3-Difference Cordial Labeling of Corona Related Graphs

R.Ponraj
Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India
M.Maria Adaickalam
Department of Mathematics
Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012,Tamilnadu India
E-mail: ponrajmaths@gmail.com, mariaadaickalam@gmail.com

Abstract

Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \cdots, k\}$ be a map where k is an integer $2 \leq k \leq p$. For each edge $u v$, assign the label $|f(u)-f(v)|$. f is called k-difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labelled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1 . A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of $D T_{n} \odot K_{1} D T_{n} \odot 2 K_{1}, D T_{n} \odot K_{2}$ and some more graphs.

Key Words: Difference cordial labeling, Smarandachely k-difference cordial labeling, path, complete graph, triangular snake, corona.
AMS(2010): 05C78.

§1. Introduction

All Graphs in this paper are finite , undirect and simple. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right)$, $\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. Ponraj et al. [3], has been introduced the concept of k-difference cordial labeling of graphs and studied the 3 -difference cordial labeling behavior of of some graphs. In $[4,5,6,7]$ they investigate the 3-difference cordial labeling behavior of path, cycle, complete graph, complete bipartite graph, star, bistar, comb, double comb, quadrilateral snake, $C_{4}^{(t)}, S\left(K_{1, n}\right), S\left(B_{n, n}\right)$ and carona of some graphs with double alternate triangular snake double alternate quadrilateral snake. In this paper we examine the 3 -difference cordial labeling behavior of $D T_{n} \odot K_{1}$ $D T_{n} \odot 2 K_{1}, D T_{n} \odot K_{2}$ etc. Terms are not defined here follows from Harary [2].

§2. k-Difference Cordial Labeling

Definition 2.1 Let G be $a(p, q)$ graph and let $f: V(G) \rightarrow\{1,2, \cdots, k\}$ be a map. For

[^0]each edge uv, assign the label $|f(u)-f(v)| . f$ is called a k-difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denotes the number of vertices labelled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph.

On the other hand, if $\left|v_{f}(i)-v_{f}(j)\right| \geq 1$ or $\left|e_{f}(0)-e_{f}(1)\right| \geq 1$, such a labeling is called a Smarandachely k-difference cordial labeling of G.

A double triangular snake $D T_{n}$ consists of two triangular snakes that have a common path. That is a double triangular snake is obtained from a path $u_{1} u_{2} \cdots u_{n}$ by joining u_{i} and u_{i+1} to two new vertices $v_{i}(1 \leq i \leq n-1)$ and $w_{i}(1 \leq i \leq n-1)$.

First we investigate the 3-difference cordial labeling behavior of $D T_{n} \odot K_{1}$.

Theorem $2.1 D T_{n} \odot K_{1}$ is 3-difference cordial.
Proof Let $V\left(D T_{n} \odot K_{1}\right)=V\left(D T_{n}\right) \bigcup\left\{x_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, w_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ and $E\left(D T_{n} \odot K_{1}\right)=E\left(D T_{n}\right) \bigcup\left\{u_{i} x_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}: 1 \leq i \leq n-1\right\}$.

Case 1. n is even.
First we consider the path vertices u_{i}. Assign the label 1 to all the path vertices u_{i} $(1 \leq i \leq n)$. Then assign the label 2 to the path vertices $v_{1}, v_{3}, v_{5}, \cdots$ and assign the label 1 to the path vertices $v_{2}, v_{4}, v_{6}, \cdots$. Now we consider the vertices w_{i}. Assign the label 2 to all the vertices $w_{i}(1 \leq i \leq n-1)$. Next we move to the vertices v_{i}^{\prime} and w_{i}^{\prime}. Assign the label 2 to the vertices $v_{2 i+1}^{\prime}$ for all the values of $i=0,1,2,3, \cdots$ and assign the label 1 to the vertices $v_{2 i}$ for $i=1,2,3, \cdots$. Next we assign the label 1 to the vertex w_{1}^{\prime} and assign the label 3 to the vertices $w_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \cdots$ Finally assign the label 3 to all the vertices of $x_{i}(1 \leq i \leq n)$. The vertex condition and the edge conditions are $v_{f}(1)=v_{f}(2)=\frac{6 n-3}{3}$ and $v_{f}(3)=\frac{6 n-2}{3}$ and $e_{f}(0)=4 n-4$ and $e_{f}(1)=4 n-3$.

Case 2. n is odd.
Assign the label to the path vertices $u_{i}(1 \leq i \leq n), v_{i}(1 \leq i \leq n-1), w_{i}(1 \leq i \leq n-1)$, $v_{i}^{\prime}(1 \leq i \leq n-1), x_{i}(1 \leq i \leq n)$ as in case 1 . Then assign the label 3 to all the vertices $w_{i}^{\prime}(1 \leq i \leq n-1)$. Since $e_{f}(0)=4 n-3, e_{f}(1)=4 n-4$ and $v_{f}(1)=v_{f}(3)=2 n-1$ and $v_{f}(2)=2 n-2, D T_{n} \odot K_{1}$ is 3-difference cordial.

Next investigation about $D T_{n} \odot 2 K_{1}$.

Theorem $2.2 D T_{n} \odot 2 K_{1}$ is 3-difference cordial.
Proof Let $V\left(D T_{n} \odot 2 K_{1}\right)=V\left(D T_{n}\right) \bigcup\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$ and $E\left(D T_{n} \odot 2 K_{1}\right)=E\left(D T_{n}\right) \bigcup\left\{u_{i} x_{i}, u_{i} y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}: 1 \leq i \leq\right.$ $n-1\}$.

Case 1. n is even.
Consider the path vertices u_{i}. Assign the label 1 to the path vertex u_{1}. Now we assign the labels $1,1,2,2$ to the vertices $u_{2}, u_{3}, u_{4}, u_{5}$ respectively. Then we assign the labels $1,1,2,2$ to
the next four vertices $u_{6}, u_{7}, u_{8}, u_{9}$ respectively. Proceeding like this we assign the label to the next four vertices and so on. If all the vertices are labeled then we stop the process. Otherwise there are some non labeled vertices are exist. If the number of non labeled vertices are less than or equal to 3 then assign the labels $1,1,2$ to the non labeled vertices. If it is two then assign the label 1,1 to the non labeled vertices. If only one non labeled vertex is exist then assign the label 1 only. Next we consider the label v_{i}. Assign the label 2 to the vertex v_{1}. Then we assign the label 2 to the vertices $v_{2}, v_{4}, v_{6}, \cdots$ and assign the label 3 to the vertices $v_{3}, v_{5}, v_{7}, \cdots$. Next we move to the vertices x_{i} and y_{i}. Assign the label 2 to the vertices x_{1} and x_{2} and we assign the label 3 to the vertices y_{1} and y_{2}. Now we assign the label 1 to the vertices $x_{4 i+1}$ and $x_{4 i}$ for all the values of $i=1,2,3, \cdots$. Then we assign the label 1 to the vertices $x_{4 i+3}$ for $i=0,1,2,3, \cdots$. Next we assign the label 2 to the vertices $x_{4 i+2}$ for all the values of $i=1,2,3, \cdots$. Now we assign the label 3 to the vertices $y_{4 i+3}$ for $\mathrm{i}=0,1,2,3, \ldots$ For all the values of $i=1,2,3, \cdots$. assign the label 3 to the vertices $y_{4 i+1}$ and $y_{4 i+2}$. Then we assign the label 2 to the vertices $y_{4 i}$ for $i=1,2,3, \cdots$. Now we consider the vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$. For all the values of $\mathrm{i}=1,2,3 \ldots$ assign the label 1 to the vertices $v_{4 i+1}^{\prime}, v_{4 i+2}^{\prime}$. Assign the label 1 to the vertices $v_{4 i}^{\prime}$ for $i=1,2,3, \cdots$. Then we assign the label 2 to the vertices $v_{4 i+3}^{\prime}$ for all the values of $i=0,1,2,3, \cdots$. Consider the vertices $v_{i}^{\prime \prime}$. Assign the label 3 to the path vertex $v_{4 i+1}^{\prime \prime}, v_{4 i+2}^{\prime \prime}$ and $v_{4 i+3}^{\prime \prime}$ for all the values of $i=0,1,2,3, \cdots$. Next we assign the label 2 to the vertices $v_{4 i}^{\prime \prime}$ for $i=1,2,3, \cdots$. Now we assign the label 3 to the vertices $w_{i}(1 \leq i \leq n-1)$. Next we move to the vertices w_{i}^{\prime} and $w_{i}^{\prime \prime}$. Assign the label 1 to all the vertices of $w_{i}^{\prime}(1 \leq i \leq n-1)$ and we assign the label 2 to all the vertices of $w_{i}^{\prime \prime}(1 \leq i \leq n-1)$. Since $v_{f}(1)=v_{f}(2)=v_{f}(3)=3 n-2$ and $e_{f}(0)=\frac{11 n-10}{2}$ and $e_{f}(1)=\frac{11 n-8}{2}$, this labeling is 3 -difference cordial labeling.

Case 2. n is odd.

First we consider the path vertices u_{i}. Assign the label $1,1,2,2$ to the first four path vertices $u_{1}, u_{2}, u_{3}, u_{4}$ respectively. Then we assign the labels $1,1,2,2$ to the next four vertices $u_{5}, u_{6}, u_{7}, u_{8}$ respectively. Continuing like this assign the label to the next four vertices and so on. If all the vertices are labeled then we stop the process. Otherwise there are some on labeled vertices are exist. If the number of non labeled vertices are less than or equal to 3 then assign the labels $1,1,2$ to the non labeled vertices. If it is 2 assign the labels 1,1 to the non labeled vertices. If only one non labeled vertex exist then assign the label 1 to that vertex. Consider the vertices v_{i}. Assign the label 2 to the vertices $v_{1}, v_{3}, v_{5}, \cdots$ and we assign the label 3 to the vertices $v_{2}, v_{4}, v_{6}, \cdots$. Next we move to the vertices w_{i}. Assign the label to the vertices $w_{i}(1 \leq i \leq n-)$ as in case 1 . Now we consider the vertices x_{i} and y_{i}. Assign the label 2 to the vertices $x_{4 i+1}$ for all the values of $i=0,1,2,3, \cdots$. For all the values of $\mathrm{i}=0,1,2,3, \ldots$ assign the label 1 to the vertices $x_{4 i+2}$ and $x_{4 i+3}$. Then we assign the label 1 to the vertices $x_{4 i}$ for all the values of $i=1,2,3, \cdots$. Next we assign the label 3 to the vertices $y_{4 i+1}$ and $y_{4 i+2}$ for all the values of $i=0,1,2,3, \cdots$ and we assign the label 3 to the vertices $y_{4 i}$ for $i=1,2,3, \cdots$. Then we assign the label 2 to the vertices $y_{4 i+3}$ for all values $i=0,1,2,3, \cdots$. Next we move to the vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$. For all the values of $i=0,1,2,3, \cdots$ assign the label 1 to the vertices $v_{4 i+1}^{\prime}$ and $v_{4 i+3}^{\prime}$. Now we assign the label 1 to the vertices $v_{4 i}^{\prime}$ for $i=1,2,3, \cdots$. Next we assign the label 2 to the vertices $v_{4 i+2}^{\prime}$ for $i=01,2,3, \cdots$. Consider the vertices v_{i}^{\prime}. Assign the label

3 to the vertices $v_{4 i+1}^{\prime \prime}$ and $v_{4 i+2}^{\prime \prime}$ for all the values of $i=0,1,2,3, \cdots$ and we assign the label 1 to the vertices $v_{4 i}$ for $i=1,2,3, \cdots$. For the values of $i=0,1,2,3, \cdots$ assign the label 2 to the vertices $v_{4 i+3}$. Finally we consider the vertices w_{i}^{\prime} and $w_{i}^{\prime \prime}$. Assign the label to the vertices $w_{i}^{\prime}(1 \leq i \leq n-1)$ and $w_{i}^{\prime \prime}(1 \leq i \leq n-1)$ as in case 1. The vertex and edge condition are $v_{f}(1)=v_{f}(2)=v_{f}(3)=3 n-2$ and $e_{f}(0)=e_{f}(1)=\frac{11 n-9}{2}$.

We now investigate the graph $D T_{n} \odot K_{2}$.

Theorem $2.3 D T_{n} \odot K_{2}$ is 3-difference cordial.
Proof Let $V\left(D T_{n} \odot K_{2}\right)=V\left(D T_{n}\right) \bigcup\left\{x_{i}, y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$ and $E\left(D T_{n} \odot K_{2}\right)=E\left(D T_{n}\right) \bigcup\left\{u_{i} x_{i}, u_{i} y_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, v_{i}^{\prime} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}, w_{i}^{\prime} w_{i}^{\prime \prime}:\right.$ $1 \leq i \leq n-1\}$.

Case 1. n is even.
Consider the path vertices u_{i}. Assign the label 1 to the path vertices $u_{1}, u_{2}, u_{3}, \cdots$. Then we assign the labels 2 to the vertices $v_{1}, v_{2}, v_{3}, \cdots$. Next we assign the labels 3 to the vertices $w_{1}, w_{2}, w_{3}, w_{4}$. Now we consider the vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$. Assign the label 2 to the vertex v_{1}^{\prime}. Then we assign the label 1 to the vertices $v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}, v_{6}^{\prime}, \cdots$. Now we assign the label 3 to the vertices $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}, v_{4}^{\prime \prime}, \cdots$. Next we move to the vertices w_{i}^{\prime} and $w_{i}^{\prime \prime}$. Assign the label 1 to the vertex w_{1}^{\prime}. Then we assign the label 1 to the vertices $w_{2}^{\prime}, w_{4}^{\prime}, w_{6}^{\prime}, \cdots$ and assign the label 2 to the vertices $w_{3}^{\prime}, w_{5}^{\prime}, w_{7}^{\prime}, \cdots$. Assign the label 2 to the vertices $w_{1}^{\prime \prime}, w_{2}^{\prime \prime}, w_{3}^{\prime \prime}, w_{4}^{\prime \prime}, \cdots$. Finally we move to the vertices x_{i} and y_{i}. Assign the label 1 to the vertices $x_{1}, x_{3}, x_{5}, \cdots$ and we assign the label 2 to the vertices $x_{2}, x_{4}, x_{6}, \cdots$ then we assign the label 3 to the vertices $y_{1}, y_{2}, y_{3}, \cdots$. Clearly in this case the vertex and edge condition is given in $v_{f}(1)=v_{f}(2)=v_{f}(3)=3 n-2$ and $e_{f}(0)=7 n-5$ and $e_{f}(1)=7 n-6$.

Case 2. n is odd.
Assign the label to the vertices $u_{i}(1 \leq i \leq n), v_{i}(1 \leq i \leq n-1)$ and $w_{i}(1 \leq i \leq n-1)$ as in case 1. Consider the vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$. Assign the label 1 to the vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}, \cdots$. Then assign the label to the vertices $v_{i}^{\prime \prime}(1 \leq i \leq n-1)$ as in case 1 . Now we move to the vertices w_{i}^{\prime} and $w_{i}^{\prime \prime}$. Assign the label 1 to the vertices $w_{1}^{\prime}, w_{3}^{\prime}, w_{5}^{\prime}, \cdots$ and we assign the label 3 to the vertices $w_{2}^{\prime}, w_{4}^{\prime}, w_{6}^{\prime}, \cdots$. Next we assign the label to the vertices $w_{i}^{\prime \prime}(1 \leq i \leq n-1)$ as in case 1 . Now we consider the vertices x_{i} and y_{i}. Assign the label 2 to the vertices $x_{1}, x_{3}, x_{5}, \cdots$ and we assign the label 1 to the vertices $x_{2}, x_{4}, x_{6}, \cdots$. Then we assign the label to the vertices $y_{i}(1 \leq i \leq n)$ as in case 1. Since $v_{f}(1)=v_{f}(2)=v_{f}(3)=3 n-2$ and $e_{f}(0)=7 n-6$ and $e_{f}(1)=7 n-5$, this labeling is 3-difference cordial labeling.

A double quadrilateral snake $D Q_{n}$ consists of two quadrilateral snakes that have a common path. Let $V\left(D Q_{n}\right)=\left\{u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}, w_{i}, x i, y_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(D Q_{n}\right)=$ $\left\{u_{i} u_{i+1}, v_{i} w_{i}, x_{i} y_{i}, w_{i} u_{i+1}, y_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$.

Now we investigate the graphs $D Q_{n} \odot K_{1}, D Q_{n} \odot 2 K_{1}$ and $D Q_{n} \odot K_{2}$.

Theorem $2.4 D Q_{n} \odot K_{1}$ is 3-difference cordial.

Proof Let $V\left(D Q_{n} \odot K_{1}\right)=V\left(D Q_{n}\right) \bigcup\left\{u_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, w_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}: 1 \leq i \leq n-1\right\}$ and $E\left(D Q_{n} \odot K_{1}\right)=E\left(D Q_{n}\right) \bigcup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i} v_{i}^{\prime}, w_{i} w_{i}^{\prime}, x_{i} x_{i}^{\prime}, y_{i}, y_{i}^{\prime}: 1 \leq i \leq n-1\right\}$. Assign the label 1 to the path vertex u_{1}. Next we assign the labels $1,1,2$ to the vertices u_{2}, u_{3}, u_{4} respectively. Then we assign the labels $1,1,2$ to the next three path vertices u_{5}, u_{6}, u_{7} respectively. Proceeding like this we assign the label to the next three vertices and so on. If all the vertices are labeled then we stop the process. Otherwise there are some non labeled vertices are exist. If the number of non labeled vertices are less than or equal to 2 then assign the labels 1,1 to the non labeled vertices. If only one non labeled vertex exist then assign the label 1 only. Now we consider the vertices v_{i} and w_{i}. Assign the label 2 to the vertices $v_{3 i+1}$ and $v_{3 i+2}$ for all the values of $\mathrm{i}=0,1,2,3 \ldots$ For all the vales of $i=1,2,3, \cdots$ assign the label 1 to the vertices $v_{3 i}$. Then we assign the label 3 to the vertices $w_{i}(1 \leq i \leq n)$. Next we move to the vertices x_{i} and y_{i}. Assign the labels 2,3 to the vertices x_{1} and y_{1} respectively. Then we assign the label 2 to the vertices $x_{2}, x_{5}, x_{8}, \cdots$. Now we assign the label 1 to the vertices $x_{3}, x_{6}, x_{9}, \cdots$ and the vertices $x_{4}, x_{7}, x_{10}, \cdots$. Assign the label 3 to the vertices $y_{1}, y_{2}, y_{3}, \cdots$. We consider the vertices u_{i}^{\prime}. Assign the labels 2,3 to the vertices u_{1}^{\prime} and u_{2}^{\prime} respectively. Now we assign the label 1 to the vertices $u_{3}^{\prime}, u_{6}^{\prime}, u_{9}^{\prime}, \cdots$ and we assign the label 3 to the vertices $u_{4}^{\prime}, u_{7}^{\prime}, u_{10}^{\prime}, \cdots$. Then we assign the label 2 to the vertices $u_{5}^{\prime}, u_{8}^{\prime}, u_{11}^{\prime}, \cdots$. Next we move to the vertices v_{i}^{\prime} and w_{i}^{\prime}. Assign the the label 3 to the vertex w_{1}^{\prime}. Now assign the label 1 to all the vertices of $v_{i}^{\prime}(1 \leq i \leq n-1)$ and we assign the label 2 to the vertices $w_{2}^{\prime}, w_{3}^{\prime}, w_{4}^{\prime}, \cdots$. We consider the vertices x_{i}^{\prime} and y_{i}^{\prime}. Assign the label 2,1 to the vertices x_{1}^{\prime} and y_{1}^{\prime} respectively. Also we assign the label 2 to the vertices $x_{2}^{\prime}, x_{5}^{\prime}, x_{8}^{\prime}, \cdots$ and the vertices $x_{3}^{\prime}, x_{6}^{\prime}, x_{9}^{\prime}, \cdots$. Then we assign the label 1 to the vertices $x_{4}^{\prime}, x_{7}^{\prime}, x_{10}^{\prime}, \cdots$. Next we assign the label 3 to the vertices $y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}, \ldots$ The vertex condition is $e_{f}(0)=6 n-5$ and $e_{f}(1)=6 n-6$. Also the edge condition is given in Table 1 following.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$
$n \equiv 0(\bmod 3)$	$\frac{10 n-9}{3}$	$\frac{10 n-6}{3}$	$\frac{10 n-9}{3}$
$n \equiv 1(\bmod 3)$	$\frac{10 n-10}{3}$	$\frac{10 n-7}{3}$	$\frac{10 n-7}{3}$
$n \equiv 2(\bmod 3)$	$\frac{10 n-8}{3}$	$\frac{10 n-8}{3}$	$\frac{10 n-8}{3}$

Table 1

Theorem 2.5 $D Q_{n} \odot 2 K_{1}$ is 3-difference cordial.

Proof Let $V\left(D Q_{n} \odot 2 K_{1}\right)=V\left(D Q_{n}\right) \bigcup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}^{\prime}, y_{i}^{\prime \prime}:\right.$ $1 \leq i \leq n-1\}$ and $E\left(D Q_{n} \odot 2 K_{1}\right)=E\left(D Q_{n}\right) \bigcup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}\right.$, $\left.x_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime \prime}, y_{i} y_{i}^{\prime \prime}, y_{i} y_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$. First we consider the path vertices u_{i}. Assign the label 1 to the path vertices $u_{1}, u_{3}, u_{5}, \cdots$ and we assign the label 2 to the path vertices $u_{2}, u_{4}, u_{6}, \cdots$. Clearly the last vertex u_{n} received the label 2 or 1 according as $n \equiv 0 \bmod 2$ or $n \equiv 1(\bmod 2)$. Next we move to the vertices v_{i} and w_{i}. Assign the label 1 to all the vertices of $v_{i}(1 \leq i \leq n)$ and we assign the label 3 to the vertices $w_{1}, w_{2}, w_{3}, \ldots$ Then we assign the label to the vertices $x_{i}(1 \leq i \leq n-1)$ is same as assign the label to the vertices $v_{i}(1 \leq i \leq n-1)$ and we assign the label to the vertices $y_{i}(1 \leq i \leq n-1)$ is same as assign the label to the vertices w_{i} $(1 \leq i \leq n-1)$. Next we move to the vertices u_{i}^{\prime} and $v_{i}^{\prime \prime}$. Assign the label 2 to the vertices
$v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \cdots$ then we assign the label 3 to the vertex $v_{1}^{\prime \prime}$. Assign the label 3 to the vertices $v_{2 i}^{\prime \prime}$ for all the values of $i=1,2,3, \cdots$ and we assign the label 2 to the vertices $v_{2 i+1}^{\prime \prime}$ for $i=1,2,3, \cdots$. Next we consider the vertices w_{i}^{\prime} and $w_{i}^{\prime \prime}$. Assign the label 1 to the vertices $w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}, \cdots$ and we assign the label 3 to the vertices $w_{1}^{\prime \prime}, w_{2}^{\prime \prime}, w_{3}^{\prime \prime}, \cdots$. Next we move to the vertices x_{i}^{\prime} and $x_{i}^{\prime \prime}$. Assign the label 1 to all the vertices of $x_{i}^{\prime}(1 \leq i \leq n-1)$ and we assign the label 2 to all the vertices of $x_{i}^{\prime \prime}(1 \leq i \leq n-1)$. Now we assign the label 2 to the vertices $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \cdots$ and we assign the label 3 to the vertices $y_{1}^{\prime \prime}, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}, \cdots$. Finally we move to the vertices u_{i}^{\prime} and $u_{i}^{\prime \prime}$. Assign the label 2 to the vertices $u_{1}^{\prime}, u_{3}^{\prime}, u_{5}^{\prime}, \cdots$ and we assign the label 1 to the vertices $u_{2}^{\prime}, u_{4}^{\prime}, u_{6}^{\prime}, \cdots$. Next we assign the label 2 to the vertices $u_{1}^{\prime \prime}, u_{3}^{\prime \prime}, u_{5}^{\prime \prime}, \cdots$ and we assign the label 3 to the vertices $u_{2}^{\prime \prime}, u_{4}^{\prime \prime}, u_{6}^{\prime \prime}, \cdots$. The vertex condition is $v_{f}(1)=v_{f}(2)=v_{f}(3)=\frac{15 n-12}{3}$. Also the edge condition is given in Table 2.

Values of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 2)$	$\frac{17 n-16}{2}$	$\frac{17 n-14}{2}$
$n \equiv 1(\bmod 2)$	$\frac{17 n-15}{2}$	$\frac{17 n-15}{2}$

Table 2

Theorem 2.6 $D Q_{n} \odot K_{2}$ is 3-difference cordial.

Proof Let $V\left(D Q_{n} \odot K_{2}\right)=V\left(D Q_{n}\right) \bigcup\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i}^{\prime}, v_{i}^{\prime \prime}, w_{i}^{\prime}, w_{i}^{\prime \prime}, x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}^{\prime}, y_{i}^{\prime \prime}:\right.$ $1 \leq i \leq n-1\}$ and $E\left(D Q_{n} \odot K_{2}\right)=E\left(D Q_{n}\right) \bigcup\left\{u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}, u_{i}^{\prime} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, v_{i}^{\prime} v_{i}^{\prime \prime}\right.$, $\left.w_{i} w_{i}^{\prime}, w_{i} w_{i}^{\prime \prime}, w_{i}^{\prime} w_{i}^{\prime \prime}, x_{i} x_{i}^{\prime}, x_{i} x_{i}^{\prime \prime}, x_{i}^{\prime} x_{i}^{\prime \prime}, y_{i} y_{i}^{\prime \prime}, y_{i} y_{i}^{\prime \prime}, y_{i}^{\prime} y_{i}^{\prime \prime}: 1 \leq i \leq n-1\right\}$. First we consider the path vertices u_{i}. Assign the label 1 to the vertex u_{1}. Then we assign the label 1 to the vertices $u_{2}, u_{4}, u_{6}, \cdots$ and we assign the label 2 to the path vertices $u_{1}, u_{3}, u_{5}, \cdots$. Note that in this case the last vertex u_{n} received the label 1 or 2 according as $n \equiv 0(\bmod 2)$ or $n \equiv 1(\bmod 2)$. Next we move to the vertices v_{i} and w_{i}. Assign the label 2 to the vertex v_{1}. Then we assign the label 3 to all the vertices of $w_{i}(1 \leq i \leq n-1)$. Assign the label 1 to the vertices $v_{2}, v_{3}, v_{4}, \ldots$ We consider the vertices x_{i} and y_{i}. Assign the label to the vertices $x_{i}(1 \leq i \leq n-1)$ is same as assign the label to the vertices $v_{i}(1 \leq i \leq n-1)$ and assign the label to the vertices y_{i} $(1 \leq i \leq n-1)$ is same as assign the label to the vertices $w_{i}(1 \leq i \leq n-1)$. Next we move to the vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$. Assign the label 2 to the vertices $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \cdots$ and assign the label 3 to the vertices $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}, \cdots$. Consider the vertices x_{i}^{\prime} and $x_{i}^{\prime \prime}$. Assign the label 1 to all the vertices of $x_{i}^{\prime}(1 \leq i \leq n-1)$. Assign the label 2 to the vertex $x_{1}^{\prime \prime}$. Then we assign the label 3 to the vertices $x_{2}^{\prime \prime}, x_{3}^{\prime \prime}, x_{4}^{\prime \prime}, \cdots$. Now we assign the label 2 to all the vertices of $w_{i}^{\prime}(1 \leq i \leq n-1)$ and assign the label 3 to all the vertices of $w_{i}^{\prime \prime}(1 \leq i \leq n-1)$. Now we move to the vertices y_{i}^{\prime} and $y_{i}^{\prime \prime}$. Assign the label 1 to the vertices $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, \cdots$ and we assign the label 2 to the vertices $y_{1}^{\prime \prime}, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}, \cdots$. Next we move to the vertices u_{i}^{\prime} and $u_{i}^{\prime \prime}$. Assign the label 1,3 to the vertices u_{1}^{\prime} and $u_{1}^{\prime \prime}$ respectively. Assign the label 1 to the vertices $u_{2 i}^{\prime}$ for all the values of $i=1,2,3, \cdots$ and assign the label 2 to the vertices $u_{2 i+1}$ for $i=1,2,3, \cdots$ then we assign the label 2 to the vertices $u_{2}^{\prime \prime}, u_{3}^{\prime \prime}, u_{4}^{\prime \prime}, \cdots$. The vertex and edge conditions are

$$
v_{f}(1)=v_{f}(2)=v_{f}(3)=\frac{15 n-12}{3}
$$

and

$$
e_{f}(0)=11 n-9, \quad e_{f}(1)=11 n-10
$$

References

[1] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) \#Ds6.
[2] F.Harary, Graph Theory, Addision wesley, New Delhi (1969).
[3] R.Ponraj, M.Maria Adaickalam and R.Kala, k-difference cordial labeling of graphs, International Journal of Mathematical Combinatorics, 2(2016), 121-131.
[4] R.Ponraj, M.Maria Adaickalam, 3-difference cordial labeling of some union of graphs, Palestine Journal of Mathematics, 6(1)(2017), 202-210.
[5] R.Ponraj, M.Maria Adaickalam, 3-difference cordial labeling of cycle related graphs, Journal of Algorithms and Computation, 47(2016), 1-10.
[6] R.Ponraj, M.Maria Adaickalam, 3-difference cordiality of some graphs, Palestine Journal of Mathematics, 2(2017), 141-148.
[7] R.Ponraj, M.Maria Adaickalam, R.Kala, 3-difference cordiality of corona of double alternate snake graphs, Bulletin of the International Mathematical Virtual Institute, 8(2018), 245-258.

[^0]: ${ }^{1}$ Received November 26, 2017, Accepted May 29, 2018.

