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§1. Introduction

All the graphs considered in this paper are simple and connected. For vertices u, v ∈ V (G), the

distance between u and v in G, denoted by dG(u, v), is the length of a shortest (u, v)-path in

G and let dG(v) be the degree of a vertex v ∈ V (G). The strong product of graphs G and H,

denoted by G ⊠ H, is the graph with vertex set V (G)× V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)}
and (u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G) and x = y, or

(iii) uv ∈ E(G) and xy ∈ E(H).

A topological index of a graph is a real number related to the graph; it does not depend

on labeling or pictorial representation of a graph. In theoretical chemistry, molecular structure

descriptors (also called topological indices) are used for modeling physicochemical, pharma-

cologic, toxicologic, biological and other properties of chemical compounds [12]. There exist

several types of such indices, especially those based on vertex and edge distances. One of the

most intensively studied topological indices is the Wiener index.

Let G be a connected graph. Then Wiener index of G is defined as

W (G) =
1

2

∑

u, v ∈V (G)

dG(u, v)

with the summation going over all pairs of distinct vertices of G. This definition can be further
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generalized in the following way:

Wλ(G) =
1

2

∑

u, v ∈V (G)

dλ
G(u, v),

where dλ
G(u, v) = (dG(u, v))λ and λ is a real number [13, 14]. If λ = −1, then W−1(G) = H(G),

where H(G) is Harary index of G. In the chemical literature also W 1
2

[29] as well as the general

case Wλ were examined [10, 15].

Dobrynin and Kochetova [6] and Gutman [11] independently proposed a vertex-degree-

weighted version of Wiener index called degree distance, which is defined for a connected graph

G as

DD(G) =
1

2

∑

u,v∈V (G)

(dG(u) + dG(v))dG(u, v),

where dG(u) is the degree of the vertex u in G. Similarly, the product degree distance or Gutman

index of a connected graph G is defined as

DD∗(G) =
1

2

∑

u,v∈V (G)

dG(u)dG(v)dG(u, v).

The additively weighted Harary index(HA) or reciprocal degree distance(RDD) is defined

in [3] as

HA(G) = RDD(G) =
1

2

∑

u,v∈V (G)

(dG(u) + dG(v))

dG(u, v)
.

Similarly, Su et al. [28] introduce the reciprocal product degree distance of graphs, which

can be seen as a product-degree-weight version of Harary index

RDD∗(G) =
1

2

∑

u,v∈V (G)

dG(u)dG(v)

dG(u, v)
.

In [16], Hamzeh et al. recently introduced generalized degree distance of graphs. Hua and

Zhang [18] have obtained lower and upper bounds for the reciprocal degree distance of graph in

terms of other graph invariants. Pattabiraman et al. [22, 23] have obtained the reciprocal degree

distance of join, tensor product, strong product and wreath product of two connected graphs

in terms of other graph invariants. The chemical applications and mathematical properties of

the reciprocal degree distance are well studied in [3, 20, 27].

The generalized degree distance, denoted by Hλ(G), is defined as

Hλ(G) =
1

2

∑

u,v∈V (G)

(dG(u) + dG(v))dλ
G(u, v),

where λ is a real number. If λ = 1, then Hλ(G) = DD(G) and if λ = −1, then Hλ(G) =
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RDD(G). Similarly, generalized product degree distance, denoted by H∗
λ(G), is defined as

H∗
λ(G) =

1

2

∑

u,v∈V (G)

dG(u)dG(v)dλ
G(u, v).

If λ = 1, then H∗
λ(G) = DD∗(G) and if λ = −1, then H∗

λ(G) = RDD∗(G). Therefore the

study of the above topological indices are important and we try to obtain the results related

to these indices. The generalized degree distance of unicyclic and bicyclic graphs are studied

by Hamzeh et al. [16, 17]. Also they are given the generalized degree distance of Cartesian

product, join, symmetric difference, composition and disjunction of two graphs. The gener-

alized degree distance and generalized product degree distance of some classes of graphs are

obtained in [24, 25, 26]. In this paper, the exact formulae for the generalized product degree

distance, reciprocal product degree distance and product degree distance of strong product

G ⊠ Km0, m1, ··· , mr−1
, where Km0, m1, ··· , mr−1

is the complete multipartite graph with partite

sets of sizes m0, m1, · · · , mr−1 are obtained.

The first Zagreb index is defined as

M1(G) =
∑

u∈V (G)

dG(u)2

and the second Zagreb index is defined as

M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

In fact, one can rewrite the first Zagreb index as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)).

The Zagreb indices were found to be successful in chemical and physico-chemical applica-

tions, especially in QSPR/QSAR studies, see [8, 9].

For S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by S. For two subsets S, T ⊂ V (G),

not necessarily disjoint, by dG(S, T ), we mean the sum of the distances in G from each vertex

of S to every vertex of T, that is, dG(S, T ) =
∑

s∈ S, t∈T

dG(s, t).

§2. Generalized Product Degree Distance of Strong Product of Graphs

In this section, we obtain the Generalized product degree distance of G ⊠ Km0, m1, ··· , mr−1
. Let

G be a simple connected graph with V (G) = {v0, v1, · · · , vn−1} and let Km0, m1, ··· , mr−1
, r ≥ 2,

be the complete multiparite graph with partite sets V0, V1, · · · , Vr−1 and let |Vi| = mi, 0 ≤
i ≤ r − 1. In the graph G ⊠ Km0, m1, ··· , mr−1

, let Bij = vi × Vj , vi ∈ V (G) and 0 ≤ j ≤ r − 1.
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For our convenience, the vertex set of G ⊠ Km0, m1, ··· , mr−1
is written as

V (G) × V (Km0, m1, ..., mr−1
) =

r−1
n−1
⋃

i =0
j =0

Bij .

Let B = {Bij}i =0,1,··· , n−1
j =0,1,··· , r−1

. Let Xi =
r−1
⋃

j =0

Bij and Yj =
n−1
⋃

i = 0

Bij ; we call Xi and Yj as layer

and column of G ⊠ Km0, m1, ..., mr−1
, respectively. If we denote V (Bij) = {xi1, xi2, · · · , ximj

}
and V (Bkp) = {xk1, xk2, · · · , xk mp

}, then xiℓ and xkℓ, 1 ≤ ℓ ≤ j, are called the corresponding

vertices of Bij and Bkp. Further, if vivk ∈ E(G), then the induced subgraph 〈Bij

⋃

Bkp〉 of G⊠

Km0, m1, ··· , mr−1
is isomorphic to K|Vj ||Vp| or, mp independent edges joining the corresponding

vertices of Bij and Bkj according as j 6= p or j = p, respectively.

The following remark is follows from the structure of the graph Km0, m1, ··· , mr−1
.

Remark 2.1 Let n0 and q be the number of vertices and edges of Km0, m1, ··· , mr−1
. Then the

sums

r−1
∑

j, p = 0
j 6= p

mjmp = 2q,

r−1
∑

j=0

m2
j = n2

0 − 2q,

r−1
∑

j, p = 0
j 6= p

m2
jmp = n0q − 3t =

r−1
∑

j, p = 0
j 6= p

mjm
2
p,

r−1
∑

j=0

m3
j = n3

0 − 3n0q + 3t

and
r−1
∑

j=0

m4
j = n4

0 − 4n2
0q + 2q2 + 4n0t − 4τ,

where t and τ are the number of triangles and K
′s
4 in Km0, m1, ··· , mr−1

.

The proof of the following lemma follows easily from the properties and structure of G ⊠

Km0, m1, ··· , mr−1
.

Lemma 2.2 Let G be a connected graph and let Bij , Bkp ∈ B of the graph G′ = G ⊠

Km0, m1, ··· , mr−1
, where r ≥ 2. Then

(i) If vivk ∈ E(G) and xit ∈ Bij , xkℓ ∈ Bkj , then

dG′(xit, xkℓ) =







1, if t = ℓ,

2, if t 6= ℓ,
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and if xit ∈ Bij , xkℓ ∈ Bkp, j 6= p, then dG′(xit, xkℓ) = 1.

(ii) If vivk /∈ E(G), then for any two vertices xit ∈ Bij , xkℓ ∈ Bkp, dG′(xit, xkℓ) =

dG(vi, vk).

(iii) For any two distinct vertices in Bij , their distance is 2.

The proof of the following lemma follows easily from Lemma 2.2, which is used in the proof

of the main theorems of this section.

Lemma 2.3 Let G be a connected graph and let Bij , Bkp ∈ B of the graph G′ = G ⊠

Km0, m1, ..., mr−1
, where r ≥ 2.

(i) If vivk ∈ E(G), then

dH
G′(Bij , Bkp) =







mjmp, if j 6= p,
mj(mj+1)

2 , if j = p,

(ii) If vivk /∈ E(G), then

dH
G′(Bij , Bkp) =







mjmp

dG(vi,vk) , if j 6= p,
m2

j

dG(vi,vk) , if j = p.

(iii) dH
G′(Bij , Bip) =







mjmp, if j 6= p,
mj(mj−1)

2 , if j = p.

Lemma 2.4 Let G be a connected graph and let Bij in G′ = G ⊠ Km0, m1, ··· , mr−1
. Then the

degree of a vertex (vi, uj) ∈ Bij in G′ is

dG′((vi, uj)) = dG(vi) + (n0 − mj) + dG(vi)(n0 − mj),

where n0 =
r−1
∑

j=0

mj .

Now we obtain the generalized product degree distance of G ⊠ Km0, m1, ··· , mr−1
.

Theorem 2.5 Let G be a connected graph with n vertices and m edges. Then

H∗
λ(G ⊠ Km0, m1, ··· , mr−1

)

= (4q2 + n2
0 + 4n0q)H

∗
λ(G) + 4q2Wλ(G) + (4q2 + 2n0q)Hλ(G) +

n

2
(4q2 − n0q − 3t)

+
M1(G)

2

[

4n2
0q − 2q2 + 4n0t + 9t + 7n0q − n0 − 3n2

0 − 2n3
0 + 8τ

]

+m
[

3n0q + 2n0t − 2q2 − 3t − 4q + 4τ
]

+2λ
[

M1(G)(2q2 − 2n0t − 6t − 2q − 4τ) + m(2q2 − 2n0t − n0q − 3t − 4τ)
]

+(2λ − 1)M2(G)
[

2q2 − 2n0t − 3n3
0 + 10n0q + n2

0 − 18t − 6q − n0 − 4τ
]

.
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Proof Let G′ = G ⊠ Km0, m1, ..., mr−1
. Clearly,

H∗
λ(G′) =

1

2

∑

Bij , Bkp ∈B

dG′(Bij)dG′(Bkp)dλ
G′(Bij , Bkp)

=
1

2

(

n−1
∑

i =0

r−1
∑

j, p =0
j 6= p

dG′(Bij)dG′(Bip)d
λ
G′(Bij , Bip)

+
n−1
∑

i, k =0
i 6= k

r−1
∑

j = 0

dG′(Bij)dG′(Bkj)d
λ
G′(Bij , Bkj)

+

n−1
∑

i, k =0
i 6= k

r−1
∑

j, p = 0
j 6= p

dG′(Bij)dG′(Bkp)dλ
G′(Bij , Bkp)

+

n−1
∑

i = 0

r−1
∑

j =0

dG′(Bij)dG′(Bij)d
λ
G′(Bij , Bij)

)

. (2.1)

We shall obtain the sums of (2.1) are separately.

First we calculate A1 =
n−1
∑

i =0

r−1
∑

j, p =0
j 6= p

dG′(Bij)dG′(Bip)d
λ
G′(Bij , Bip). For that first we find T ′

1.

By Lemma 2.4, we have

T ′
1 = dG′(Bij)dG′(Bip)

=
(

dG(vi)(n0 − mj + 1) + (n0 − mj)
)(

dG(vi)(n0 − mp + 1) + (n0 − mp)
)

=
(

(n0 + 1)2 − (n0 + 1)mj − (n0 + 1)mp + mjmp

)

d2
G(vi)

+
(

2n0(n0 + 1) − (2n0 + 1)mj − (2n0 + 1)mp + 2mjmp

)

dG(vi)

+
(

n2
0 − n0mp − n0mj + mjmp

)

.

From Lemma 2.3, we have dλ
G′(Bij , Bip) = mjmp. Thus

T ′
1d

λ
G′(Bij , Bip) = T ′

1mjmp

=
(

(n0 + 1)2mjmp − (n0 + 1)m2
jmp − (n0 + 1)mjm

2
p + m2

jm
2
p

)

d2
G(vi)

+
(

2n0(n0 + 1)mjmp − (2n0 + 1)m2
jmp − (2n0 + 1)mjm

2
p + 2m2

jm
2
p

)

dG(vi)

+
(

n2
0mjmp − n0m

2
jmp − n0mjm

2
p + m2

jm
2
p

)

.
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By Remark 2.1, we have

T1 =

r−1
∑

j, p =0
j 6= p

T ′
1d

λ
G′(Bij , Bip)

=
(

2q2 + 2qn0 + 2n0t + 2q + 4τ + 6t
)

d2
G(vi)

+
(

2qn0 + 4n0t − 4q2 + 6t + 8τ
)

dG(vi)

+
(

2n0t + 2q2 + 4τ
)

.

From the definition of the first Zagreb index, we have

A1 =
n−1
∑

i=0

T1

=
(

2q2 + 2qn0 + 2n0t + 2q + 4τ + 6t
)

M1(G)

+2m
(

2qn0 + 4n0t − 4q2 + 6t + 8τ
)

+n
(

2n0t + 2q2 + 4τ
)

.

Next we obtain A2 =
n−1
∑

i, k = 0
i 6= k

r−1
∑

j =0

dG′(Bij)dG′(Bkj)d
λ
G′(Bij , Bkj). For that first we find T ′

2.

By Lemma 2.4, we have

T ′
2 = dG′(Bij)dG′(Bkj)

=
(

dG(vi)(n0 − mj + 1) + (n0 − mj)
)(

dG(vk)(n0 − mj + 1) + (n0 − mj)
)

= (n0 − mj + 1)2dG(vi)dG(vk) + (n0 − mj)(n0 − mj + 1)(dG(vi) + dG(vk))

+(n0 − mj)
2.

Thus

A2 =
r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

T ′
2d

λ
G′(Bij , Bkj)

=

r−1
∑

j =0

n−1
∑

i, k = 0
i 6= k

vivk∈E(G)

T ′
2d

λ
G′(Bij , Bkj) +

r−1
∑

j =0

n−1
∑

i, k =0
i 6= k

vivk /∈E(G)

T ′
2d

λ
G′(Bij , Bkj)
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By Lemma 2.3, we have

A2 =

r−1
∑

j = 0

n−1
∑

i, k =0
i 6= k

vivk∈E(G)

T ′
2

(

1 − 2λ + 2λmj

)

mj +

r−1
∑

j = 0

n−1
∑

i, k =0
i 6= k

vivk /∈E(G)

T ′
2m

2
j dλ

G(vi, vk),

=

r−1
∑

j = 0

n−1
∑

i, k =0
i 6= k

vivk∈E(G)

T ′
2

((

1 − 2λ + 2λmj

)

mj + m2
j − m2

j

)

+

r−1
∑

j =0

n−1
∑

i, k = 0
i 6= k

vivk /∈E(G)

T ′
2m

2
j dλ

G(vi, vk)

=

r−1
∑

j = 0

n−1
∑

i, k =0
i 6= k

vivk∈E(G)

T ′
2(2

λ − 1)
(

m2
j − mj

)

+

r−1
∑

j = 0

n−1
∑

i, k =0
i 6= k

T ′
2m

2
j dλ

G(vi, vk)

= S1 + S2, (2.2)

where S1 and S2 are the sums of the terms of the above expression, in order.

Now we calculate S1. For that first we find the following.

(2λ − 1)T ′
2

(

m2
j − mj

)

= (2λ − 1)
[(

m4
j − (2n0 + 3)m3

j + (n2
0 + 4n0 + 3)m2

j

−(n0 + 1)2mj

)

dG(vi)dG(vk)

+
(

m4
j − (2n0 + 2)m3

j + (n2
0 + 3n0 + 1)m2

j − (n2
0 + n0)mj

)

(dG(vi) + dG(vk))

+
(

m4
j − (2n0 + 1)m3

j + (n2
0 + 2n0)m

2
j − n2

omj

)]

.

By Remark 2.1, we have

T ′′
2 =

r−1
∑

j =0

(2λ − 1)T ′
2

(

m2
j − mj

)

= (2λ − 1)
[(

2q2 − 2n0t − 4τ − 3n3
0 + 10n0q − 18t + n2

0 − 6q − n0

)

dG(vi)dG(vk)

+
(

2q2 − 4τ − 2n0t − 6t − 2q
)

(dG(vi) + dG(vk))

+
(

2q2 − 4τ − 2n0t − n0q − 3t
)]

.

Hence

S1 =
n−1
∑

i, k = 0
i 6= k

vivk∈E(G)

T ′′
2

= (2λ − 1)
[(

2q2 − 2n0t − 4τ − 3n3
0 + 10n0q − 18t + n2

0 − 6q − n0

)

2M2(G)

+
(

2q2 − 4τ − 2n0t − 6t − 2q
)

2M1(G)

+2m
(

2q2 − 4τ − 2n0t − n0q − 3t
)]

.
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Next we calculate S2. For that we need the following.

T ′
2m

2
j =

(

m4
j − (2n0 + 2)m3

j + (n0 + 1)2m2
j

)

dG(vi)dG(vk)

+
(

m4
j − (2n0 + 1)m3

j + (n2
0 + n0)m

2
j

)

(dG(vi) + dG(vk))

+
(

m4
j − 2n0m

3
j + n2

0m
2
j

)

.

By Remark 2.1, we have

T2 =

r−1
∑

j =0

T ′
2m

2
j

=
(

2q2 − 4τ − 2n0t − 6t + 2n0q − 2q + n2
0

)

dG(vi)dG(vk)

+
(

2q2 − 4τ − 2n0t − 3t + n0q
)

(dG(vi) + dG(vk))

+
(

2q2 − 4τ − 2n0t
)

.

From the definitions of H∗
λ,Hλ and Wλ, we obtain

S2 =
n−1
∑

i, k = 0
i 6= k

T2d
λ
G(vi, vk)

= 2
(

2q2 − 4τ − 2n0t − 6t + 2n0q − 2q + n2
0

)

H∗
λ(G)

+2
(

2q2 − 4τ − 2n0t − 3t + n0q
)

Hλ(G)

+2
(

2q2 − 4τ − 2n0t
)

Wλ(G).

Now we calculate A3 =
n−1
∑

i, k = 0
i 6= k

r−1
∑

j, p =0
j 6= p

dG′(Bij)dG′(Bkp)d
λ
G′(Bij , Bkp). For that first we com-

pute T ′
3. By Lemma 2.4, we have

T ′
3 = dG′(Bij)dG′(Bkp)

=
(

dG(vi)(n0 − mj + 1) + (n0 − mj)
)(

dG(vk)(n0 − mp + 1) + (n0 − mp)
)

= dG(vi)dG(vk)(n0 − mj + 1)(n0 − mp + 1) + dG(vi)(n0 − mj + 1)(n0 − mp)

+dG(vk)(n0 − mp + 1)(n0 − mj) + (n0 − mj)(n0 − mp).
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Since the distance between Bij and Bkp is mjmpd
λ
G(vi, vk). Thus

T ′
3mjmp = dG(vi)dG(vk)

(

(n2
0 + 2n0 + 1)mjmp − (n0 + 1)m2

jmp − (n0 + 1)mjm
2
p + m2

jm
2
p

)

+dG(vi)
(

(n2
0 + n0)mjmp − (n0 + 1)mjm

2
p − n0m

2
jmp + m2

jm
2
p

)

+dG(vk)
(

(n2
0 + n0)mjmp − n0mjm

2
p − (n0 + 1)m2

jmp + m2
jm

2
p

)

+
(

n2
0mjmp − n0mjm

2
p − n0m

2
jmp + m2

jm
2
p

)

.

By Remark 2.1, we obtain

T3 =

r−1
∑

j, p =0,
j 6= p

T ′
3mjmp = dG(vi)dG(vk)

(

2n0q + 2n0t + 2q + 2q2 + 6t + 4τ
)

+(dG(vi) + dG(vk))
(

qn0 + 2n0t + 3t + 2q2 + 4τ
)

+
(

2n0t + 2q2 + 4τ
)

.

Hence

A3 =

n−1
∑

i, k = 0
i 6= k

T3d
λ
G(vi, vk) = 2H∗

λ(G)
(

2n0q + 2n0t + 2q + 2q2 + 6t + 4τ
)

+2Hλ(G)
(

qn0 + 2n0t + 3t + 2q2 + 4τ
)

+2Wλ(G)
(

2n0t + 2q2 + 4τ
)

.

Finally, we obtain A4 =
n−1
∑

i = 0

r−1
∑

j =0

dG′(Bij)dG′(Bij)d
λ
G′(Bij , Bij). For that first we calculate

T ′
4. By Lemma 2.4, we have

T ′
4 = dG′(Bij)dG′(Bij)

=
(

dG(vi)(n0 − mj + 1) + (n0 − mj)
)2

= d2
G(vi)(n0 − mj + 1)2 + 2dG(vi)(n0 − mj)(n0 − mj + 1) + (n0 − mj)

2.

From Lemma 2.3, the distance between (Bij and (Bij is mj(mj − 1). Thus

T ′
4mj(mj − 1) = d2

G(vi)
(

m4
j − (2n0 + 3)m3

j + ((n0 + 1)2 + 2)m2
j − (n0 + 1)2mj

)

+2dG(vi)
(

m4
j − (2n0 + 2)m3

j + (n2
0 + 3n0 + 1)m2

j − (n2
0 + n0)mj

)

+
(

m4
j − (2n0 + 1)m3

j + (n2
0 + 2n0)m

2
j − n2

0mj

)

.
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By Remark 2.1, we obtain

T4 =

r−1
∑

j =0

T ′
4mj(mj − 1)

= d2
G(vi)

(

4n2
0q − 2n3

0 − 3n2
0 − 2n0t + 5n0q − 9t − 6q − n0 − 4τ

)

+2dG(vi)
(

2q2 − 2n0t − 2q − 6t − 4τ
)

+
(

2q2 − 2n0t − n0q − 3t − 4τ
)

.

Hence

A4 =

n−1
∑

i =0

T4d
λ
G′(Bij , Bij)

= M1(G)
(

4n2
0q − 2n3

0 − 3n2
0 − 2n0t + 5n0q − 9t − 6q − n0 − 4τ

)

+4m
(

2q2 − 2n0t − 2q − 6t − 4τ
)

+n
(

2q2 − 2n0t − n0q − 3t − 4τ
)

.

Adding A1,S1,S2,A3 and A4 we get the required result. 2
If we set λ = 1 in Theorem 2.5, we obtain the product degree distance of G⊠Km0, m1, ··· , mr−1

.

Theorem 2.6 Let G be a connected graph with n vertices and m edges. Then

DD∗(G ⊠ Km0, m1, ··· , mr−1
)

= (4q2 + n2
0 + 4n0q)DD∗(G) + 4q2W (G)

+(4q2 + 2n0q)DD(G) +
n

2
(4q2 − n0q − 3t)

+
M1(G)

2

[

4n2
0q + 6q2 − 4n0t − 15t + 7n0q − n0 − 3n2

0 − 2n3
0 − 8τ

]

+m
[

n0q − 2n0t + 2q2 − 9t − 4q − 4τ
]

+M2(G)
[

2q2 − 2n0t − 3n3
0 + 10n0q + n2

0 − 18t− 6q − n0 − 4τ
]

for r ≥ 2.

Setting λ = −1 in Theorem 2.5, we obtain the reciprocal product degree distance of

G ⊠ Km0, m1, ··· , mr−1
.

Theorem 2.7 Let G be a connected graph with n vertices and m edges. Then

RDD∗(G ⊠ Km0, m1, ··· , mr−1
)

= (4q2 + n2
0 + 4n0q)RDD∗(G) + 4q2H(G)

+(4q2 + 2n0q)RDD(G) +
n

2
(4q2 − n0q − 3t)
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+
M1(G)

2

[

4n2
0q + 2n0t + 3t + 7n0q − n0 − 3n2

0 − 2n3
0 − 2q + 4τ

]

+m
[5n0q

2
+ n0t − q2 − 9t

2
− 4q + 2τ

]

−M2(G)

2

[

2q2 − 2n0t − 3n3
0 + 10n0q + n2

0 − 18t− 6q − n0 − 4τ
]

for r ≥ 2.
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