cover with maximal cardinality. Then by Proposition

2.5, P is an associated prime of R/I2(G), so

pd2(G) = pd (R/I2(G)) ≥ pdRp
(Rp/I2(G)Rp) = dimRp = htP. 2

Proposition 2.19 Let Kn denote the complete graph on n vertices and let Km,n denote the

complete bipartite graph on m + n vertices.

(a) pd2(Kn) = n − 2;

(b) pd2(Km,n) = m + n − 2.

Proof (a) The proof is by induction on n. If n = 2 or 3, then the result easy follows. Let

n ≥ 4 and suppose that for every complete graphs Kn of other less than n the result is true.

Since Bight (I2 (Kn)) = n− 2 then by Proposition pd2(Kn) ≥ n− 2. On the other hand by the

inductive hypothesis, we have pd2(Kn−1) = n − 3. So by Proposition 2.17,

pd2(Kn) ≤ max {n − 2, n − 2} .

(b) Again we use by induction on m + n. If m + n = 2 or 3, then it is easy to see that

pd2(Km,n) = 0 or 1. Let m + n ≥ 4 and suppose that for every complete bipartite graph

Km,n of order less than m + n the result is true. Since Bight (I2 (Km,n)) = m + n − 2 then

pd2(Km,n) ≥ m + n − 2. Also, by the inductive hypothesis we have pd2(Km−1,n) = m + n − 3

and pd2(Km,n−1) = m + n − 3. So by Proposition2.17,

pd2(Km,n) ≤ max {m + n − 2, pd2(Km−1,n) + 1, pd2(Km,n−1) + 1 = m + n − 2} .

This completes the proof. 2
Corollary 2.20 Let Sn denote the star graph on n + 1 vertices and Sm,n denote the double

star, then pd2(Sm,n) = m + n.

Proof It follows from Proposition 2.19 with assume m = 1 and it is easy to see that

BightI2 (Sm,n) = m + n, and so by Proposition 2.17, it follows that

pd2 (Sm,n) = m + n. 2
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