4-Remainder Cordial Labeling of Some Graphs

R.Ponraj ${ }^{1}$, K.Annathurai ${ }^{2}$ and R.Kala ${ }^{3}$
1. Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India
2. Department of Mathematics, Thiruvalluvar College, Papanasam -627425, India
3. Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India

ponrajmaths@gmail.com, kannathuraitvcmaths@gmail.com, karthipyi91@yahoo.co.in

Abstract

Let G be a (p, q) graph. Let f be a function from $V(G)$ to the set $\{1,2, \cdots, k\}$ where k is an integer $2<k \leq|V(G)|$. For each edge $u v$ assign the label r where r is the remainder when $f(u)$ is divided by $f(v)$ (or) $f(v)$ is divided by $f(u)$ according as $f(u) \geq f(v)$ or $f(v) \geq f(u) . \quad f$ is called a k-remainder cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1, i, j \in\{1, \cdots, k\}$, where $v_{f}(x)$ denote the number of vertices labeled with x and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labeled with even integers and number of edges labelled with odd integers. A graph with admits a k-remainder cordial labeling is called a k-remainder cordial graph. In this paper we investigate the 4 - remainder cordial behavior of grid, subdivision of crown, Subdivision of bistar, book, Jelly fish, subdivision of Jelly fish, Mongolian tent graphs.

Key Words: k-Remainder cordial labeling, Smarandache k-remainder cordial labeling, grid, subdivision of crown, subdivision of bistar, book, Jelly fish, subdivision of Jelly fish, Mongolian tent.
AMS(2010): 05C78.

§1. Introduction

We considered only finite and simple graphs. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge $u v$ by a path $u w v$. The product graph $G_{1} X G_{2}$ is defined as follows:

Consider any two points $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ in $V=V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$ whenever $\left[u_{1}=v_{1}\right.$ and u_{2} adj v_{2}] or [$u_{2}=v_{2}$ and u_{1} adj $\left.v_{1}\right]$. The graph $P_{m} \times P_{n}$ is called the planar grid. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{\text {th }}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. A mongolian tent $M_{m, n}$ is a graph obtained from $P_{m} \times P_{n}$ by adding one extra vertex above the grid and joining every other of the top row of $P_{m} \times P_{n}$ to the new vertex. Cahit [1], introduced the concept of cordial labeling of graphs. Ponraj et al. [4, 6], introduced remainder cordial labeling of graphs and investigate the remainder cordial labeling behavior of path, cycle,

[^0]star, bistar, complete graph, $S\left(K_{1, n}\right), S\left(B_{n, n}\right), S\left(W_{n}\right), P_{n}^{2}, P_{n}^{2} \bigcup K_{1, n}, P_{n}^{2} \cup B_{n, n}, P_{n} \cup B_{n, n}$, $P_{n} \bigcup K_{1, n}, K_{1, n} \bigcup S\left(K_{1, n}\right), K_{1, n} \bigcup S\left(B_{n, n}\right), S\left(K_{1, n}\right) \bigcup S\left(B_{n, n}\right)$, etc., and also the concept of k-remainder cordial labeling introduced in [5]. In this paper we investigate the 4-remainder cordial labeling behavior of Grid, Subdivision of crown, Subdivision of bistar, Book, Jelly fish, Subdivision of Jelly fish, Mongolian tent, etc,. Terms are not defined here follows from Harary [3] and Gallian [2].

§2. k-Remainder Cordial Labeling

Definition 2.1 Let G be $a(p, q)$ graph. Let f be a function from $V(G)$ to the set $\{1,2, \cdots, k\}$ where k is an integer $2<k \leq|V(G)|$. For each edge uv assign the label r where r is the remainder when $f(u)$ is divided by $f(v)$ (or) $f(v)$ is divided by $f(u)$ according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The labeling f is called a k-remainder cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, otherwise, Smarandachely if $\left|v_{f}(i)-v_{f}(j)\right| \geq 1$ or $\left|e_{f}(0)-e_{f}(1)\right| \geq 1$ for integers $i, j \in\{1, \cdots, k\}$, where $v_{f}(x)$ and $e_{f}(0), e_{f}(1)$ respectively denote the number of vertices labeled with x, the number of edges labeled with even integers and the number of edges labelled with odd integers. Such a graph with a k-remainder cordial labeling is called a k-remainder cordial graph.

First we investigate the 4-remainder cordial labeling behavior of the planar grid.

Theorem 2.2 The planar grid $P_{m} \times P_{n}$ is 4-remainder cordial.
Proof Clearly this grid has m-rows and n-columns. We assign the labels to the vertices by row wise.

Case 1. $m \equiv 0(\bmod 4)$
Let $m=4 t$. Then assign the label 1 to the vertices of $1^{s t}, 2^{n d}, \cdots, t^{t h}$ rows. Next we move to the $(t+1)^{t h}$ row. Assign the label 4 to the vertices of $(t+1)^{t h},(t+2)^{t h}, \ldots,(2 t)^{t h}$ rows. Next assign the label to the vertices $(2 t+1)^{t h}$ row. Assign the labels 2 and 3 alternatively to the vertices of $(2 t+1)^{t h}$ row. Next move to $(2 t+2)^{t h}$ row. Assign the labels 3 and 2 alternatively to the vertices of $(2 t+2)^{t h}$ row. In general $i^{\text {th }}$ row is called as in the $(i-2)^{t h}$ row, where $2 t+1 \leq i \leq 3 t$. This procedure continued until we reach the $(4 t)^{t h}$ row.

Case 2. $m \equiv 1(\bmod 4)$
As in Case 1, assign the labels to the vertices of the first, second, $\cdots,(m-1)^{t h}$ row. We give the label to the $m^{t h}$ row as in given below.

Subcase $2.1 n \equiv 0(\bmod 4)$
Rotate the row and column and result follows from Case 1.
Subcase $2.2 n \equiv 1(\bmod 4)$
Assign the labels $4,3,4,3, \cdots, 4,3$ to the vertices of the first, second, $\cdots,\left(\frac{n-1}{2}\right)^{t h}$ columns. Next assign the label 2 to the vertices of $\left(\frac{n+1}{2}\right)^{t h}$ column. Then next assign the labels $2,1,2,1, \cdots$,

2,1 to the vertices of $\frac{n+3}{2}, \frac{n+5}{2}, \cdots,\left(\frac{2 n}{2}-2\right)^{t h}$ columns. Assign the remaining vertices.
Subcase $2.3 n \equiv 2(\bmod 4)$
Assign the labels $4,3,4,3, \cdots, 4,3$ to the vertices of $1^{\text {st }}, 2^{n d}, \cdots,\left(\frac{n-2}{2}\right)^{t h}$ columns. Next assign the label 2 to the vertices of $\left(\frac{n}{2}\right)^{t h}$ column. Then next assign the labels $2,1,2,1, \cdots, 2,1$ to the vertices of $\frac{n}{2}+1, \frac{n}{2}+2, \cdots,\left(\frac{2 n}{2}-1\right)^{t h}$ columns. Finally assign the label 1 to the remaining vertices of $n^{\text {th }}$ column.

Subcase $2.4 n \equiv 3(\bmod 4)$
Assign the labels $4,3,4,3, \cdots, 4,3$ alternatively to the vertices of $1^{\text {st }}, 2^{n d}, \cdots,\left(\frac{n+1}{2}\right)^{t h}$ columns. Then next assign the labels $1,2,1,2, \cdots$ to the vertices of $\frac{n+3}{2}, \frac{n+5}{2}, \cdots,\left(\frac{2 n}{2}-1\right)^{t h}$ columns. Finally assign the label 1 to the remaining vertices of $n^{t h}$ column. Hence f is a $4-$ remainder cordial labeling of $P_{m} \times P_{n}$.

All other cases follow by symmetry.
Next is the graph $K_{2}+m K_{1}$.

Theorem 2.3 If $m \equiv 0,1,3(\bmod 4)$ then $K_{2}+m K_{1}$ is 4 -remainder cordial.
Proof It is easy to verify that $K_{2}+m K_{1}$ has $m+2$ vertices and $2 m$ edges. Let $V\left(K_{2}+\right.$ $\left.m K_{1}\right)=\left\{u, u_{i}, v: 1 \leq i \leq m\right\}$ and $E\left(K_{2}+m K_{1}\right)=\left\{u v, u u_{i}, v u_{i}: 1 \leq i \leq m\right\}$.

Case 1. $m \equiv 0(\bmod 4)$
Let $m=4 t$. Then assign the label 3,3 respectively to the vertices u, v. Next assign the label 1 to the vertices $u_{1}, u_{2}, \cdots, u_{t+1}$. Then next assign the label 2 to the vertices $u_{t+2}, u_{t+3}, \cdots, u_{2 t+1}$. Then followed by assign the label 3 to the vertices $u_{2 t+2}, u_{2 t+3}, \ldots, u_{3 t}$. Finally assign the label 4 to the remaining non-labelled vertices $u_{3 t+1}, u_{3 t+2}, \cdots, u_{4 t}$.

Case 2. $m \equiv 1(\bmod 4)$
As in Case 1, assign the labels to the vertices $u, v, u_{i},(1 \leq i \leq m-1)$. Next assign the label 2 to the vertex u_{m}.
Case 3. $m \equiv 3(\bmod 4)$
Assign the labels to the vertices $u, v, u_{i},(1 \leq i \leq m-2)$ as in case(ii). Finally assign the labels 3,4 respectively to the vertices u_{m-1}, u_{m}. The table given below establish that this labeling f is a 4 -remainder cordial labeling.

Nature of m	$e_{f}(0)$	$e_{f}(1)$
$m \equiv 0(\bmod 4)$	$m+1$	m
$m \equiv 1(\bmod 4)$	m	$m+1$
$m \equiv 3(\bmod 4)$	m	$m+1$

Table 1
This completes the proof.

The next graph is the book graph B_{n}.

Theorem 2.4 The book B_{n} is 4 -remainder cordial for all n.
Proof Let $V\left(B_{n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n}\right)=\left\{u v, u u_{i}, v v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$.
Case 1. n is even
Assign the labels 3,4 to the vertices u and v respectively. Assign the label 1 to the vertices $u_{1}, u_{2}, \cdots, u_{\frac{m}{2}}$ and assign 4 to the vertices $u_{\frac{m}{2}+1}, u_{\frac{m}{2}+2}, \cdots, u_{n}$. Next we consider the vertices v_{i}. Assign the label 2 to the vertices $v_{1}, v_{2}, \cdots, v_{\frac{n}{2}}$. Next assign the label 3 to the remaining vertices $v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, \cdots, u_{n}$, respectively.

Case 2. n is odd
Assign the labels 3,4 to the vertices u and v respectively. Fix the labels $4,2,1$ to the vertices $u_{1}, u_{2}, \cdots, u_{\frac{n}{2}+1}$ and also fix the labels $3,1,2$ respectively to the vertices $v_{1}, v_{2}, \cdots, v_{\frac{n}{2}+1}$. Assign the labels to the vertices $u_{4}, u_{5}, \cdots, u_{n}$ as in the sequence $2,1,2,1 \ldots, 2,1$. In similar fashion, assign the labels to the vertices $v_{4}, v_{5}, \cdots, v_{n}$ as in the sequence $3,4,3,4 \ldots, 3,4$. The table 2 shows that this vertex labeling f is a 4 - remainder cordial labeling.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
n is even	$m+1$	m
n is odd	m	$m+1$

Table 2
This completes the proof.
Now we consider the subdivision of $B_{n, n}$.
Theorem 2.5 The subdivision of $B_{n, n}$ is 4 -remainder cordial.
Proof Let $V\left(S\left(B_{n, n}\right)\right)=\left\{u, v, u_{i}, v_{i}, w_{i}, x, x_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=\left\{u u_{i}, v v_{i}\right.$, $\left.u_{i} w_{i}, v_{i} x_{i}, u x, x v: 1 \leq i \leq n\right\}$. It is clearly to verify that $S\left(B_{n, n}\right)$ has $4 n+3$ vertices and $4 n+2$ edges.

Assign the labels $1,4,3$ to the vertices u, x and v respectively. Assign the labels 1,3 alternatively to the vertices $u_{1}, u_{2}, \cdots, u_{n}$. Next assign the labels 2,4 alternatively to the vertices $w_{1}, w_{2}, \cdots, w_{n}$. We now consider the vertices v_{i} and x_{i}. Assign the labels 2,4 alternatively to the vertices $v_{1}, v_{2}, \cdots, v_{n}$. Then finally assign the labels 3,1 alternatively to the vertices $x_{1}, x_{2}, \cdots, x_{n}$. Obviously this vertex labeling is a 4 -remainder cordial labeling.

Next, we consider the subdivision of crown graph.
Theorem 2.5 The subdivision of $C_{n} \odot K_{1}$ is 4-remainder cordial.
Proof Let $u_{1} u_{2} \ldots u_{n}$ be a cycle C_{n}. Let $V\left(C_{n} \odot K_{1}\right)=V\left(C_{n} \bigcup\left\{v_{i}: 1 \leq i \leq n\right\}\right)$ and $E\left(C_{n} \odot K_{1}\right)=E\left(C_{n} \bigcup\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}\right)$.The subdivide edges $u_{i} u_{i+1}$ and $u_{i} v_{i}$ by x_{i} and y_{i} respectively. Assign the label 2 to the vertices $u_{i},(1 \leq i \leq n)$ and 3 to the vertices
$x_{i},(1 \leq i \leq n)$. Next assign the label 1 to the vertices $y_{i},(1 \leq i \leq n)$. Finally assign the label 4 to the vertices $v_{i},(1 \leq i \leq n)$. Clearly, this labeling f is a 4 -remainder cordial labeling.

Now we consider the Jelly fish $J(m, n)$.

Theorem 2.6 The Jelly fish $J(m, n)$ is 4-remainder cordial.
Proof Let $V(J(m, n))=\left\{u, v, x, y, u_{i}, v_{j}: 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq n\right\}$ and $E(J(m, n))=$ $\left\{u u_{i}, v v_{j}, u x, u y, v x, v y: 1 \leq i \leq m\right.$ and $\left.1 \leq j \leq n\right\}$. Clearly $J(m, n)$ has $m+n+4$ vertices and $m+n+5$ edges.

Case 1. $m=n$ and m is even.
Assign the label 2 to the vertices $u_{1}, u_{2}, \cdots, u_{\frac{n}{2}}$ and assign the label 4 to the vertices $u_{\frac{n}{2}+1}, u_{\frac{n}{2}+2}, \cdots, u_{n}$. Next assign the label 1 to the vertices $v_{1}, v_{2}, \cdots, v_{\frac{n}{2}}$ and assign 3 to the vertices $v_{\frac{n}{2}+1}, v_{\frac{n}{2}+2}, \ldots, v_{n}$. Finally assign the labels $3,4,2,1$ respectively to the vertices u, x, y, v.

Case 2. $m=n$ and m is odd.
In this case assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq m-1)$ and u, v, x, y as in Case 1. Next assign the labels 2,1 respectively to the vertices u_{n} and v_{n}.

Case 3. $m \neq n$ and assume $m>n$.
Assign the labels $3,4,1,2$ to the vertices u, x, y, v respectively. As in Case 1 and 2 , assign the labels to the vertices $u_{i}, v_{i}(1 \leq i \leq n)$.

Subcase $3.1 m-n$ is even. Assign the labels to the vertices $u_{n+1}, u_{n+2}, \cdots, u_{m}$ as in the sequence $3,4,2,1 ; 3,4,2,1 ; \cdots$. It is easy to verify that u_{n} is received the label 1 if $m-n \equiv 0$ $(\bmod 4)$.

Subcase $3.2 m-n$ is odd. Assign the labels to the vertices $u_{i}(n \leq i \leq m)$ as in the sequence $4,3,2,1 ; 4,3,2,1 ; \cdots$. Clearly, u_{n} is received the label 1 if $m-n \equiv 0(\bmod 4)$.

For illustration, a 4-remainder cordial labeling of Jelly fish $J(m, n)$ is shown in Figure 1.

Figure 1
Theorem 2.8 The subdivision of the Jelly fish $J(m, n)$ is 4-remainder cordial.

Proof Let $V(S(J(m, n)))=\left\{u, u_{i}, x_{i}, v, v_{j}, y_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \bigcup\left\{w_{i}: 1 \leq i \leq 7\right\}$ and $E(S(J(m, n)))=\left\{u u_{i}, u_{i} x_{i}, v v_{j}, v_{j} y_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \bigcup\left\{u w_{1}, u w_{2}, w_{1} w_{5}, w_{5} w_{6}\right.$, $\left.w_{6} w_{7}, w_{5} w_{3}, w_{3} v, v w_{4}, w_{4} w_{7}, w_{2} w_{7}\right\}$.

Case 1. $m=n$.
Assign the label 2 to the vertices $u_{1}, u_{2}, \cdots, u_{m}$ and 3 to the vertices $x_{1}, x_{2}, \cdots, x_{m}$. Next assign the label 1 to the vertices $v_{1}, v_{2}, \cdots, v_{m}$ and assign the label 4 to the vertices $y_{1}, y_{2}, \cdots, y_{m}$. Finally assign the labels $3,2,3,2,3,1,4,4$ and 1 respectively to the vertices $u, w_{1}, w_{5}, w_{6}, w_{7}, w_{2}, w_{3}, v$ and w_{4}.

Case 2. $m>n$.
Assign the labels to the vertices $u, u_{i}, v, v_{i}, x_{i}, y_{i}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{7},(1 \leq i \leq n)$ as in case(i). Next assign the labels 1,4 to the next two vertices x_{n+1}, x_{n+2} respectively. Then next assign the labels 1,4 respectively to the vertices x_{n+3}, x_{n+4}. Proceeding like this until we reach the vertex x_{n}. That is the vertices $x_{n+1}, x_{n+2}, x_{n+3}, x_{n+4}, \cdots$ are labelled in the pattern 1,$4 ; 1,4 ; 1,4 ; 1,4 ; \cdots$. Similarly the vertices u_{n+1}, u_{n+2}, \cdots are labelled as 2,$3 ; 2,3 ; 2,3 ; \cdots, 2,3$. The Table 3, establish that this vertex labeling f is a 4-remainder cordial labeling of $S(J(m, n))$.

Nature of m and n	$e_{f}(0)$	$e_{f}(1)$
$m=n$	$2 n+5$	$2 n+5$
$m>n$	$m+n+5$	$m+n+5$

This completes the proof.
Theorem 2.9 The graph $C_{3}^{(t)}$ is 4-remainder cordial.
Proof Let $V\left(C_{3}^{(t)}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{3}^{(t)}\right)=\left\{u u_{i}, v v_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$.
Assume $t \geq 3$. Fix the label 3 to the central vertex u and fix the labels $1,2,2,4,3$, 4 respectively to the vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and v_{3}. Next assign the labels 1,2 to the vertices u_{4}, u_{5}. Then assign the labels 1,2 respectively to the next two vertices u_{6}, u_{7} and so on. That is the vertices $u_{4}, u_{5}, u_{6}, u_{7}$ are labelled as in the pattern $1,2,1,2 \cdots, 1,2$. Note that the vertex u_{n} received the label 1 or 2 according as n is even or odd. In a similar way assign the labels to the vertices $v_{4}, v_{5}, v_{6}, v_{7}$ as in the sequence $4,3,4,3,4,3, \cdots$. Clearly 4 is the label of u_{n} according as n is even or odd. The Table 4 establish that this vertex labeling is a 4 -remainder cordial labeling of $C_{3}^{(t)}, t \geq 3$.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
n is even	$\frac{3 n}{2}$	$\frac{3 n}{2}$
n is odd	$n+1$	$n+2$

Table 4
For $t=1,2$ the remainder cordial labeling of graphs $C_{3}^{(1)}$ and $C_{3}^{(2)}$ are given below in Figure 2.

Figure 2

This completes the proof.

Theorem 2.10 The Mongolian tent $M_{m, n}$ is 4-remainder cordial.

Proof Assign the label 3 to the new vertex.

Case 1. $m \equiv 0(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$.

Consider the first row of M_{n}. Assign the labels $2,3,2,3, \cdots 2,3$ to the vertices in the first row. Next assign the labels $3,2,3,2 \cdots 3,2$ to the vertices in the second row. This procedure is continue until reach the $\frac{n}{2}^{\text {th }}$ row. Next assign the labels $1,4,1,4, \cdots, 1,4$ to the vertices in the $\frac{n}{2}+1^{\text {th }}$ row. Then next assign the labels $4,1,4,1, \cdots, 4,1$ to the vertices in the $\frac{n}{2}+2^{\text {th }}$ row. This proceedings like this assign the labels continue until reach the last row.

Case 2. $m \equiv 2(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$.

In this case assign the labels to the vertices as in Case 1.

Case 3. $m \equiv 1(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$.

Here assign the labels by column wise to the vertices of M_{n}. Assign the labels $2,3,2,3, \cdots 2$, 3 to the vertices in the first column. Next assign the labels $3,2,3,2 \cdots 3,2$ to the vertices in the second column. This method is continue until reach the $\frac{n}{2}{ }^{t h}$ column. Next assign the labels $1,4,1,4, \cdots, 1,4$ to the vertices in the $\frac{n}{2}+1^{t h}$ column. Then next assign the labels $4,1,4,1, \cdots, 4,1$ to the vertices in the $\frac{n}{2}+2^{t h}$ column. This procedure is continue until reach the last column.

Case 4. $m \equiv 3(\bmod 4)$ and $n \equiv 0,2(\bmod 4)$.

As in Case 3 assign the labels to the vertices in this case. The remainder cordial labeling of graphs $M_{7,4}$ is given below in Figure 3..

Figure 3
This completes the proof.

References

[1] Cahit I., Cordial Graphs : A weaker version of Graceful and Harmonious graphs, Ars Combin., 23 (1987), 201-207.
[2] Gallian J.A., A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19, (2017).
[3] Harary F., Graph Theory, Addision Wesley, New Delhi, 1969.
[4] Ponraj R., Annathurai K. and Kala R., Remainder cordial labeling of graphs, Journal of Algorithms and Computation, Vol.49, (2017), 17-30.
[5] Ponraj R., Annathurai K. and Kala R., k-Remaider cordial graphs, Journal of Algorithms and Computation, Vol.49(2), (2017), 41-52.
[6] Ponraj R., Annathurai K. and Kala R., Remaider cordiality of some graphs, Accepted for publication in Palestin Journal of Mathematics .

[^0]: ${ }^{1}$ Received February 4, 2017, Accepted March 8, 2018.

