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Abstract: We have considered the β−change of Finsler metric L given by L = f(L, β)

where f is any positively homogeneous function of degree one in L and β. Here β = bi(x, y)yi,

in which bi are components of a covariant h-vector in Finsler space F n with metric L. We

have obtained that due to this change of Finsler metric, the imbedding class of their tangent

Riemannian space is increased at the most by two.
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§1. Introduction

Let (Mn, L) be an n-dimensional Finsler space on a differentiable manifold Mn, equipped with

the fundamental function L(x, y). In 1971, Matsumoto [2] introduced the transformation of

Finsler metric given by

L(x, y) = L(x, y) + β(x, y), (1.1)

L
2
(x, y) = L2(x, y) + β2(x, y), (1.2)

where β(x, y) = bi(x)yi is a one-form on Mn. He has proved the following.

Theorem A. Let (Mn, L) be a locally Minkowskian n-space obtained from a locally Minkowskian

n-space (Mn, L) by the change (1.1). If the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is

of imbedding class r, then the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is of imbedding

class at most r + 2.

Theorem B. Let (Mn, L) be a locally Minkowskian n-space obtained from a locally Minkowskian

n-space (Mn, L) by the change (1.2). If the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is

of imbedding class r, then the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is of imbedding

class at most r + 1.

Theorem B is included in theorem A due to the phrase “at most ”.

In [6] Singh, Prasad and Kumari Bindu have proved that the theorem A is valid for Kropina
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change of Finsler metric given by

L(x, y) =
L2(x, y)

β(x, y)
.

In [3], Prasad, Shukla and Pandey have proved that the theorem A is also valid for expo-

nential change of Finsler metric given by

L(x, y) = Leβ/L.

Recently Prasad and Kumari Bindu [5] have proved that the theorem A is valid for

β−change [7] given by

L(x, y) = f(L, β),

where f is any positively homogeneous function of degree one in L, β and β is one-form.

In all these works it has been assumed that bi(x) in β is a function of positional coordinate

only.

The concept of h−vector has been introduced by H.Izumi. The covariant vector field

bi(x, y) is said to be h−vector if ∂bi

∂yj is proportional to angular metric tensor.

In 1990, Prasad, Shukla and Singh [4] have proved that the theorem A is valid for the

transformation (1.1) in which bi in β is h−vector.

All the above β−changes of Finsler metric encourage the authors to check whether the

theorem A is valid for any change of Finsler metric by h−vector.

In this paper we have proved that the theorem A is valid for the β−change of Finsler metric

given by

L(x, y) = f(L, β), (1.3)

where f is positively homogeneous function of degree one in L, β and

β(x, y) = bi(x, y)yi. (1.4)

Here bi(x, y) are components of a covariant h−vector satisfying

∂bi

∂yj
= ρhij , (1.5)

where ρ is any scalar function of x, y and hij are components of angular metric tensor. The

homogeneity of f gives

Lf1 + βf2 = f, (1.6)

where the subscripts 1 and 2 denote the partial derivatives with respect to L and β respectively.

Differentiating (1.6) with respect to L and β respectively, we get

Lf11 + βf12 = 0 and Lf12 + βf22 = 0.
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Hence, we have
f11

β2
= −f12

βL
=

f22

L2

which gives

f11 = β2ω, f22 = L2ω, f12 = −βLω, (1.7)

where Weierstrass function ω is positively homogeneous function of degree −3 in L and β.

Therefore

Lω1 + βω2 + 3ω = 0. (1.8)

Again ω1 and ω2 are positively homogeneous function of degree - 4 in L and β, so

Lω11 + βω12 + 4ω1 = 0 and Lω21 + βω22 + 4ω2 = 0. (1.9)

Throughout the paper we frequently use equation (1.6) to (1.9) without quoting them.

§2. An h−Vector

Let bi(x, y) be components of a covariant vector in the Finsler space (Mn, L). It is called an

h−vector if there exists a scalar function ρ such that

∂bi

∂yj
= ρhij , (2.1)

where hij are components of angular metric tensor given by

hij = gij − lilj = L
∂2L

∂yi ∂yj
.

Differentiating (2.1) with respect to yk, we get

∂̇j ∂̇kbi = (∂̇kρ)hij + ρL−1{L2∂̇i∂̇j ∂̇kL + hij lk},

where ∂̇i stands for ∂
∂yi .

The skew-symmetric part of the above equation in j and k gives

(∂̇kρ + ρL−1lk)hij − (∂̇jρ + ρL−1lj)hik = 0.

Contracting this equation by gij , we get

(n− 2)[∂̇kρ + ρL−1lk] = 0,

which for n > 2, gives

∂̇kρ = − ρ

L
lk, (2.2)

where we have used the fact that ρ is positively homogeneous function of degree −1 in yi, i.e.,
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∂ρ
∂yj yj = −ρ.

We shall frequently use equation (2.2) without quoting it in the next article.

§3. Fundamental Quantities of (Mn, L)

To find the relation between fundamental quantities of (Mn, L) and (Mn, L), we use the fol-

lowing results

∂̇iβ = bi, ∂̇iL = li, ∂̇j li = L−1hij . (3.1)

The successive differentiation of (1.3) with respect to yi and yj give

li = f1li + f2bi, (3.2)

hij =
fp

L
hij + fL2wmimj , (3.3)

where

p = f1 + Lf2ρ, mi = bi −
β

L
li.

The quantities corresponding to (Mn, L) will be denoted by putting bar on the top of those

quantities.

From (3.2) and (3.3) we get the following relations between metric tensors of (Mn, L) and

(Mn, L)

gij =
fp

L
gij − L−1{β(f1f2 − fβLω) + Lρff2}lilj

+(fL2ω + f2
2 )bibj + (f1f2 − fβLω)(libj + ljbi). (3.4)

The contravariant components of the metric tensor of (Mn, L) will be obtained from (3.4)

as follows:

gij =
L

fp
gij +

Lv

f3pt
lilj − L4ω

fpt
bibj − L2u

f2pt
(libj + ljbi), (3.5)

where, we put bi = gijbj, li = gij lj, b2 = gijbibj and

u = f1f2 − fβLω + Lρf2
2 ,

v = (f1f2 − fβLω)(fβ +△f2L
2) + Lρf2{f(f + L2ρf2)

+L2△(f2
2 + fL2ω)}

and

t = f1 + L3ω△+ Lf2ρ, △ = b2 − β2

L2
. (3.6)
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Putting q = f1f2 − fβLω + Lρ(f2
2 + fL2ω), s = 3f2ω + fω2, we find that

(a) ∂̇if =
f

L
li + f2mi

(b) ∂̇if1 = −βLωmi

(c) ∂̇if2 = L2ωmi

(d) ∂̇ip = −Lω(β − ρL2)mi

(e) ∂̇iω = −3ω

L
li + ω2mi

(f) ∂̇ib
2 = −2C..i + 2ρmi

(g) ∂̇i△ = −2C..i −
2

L2
(β − ρL2)mi, (3.7)

(a) ∂̇iq = −(β − ρL2)sLmi

(b) ∂̇it = −2L3ωC..i + [L3△ω2 − 3(β − ρL2)Lω]mi

(c) ∂̇is = −3s

L
li + (4f2ω2 + 3ω2L2 + fω22)mi (3.8)

where “.” denotes the contraction with bi, viz. C..i = Cjkib
jbk.

Differentiating (3.4) with respect to yk and using (d that

mil
i = 0, mim

i = △ = mib
i, hijm

j = hijb
j = mi, (3.10)

where mi = gijmj = bi − β
L li.

To find C
i

jk = gihCjhk we use (3.5), (3.9), (3.10) and get

C
i

jk = Ci
jk +

q

2fp
(hjkmi + hi

jmk + hi
kmj) +

sL3

2fp
mjmkmi − L

ft
C.jkni

− Lq△
2f2pt

hjkni − 2Lq + L4△s

2f2pt
mjmkni, (3.11)

where ni = fL2ωbi + uli.

Corresponding to the vectors with components ni and mi, we have the following:

Cijkmi = C.jk, Cijkni = fL2ωC.jk, min
i = fL2ω△. (3.12)

To find the v-curvature tensor of (Mn, L) with respect to Cartan’s connection, we use the

following:

Ch
ijhhk = Cijk , hi

khk
j = hi

j , hijn
i = fL2ωmj . (3.13)

The v-curvature tensors Shijk of (Mn, L) is defined as

Shijk = C
r

hkChjr − C
r

hjCikr . (3.14)

From (3.9)–(3.14), we get the following relation between v-curvature tensors of (Mn, L)
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and (Mn, L):

Shijk =
fp

L
Shijk + dhjdik − dhkdij + EhkEij − EhjEik, (3.15)

where

dij = PC.ij −Qhij + Rmimj , (3.16)

Eij = Shij + Tmimj , (3.17)

P = L

(
fpω

t

)1/2

, Q =
pq

2L2
√

fpωt
, R =

L(2ωq − sp)

2
√

fωpt
,

S =
q

2L2
√

fω
, T =

L(sp− ωq)

2p
√

fω
.

§4. Imbedding Class Numbers

The tangent vector space Mn
x to Mn at every point x is considered as the Riemannian n-

space (Mn
x , gx) with the Riemannian metric gx = gij(x, y)dyidyj . Then the components of the

Cartan’s tensor are the Christoffel symbols associated with gx:

Ci
jk =

1

2
gih(∂̇kgjh + ∂̇jghk − ∂̇hgjk).

Thus Ci
jk defines the components of the Riemannian connection on Mn

x and v-covariant deriva-

tive, say

Xi|j = ∂̇jXi −XhCh
ij

is the covariant derivative of covariant vector Xi with respect to Riemannian connection Ci
jk on

Mn
x . It is observed that the v-curvature tensor Shijk of (Mn, L) is the Riemannian Christoffel

curvature tensor of the Riemannian space (Mn, gx) at a point x. The space (Mn, gx) equipped

with such a Riemannian connection is called the tangent Riemannian n-space [2].

It is well known [1] that any Riemannian n-space V n can be imbedded isometrically in a

Euclidean space of dimension n(n+1)
2 . If n + r is the lowest dimension of the Euclidean space

in which V n is imbedded isometrically, then the integer r is called the imbedding class number

of V n. The fundamental theorem of isometric imbedding ([1] page 190) is that the tangent

Riemannian n-space (Mn
x , gx) is locally imbedded isometrically in a Euclidean (n + r)−space if

and only if there exist r−number ǫP = ±1, r−symmetric tensors H(P )ij and r(r−1)
2 covariant

vector fields H(P,Q)i = −H(Q,P )i; P, Q = 1, 2, · · · , r, satisfying the Gauss equations

Shijk =
∑

P

ǫP {H(P )hjH(P )ik −H(P )ijH(P )hk}, (4.1)

The Codazzi equations

H(P )ij |k −H(P )ik|j =
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}, (4.2)
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and the Ricci-Kühne equations

H(P,Q)i|j −H(P,Q)j |i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i}

+ ghk{H(P )hiH(Q)kj −H(P )hjH(Q)ki} = 0. (4.3)

The numbers ǫP = ±1 are the indicators of unit normal vector NP to Mn and H(P )ij are

the second fundamental tensors of Mn with respect to the normals NP . Thus if gx is assumed

to be positive definite, there exists a Cartesian coordinate system (zi, up) of the enveloping

Euclidean space En+r such that ds2 in En+r is expressed as

ds2 =
∑

i

(dzi)2 +
∑

p

ǫp(dup)2.

§5. Proof of Theorem A

In order to prove the theorem A, we put

(a) H(P )ij =

√
fp

L
H(P )ij , ǫP = ǫP , P = 1, 2, · · · , r

(b) H(r+1)ij = dij , ǫr+1 = 1

(c) H(r+2)ij = Eij , ǫr+2 = −1. (5.1)

Then it follows from (3.15) and (4.1) that

Shijk =

r+2∑

λ=1

ǫλ{H(λ)hjH(λ)ik −H(λ)hkH(λ)ij},

which is the Gauss equation of (Mn
x , gx).

Moreover, to verify Codazzi and Ricci Kühne equation of (Mn
x , gx), we put

(a) H(P,Q)i = −H(Q,P )i = H(P,Q)i, P, Q = 1, 2, , · · · , r

(b) H(P,r+1)i = −H(r+1,P )i =
L
√

Lω√
t

H(P ).i, P = 1, 2, · · · , r

(c) H(P,r+2)i = −H(r+2,P )i = 0, P = 1, 2, · · · , r.

(d) H(r+1,r+2)i = −H(r+2,r+1)i =
sp− 2qω

2fω
√

pt
mi. (5.2)

The Codazzi equations of (Mn
x , gx) consists of the following three equations:

(a) H(P )ij‖k −H(P )ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}

+ ǫr+1{H(r+1)ijH(r+1,P )k −H(r+1)ikH(r+1,P )j}
+ ǫr+2{H(r+2)ijH(r+2,P )k −H(r+2)ikH(r+2,P )k} (5.3)
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(b) H(r+1)ij‖k −H(r+1)ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,r+1)k −H(Q)ikH(Q,r+1)j}

+ǫr+2{H(r+2)ijH(r+2,r+1)k −H(r+2)ikH(r+2,r+1)j},

(c) H(r+2)ij‖k −H(r+2)ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,r+2)k −H(Q)ikH(Q,r+2)j}

+ǫr+1{H(r+1)ijH(r+1,r+2)k −H(r+1)ikH(r+1,r+2)j}.

where ‖i denotes v-covariant derivative in (Mn, L), i.e. covariant derivative in tangent Rieman-

nian n-space (Mn
x , gx) with respect to its Christoffel symbols C

i

jk. Thus

Xi‖j = ∂̇jXi −XhC
h

ij .

To prove these equations we note that for any symmetric tensor Xij satisfying Xij l
i =

Xij l
j = 0, we have from (3.11),

Xij‖k −Xik‖j = Xij |k −Xik|j −
q

2ft
(hikX.j − hijX.k)

+
L3ω

t
(C.ikX.j − C.ijX.k)− q

2fp
(Xijmk −Xikmj)

+
L3(2qω − sp)

2fpt
(X.jmk −X.kmj)mi. (5.4)

Also if X is any scalar function, then X‖j = X |j = ∂̇jX.

Verification of (5.3)(a) In view of (5.1) and (5.2), equation (5.3)a is equivalent to

(√
fp

L
H(P )ij

)∥∥∥
k
−
(√

fp

L
H(P )ik

)∥∥∥
j

=

√
fp

L
.
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j} −
L
√

Lω√
t
{dijH(P ).k − dikH(P ).j}. (5.5)

Since

(√
fp
L

)∥∥∥
k

= ∂̇k

(√
fp
L

)
= q

2
√

fLp
mk, applying formula (5.4) for H(P )ij , we get

(√
fp

L
H(P )ij

)∥∥∥
k
−
(√

fp

L
H(P )ik

)∥∥∥
j

=

√
fp

L
{H(P )ij |k −H(P )ik|j}

− q

2ft

√
fp

L
{hikH(P ).j − hijH(P ).k}+

L3ω

t

√
fp

L
{C.ikH(p).j − C.ijH(p).k}

+
L2
√

L(2qω − sp)

2t
√

fp
{H(P ).jmk −H(P ).kmj}mi. (5.6)

Substituting the values of

(√
fp
L H(P )ij

)∥∥∥
k
−
(√

fp
L H(P )ik

)∥∥∥
j

from (5.6) and the values

of dij from (3.16) in (5.5) we find that equation (5.5) is identically satisfied due to equation
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(4.2).

Verification of (5.3)(b) In view of (5.1) and (5.2), equation (5.3)b is equivalent to

dij‖k − dik‖j = L

√
fωp

t

∑

Q

ǫQ{H(Q)ijH(Q).k −H(Q)ikH(Q).j}

+
sp− 2qω

2fω
√

pt
{Eijmk − Eikmj}. (5.7)

To verify (5.7), we note that

C.ij |k − C.ik|j = −bhShijk (5.8)

hij |k − hik|j = L−1(hij lk − hiklj), (5.9)

mi|k = −C.ik −
(

β

L2
− ρ

)
hik −

1

L
limk. (5.10)

∂̇k(fωp) = −2L−1fωplk + (qω + fpω2)mk. (5.11)

Contracting (3.16) with bi and using (3.10), we find that

d.j = L

√
fωp

t
C..j +

q(2L3ω△− p)− L3△sp

2L2
√

fωpt
mj . (5.12)

Applying formula (5.4) for dij and substituting the values of d.j from (5.12) and dij from

(3.16), we get

dij‖k − dik‖j= dij |k − dik|j −
Lq
√

fωp

2ft3/2
(hikC..j − hijC..k)

+
L4ω(2qω − sp)

2
√

fωp.t3/2
(C..jmk − C..kmj)mi

+
L4ω
√

fωp

t3/2
(C.ikC..j − C.ijC..k)

+
L4ω△(3qω − sp)

2
√

fωp.t3/2
(C.ikmj − C.ijmk)

−Lq△(3qω − sp)

4f
√

fωp.t3/2
(hikmj − hijmk). (5.13)

From (3.16), we obtain

dij |k − dik|j = P (C.ij |k − C.ik|j)−Q(hij |k − hik|j)
+R(mi|kmj + mj |kmi −mi|jmk −mk|jmi)

+(∂̇kP )C.ij − (∂̇jP )C.ik − (∂̇kQ)hij + (∂̇jQ)hik)

+(∂̇kR)mimj − (∂̇jR)mimk). (5.14)
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Since,

∂̇kP =
L4ω
√

fωp

t3/2
C..k +

[
Lfp{pω2 + 3Lω2(β − ρL2)}

2
√

fωp.t3/2

+
Lqω

2
√

fωpt

]
mk,

∂̇kQ =
Lpqω

2
√

fωp.t3/2
C..k −

pq

2L3
√

fωpt
lk

− (β − ρL2)(qω + sp)

2L
√

fωpt
mk −

pq(qω + fpω2)

4L2(fωp)3/2
√

t
mk

+
pq{3ω(β − ρL2)− L2△ω2}

4L
√

fωp t3/2
mk (5.15)

and

∂̇kR =
L4ω(2qω − sp)

2
√

fωp.t3/2
C..k −

2qω − sp

2
√

fωpt
lk + term containing mk,

where we have used the equations (3.6), (3.7) and (3.8).

From equations (5.8)–(5.15), we have

dij |k − dik|j = L

√
fωp

t
(−bhShijk)

+
L4ω△(3qω − sp)

2
√

fωp.t3/2
(C.ijmk − C.ikmj)

+
L4ω
√

fωp

t3/2
(C.ijC..k − C.ikC..j)

+
Lωpq

2
√

fωp.t3/2
(hikC..j − hijC..k)

+
pq[qωt + f(L3ω△+ t){3Lω2(β − ρL2) + pω2}]

4L2(fωpt)3/2
×

(hijmk − hikmj) +
L4ω(2qω − sp)

2
√

fωp.t3/2
(C..kmj − C..jmk)mi. (5.16)

Substituting the value of dij |k − dik|j from (5.16) in (5.13), then value of dij‖k − dik‖j
thus obtained in (5.7), and using equations (4.1) and (3.17), it follows that equation (5.7) holds

identically.

Verification of (5.3)(c) In view of (5.1) and (5.2), equation (5.3)c is equivalent to

Eij‖k − Eik‖j =
sp− 2qω

2fω
√

pt
(dijmk − dikmj). (5.17)

Contracting (3.17) by bi and using equation (3.10), we find that

E.j =
pq + L3△(sp− qω)

2L2p
√

fω
mj . (5.18)
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Applying formula (5.4) for Eij and substituting the value of E.j from (5.18) and the value

of Eij from (3.17), we get

Eij‖k − Eik‖j = Eij |k − Eik|j +
qL△(sp− 2qω)

4fpt
√

fω
(hijmk − hikmj)

+
Lω{pq + L3△(sp− qω)}

2pt
√

fω
(C.ikmj − C.ijmk). (5.19)

From (3.17), we get

Eij |k − Eik|j = S(hij |k − hik|j) + T {mi|kmj + mj|kmi

−mi|jmk −mk|jmi}+ (∂̇kS)hij

−(∂̇jS)hik + (∂̇kT )mimj − (∂̇jT )mimk. (5.20)

Now,

(∂̇kS) = − q

2L3
√

fω
lk −

[
(β − ρL2)s

2L
√

fω
+

q(fω2 + f2ω)

4L2(fω)3/2

]
mk (5.21)

and

(∂̇kT ) = −sp− qω

2p
√

fω
lk + term containing mk,

where we have used the equations (3.7) and (3.8).

From equation (5.9)–(5.11), (5.20) and (5.21), we get

Eij |k − Eik|j =
L(sp− qω)

2p
√

fω
(C.ijmk − C.ikmj)

− q(sp− 2qω)

4L2p(fω)3/2
(hijmk − hikmj). (5.22)

Substituting the value of Eij |k−Eik|j from (5.22) in (5.19), then the value of Eij‖k−Eik‖j
thus obtained in (5.17), and then using (3.16) in the right-hand side of (5.17), we find that the

equation (5.17) holds identically.

This completes the proof of Codazzi equations of (Mn
x , gx). The Ricci Kühne equations of

(Mn
x , gx) consist of the following four equations

(a) H(P,Q)i‖j −H(P,Q)j‖i +
∑

R

ǫR{H(R,P )iH(R,Q)j

−H(R,P )jH(R,Q)i}+ ǫr+1{H(r+1,P )iH(r+1,Q)j

−H(r+1,P )jH(r+1,Q)i}+ ǫr+2{H(r+2,P )iH(r+2,Q)j

−H(r+2,P )jH(r+2,Q)i}+ ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki} = 0, P, Q = 1, 2, · · · , r (5.23)
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(b) H(P,r+1)i‖j −H(P,r+1)j‖i +
∑

R

ǫR{H(R,P )iH(R,r+1)j −H(R,P )jH(R,r+1)i}

+ ǫr+2{H(r+2,P )iH(r+2,r+1)j −H(r+2,P )jH(r+2,r+1)i}
+ ghk{H(P )hiH(r+1)kj −H(P )hjH(r+1)ki} = 0, P = 1, 2, · · · , r

(c) H(P,r+2)i‖j −H(P,r+2)j‖i +
∑

R

ǫR{H(R,P )iH(R,r+2)j −H(R,P )jH(R,r+2)i}

+ ǫr+1{H(r+1,P )iH(r+1,r+2)j −H(r+1,P )jH(r+1,r+2)i}
+ ghk{H(P )hiH(r+2)kj −H(P )hjH(r+2)ki} = 0, P = 1, 2, · · · , r

(d) H(r+1,r+2)i‖j −H(r+1,r+2)j‖i +
∑

R

ǫR{H(R,r+1)iH(R,r+2)j −H(R,r+1)j

×H(R,r+2)i}+ ghk{H(r+1)hiH(r+2)kj −H(r+1)hjH(r+2)ki} = 0.

Verification of (5.23)(a) In view of (5.1) and (5.2), equation (5.23)a is equivalent to

H(P,Q)i‖j −H(P,Q)j‖i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i}

+
L3ω

t
{H(P ).iH(Q).j −H(P ).jH(Q).i}+ ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki}
fp

L
= 0. P, Q = 1, 2, . . . , r. (5.24)

Since H(P )ij l
i = 0 = H(P )jil

i, from (3.5), we get

ghk{H(P )hiH(Q)kj −H(P )hjH(Q)ki}
fp

L
= ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki} −
L3ω

t
{H(P ).iH(Q).j −H(P ).jH(Q).i}.

Also, we have H(P,Q)i‖j − H(P,Q)j‖i = H(P,Q)i|j − H(P,Q)j |i. Hence equation (5.24) is

satisfied identically by virtue of (4.3).

Verification of (5.23)(b) In view of (5.1) and (5.2), equation (5.23)b is equivalent to

(
L
√

Lω√
t

H(P ).i

)∥∥∥
j
−
(

L
√

Lω√
t

H(P ).j

)∥∥∥
i

+
L
√

Lω√
t

∑

R

ǫR{H(R,P )iH(R).j −H(R,P )jH(R).i}

+ ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
= 0. P, Q = 1, 2, · · · , r. (5.25)

Since bh|j = ghkC.jk, H(P )hil
i = 0, we have

H(P ).i‖j −H(P ).j‖i = H(P ).i|j −H(P ).j|i = {H(P )hi|j −H(P )hj |i}bh

−ghk{H(P )hiC.kj −H(P )hjC.ki} (5.26)
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(
L
√

Lω√
t

)∥∥∥
j

= ∂̇j

(
L
√

Lω√
t

)

=
L4ω
√

Lω

t3/2
C..j +

L
√

Lω

2ωt3/2
{pω2 + 3Lω2(β − ρL2)}mj (5.27)

and

ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
=

√
L

fp
ghk ×

{H(P )hidkj −H(P )hjdki} −
L3ω
√

L

t
√

fp
{H(P ).id.j −H(P ).jd.i}. (5.28)

After using (3.16) and (5.12) the equation (5.28) may be written as

ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
=

L
√

Lω√
t

ghk ×

{H(P )hiC.kj −H(P )hjC.ki} −
L4ω
√

Lω

t3/2
{H(P ).iC..j −H(P ).jC..i}

−L
√

Lω

2ωt3/2
[pω2 + 3Lω2(β − ρL2)]{H(P ).imj −H(P ).jmi}. (5.29)

From (4.2), (5.26)–(5.29) it follows that equation (5.25) holds identically.

Verification of (5.23)(c) In view of (5.1) and (5.2), equation (5.23)c is equivalent to

L
√

Lω(2qω − sp)

2fωt
√

p
{H(P ).imj −H(P ).jmi}

+ghk{H(P )hiEkj −H(P )hjEki}
√

fp

L
= 0, (5.30)

Since Ekj l
k = 0 = Ejklk, from (3.5), we find that the value of ghk{H(P )hiEkj−H(P )hjEki}

is √
L

fp
.ghk{H(P )hiEkj −H(P )hjEki} −

L3ω
√

L

t
√

fp
{H(P ).iE.j −H(P ).jE.i},

which, in view of (3.17) and (5.18), is equal to

−L
√

Lω(2qω − sp)

2fωt
√

p
{H(P ).imj −H(P ).jmi}.

Hence equation (5.30) is satisfied identically.

Verification of (5.23)(d) In view of (5.1) and (5.2), equation (5.23)d is equivalent to

(Nmi)‖j − (Nmj)‖i + ghk(dhiEkj − dhjEki) = 0, (5.31)

where N = sp−2qω
2fω

√
pt

.
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Since dhil
h = 0, Ekj l

k = 0, from (3.5), we find that the value of ghk{dhiEkj − dhjEki} is

L

fp
ghk{dhiEkj − dhjEki} −

L4ω

fpt
{d.iE.j − d.jE.i},

which, in view of (3.16), (3.17), (5.12) and (5.18), is equal to

−L3(2qω − sp)

2f
√

p.t3/2
{C..imj − C..jmi}.

Also,

(Nmi)‖j − (Nmj)‖i = N(mi‖j −mj‖i) + (∂̇jN)mi − (∂̇iN)mj .

Since mi‖j −mj‖i = mi|j −mj |i = L−1(ljmi − limj) and

∂̇jN = − 2qω − sp

2Lfω
√

pt
lj +

L3(sp− 2qω)

2f
√

p.t3/2
C..j,

we have

(Nmi)‖j − (Nmj)‖i =
L3(sp− 2qω)

2f
√

p.t3/2
(C..jmi − C..imj). (5.32)

Hence equation (5.31) is satisfied identically. Therefore Ricci Kühne equations of (Mn
x , gx)

given in (5.23) are satisfied.

Hence the Theorem A given in introduction is satisfied for the β−change (1.3) of Finsler

metric given by h−vector. 2
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