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Based on an intuitive generalization of the Lorentz Transformations to non-

inertial frames, this study presents new coordinates for a hyperbolically ac-

celerated reference frame. These coordinates are equivalent to the Rindler

coordinates exclusively at small times due to the loss of the clock hypothesis.

This hypothesis is considered an excellent but fundamentally incorrect approx-

imation for longitudinal motion. The proper acceleration of a hyperbolically

accelerated particle is no longer constant and its proper time progressively

slows down until becoming constant at the speed of light. This is in agreement

with the timeless nature of photons. An event horizon beyond which any infor-

mation cannot reach the particle is still present and is identical to the Rindler

horizon. More importantly, a time dependent factor appears in the metric that

could profoundly change our understanding of the space-time dynamic.
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Introduction

The Lorentz Transformations are the heart of Special Relativity. They describe how an event (a

point in space-time) is seen from two inertial observers moving on a line with a constant veloc-

ity. When one of the observers starts to accelerate, these transformations are no longer valid and

accelerated frames of reference need to be constructed. For any fixed time, it exists an inertial

frame in which the accelerated observer is at rest and shares the same instantaneous velocity.

Considering a succession of inertial frames along the path of the accelerated observer, the in-

finitesimal time dilation relationship derived from the Lorentz Transformations is supposed to

be valid over the entire trajectory. This framework is the basis of the Rindler coordinates used

for an observer accelerating with a constant proper acceleration (1).

However, the above reasoning contains a flaw. For any fixed time, the accelerated observer

has also a non-zero instantaneous acceleration. The ”clock hypothesis” claims that this instanta-

neous acceleration has no effect on the infinitesimal time dilation. This postulate is an important

component of the General Relativity.

The clock hypothesis has been verified in circular particle accelerators with accelerations

of 1018 g (2), and has remained well established. However, circular and longitudinal motions

have drastically different accelerations. In the first case, the acceleration is centripetal, perpen-

dicular to a constant angular velocity, and in the second case, the acceleration is collinear to an

increasing velocity. This study will only focus on longitudinal motions and will quantitatively

contest the unique experimental validation of the clock hypothesis for longitudinal motions (3) .

Although previous studies have criticized the clock hypothesis, most were primarily based
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on theoretical considerations without proposed alternatives (4, 5). One exception is the devel-

opment of an extended relativistic dynamic with the hypothesis of a maximum acceleration (6).

The decay of unstable particles has also been studied (7), but the author concluded that the

clock hypothesis is true by neglecting a second order correction. More recently, based on an

analysis of the energy spectrum of an accelerated system, Dahia and Silva (8) have determined

that the instantaneous acceleration has an influence on the rate of atomic clock but without a

direct violation of the clock hypothesis (the small correction factor vanishes at the limit).

In contrast to the previous studies, this investigation takes a simple, original but also contro-

versial approach. New Generalized Lorentz Transformations between an inertial observer and

a non-inertial observer accelerating with a constant coordinate acceleration in one direction are

intuited. These transformations are postulated to be a ”natural” way of studying accelerated

frames of reference. A new infinitesimal time dilation formula that includes the instantaneous

acceleration is derived from this system, this contradicts the clock hypothesis for longitudinal

motions. Using this new formula in conjunction with the velocity of a Rindler’s particle, new

coordinates are constructed that describe the same hyperbolically accelerated reference frame

as the Rindler coordinates.

Generalized Lorentz Transformations

Let’s consider a line on a flat space time. Two observers A and B are associated with two ref-

erentials R and R’, with R always inertial in this study. Observer B is moving with a velocity

v with respect to A and axes are chosen so that v = −v′. The notation t (resp. t′) will be used

for the coordinate time associated with the referential R (resp. R’), while τ (resp. τ ′) will be

the proper time of A (resp. B). Consider that during a time t < (c − v0)/a, B accelerates with

a constant coordinate acceleration a = dv/dt = d2xB/dt
2, with v0 the initial velocity of B and
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c the speed of light. The equation of motion is xB = at2/2 + v0t + x0. Choosing x0 = 0 and

knowing that v0 = v− at, it comes: xB = vt− at2/2. The novel idea of this study is to replace

x by x+ at2/2 in the Lorentz Transformations to generalize them to an ideal accelerated frame

of reference with the coordinate acceleration a constant. This generalization cannot be logically

demonstrated, it is postulated.

Let’s consider an event M with coordinates (x, t) in R (inertial) and (x′, t′) in R′ (non-

inertial), I suggest that the following transformations are correct for t < (c − v0)/a, with

a = dv/dt constant and γ = 1/
√

1− v2/c2 :

x′ = γ

(
x+ a

t2

2
− vt

)
ct′ = γ

(
ct− v

c
(x+ a

t2

2
)

) (1)

equivalent to:

x+ a
t2

2
= γ (x′ + vt′)

ct = γ
(
ct′ +

v

c
x′
) (2)

In the rest frame of B (x′ = 0, t′ = τ ′), the motion xB = vt − at2/2 is valid and t = γτ ′,

which is the same dilation formula as a constant v. However, in the rest frame of A (x=0, t = τ ),

the motion is x′A/γ = −vτ + aτ 2/2 and t′ = γτ − avγτ 2/(2c2). The symmetry present in the

original Lorentz Transformations between the two observers is therefore broken.

Differentiating the system (1) and (2) with dv 6= 0 and dγ = γ3vdv/c2 it becomes:
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dx′ +
γ2

c
ct′dv = γ (dx− vdt) + γ

c
actdt

cdt′ +
γ2

c
x′dv = γ

(
cdt− v

c
dx
)
− γ

c
avtdt

dx+ atdt− γ2

c
ctdv = γ (dx′ + vdt′)

cdt− γ2

c

(
x+ a

t2

2

)
dv = γ

(
cdt′ +

v

c
dx′
)

(3)

For X = x+ at2/2 and T = t, the metric is:

c2dT 2 − (dX)2 =

(
cdt′ +

γ2

c
x′dv

)2

−
(
dx′ +

γ2

c
ct′dv

)2

(4)

In the rest frame of B (x′ = 0, dx′ = 0, t′ = τ ′, v = dx/dt) the new time-dilation formula

appears that contradicts the clock hypothesis:

dτ ′ = 1
γ
(1− γ2avt

c2
)dt (5)

Eq. (5) is simply the differentiate of τ ′ = t/γ with dv 6= 0. The reader should also notice

that γ2avt/c2 � 1 is equivalent here to the clock hypothesis. It is an excellent approximation

as high accelerations in one direction cannot be maintained for a long time.

Momentarily Comoving Non-Inertial Reference Frame

The previous section described the behavior of an ”ideally” accelerated particle where a is con-

stant for a short time. How is it possible to generalize this to any a(t) ?

Classically, accelerated frames of reference are constructed based on the clock hypothesis

and the existence at each instant of a ”Momentarily Comoving Reference Frame” (MCRF) in

which the accelerated particle is at rest and shares the same instantaneous velocity as its comov-

ing frame. The time dilation formula dτ ′ = dt/γ is therefore supposed to hold for v = v(t).
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Based on α′ = d
dt
dxB
dτ ′

with α′ the proper acceleration of B, it leads to the relationship α′ = γ3a.

Similarly, this study introduces the concept of Momentarily Comoving Non-Inertial Refer-

ence Frame (MCNIRF) in which the equations of the Generalized Lorentz Transformations are

valid. At each instant, a MCNIRF exists in which the accelerated particle is at rest and shares

the same instantaneous velocity and acceleration as its comoving frame. The time dilation for-

mula dτ ′ = dt(1− γ2avt/c2)/γ therefore holds for a = a(t). Based on α′ = d
dt
dxB
dτ ′

, a different

relationship appears:

α′(t) =

(
1−( vc )

4
+atv3

c4

)
a+( vc )

2
(
1−( vc )

2
)
t da
dt(

1−( vc )
2
−atv
c2

)2√
1−( vc )

2 (6)

The reader should notice that the relationship α′ = γ3a is no longer valid. The two previous

sections are summarized in Table 1.

Comparison with the Rindler coordinates

In Special Relativity, Rindler coordinates (1) are associated with an inertial observer A and a

non-inertial observer B accelerating in one direction with a constant proper acceleration. The

velocity of a Rindler particle is vRi(t) = α′0t/
√
1 + (α′0t/c)

2 with α′0 constant. Based on

the method using successive MCNIRFs, vRi is allowed to be plugged in Eq. (5) and Eq. (6)

to construct a new proper acceleration and new coordinates similar to the Rindler coordinates

(see the Appendix). Results and comparison with Rindler are summarized in Table 2 and Fig. 1.
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Current theory This study

Lorentz Transformations Generalized Lorentz Transformations

Event with coordinates (x, t) in R (inertial) Event with coordinates (x, t) in R (inertial)
and (x′, t′) in R’ (inertial) and (x′, t′) in R’ (non inertial)

For v = dxB
dt

constant: For a = d2xB
dt2

constant and t < c−v0
a

:

x′ = γ (x− vt) x′ = γ
(
x+ a t

2

2
− vt

)
ct′ = γ

(
ct− v

c
x
)

ct′ = γ
(
ct− v

c
(x+ a t

2

2
)
)

In the rest frame of B In the rest frame of B
dτ ′ = dt

γ
dτ ′ = 1

γ

(
1− γ2avt

c2

)
dt

B is now accelerating randomly B is now accelerating randomly

Clock hypothesis
+ Existence of a succession of

Existence of a succession of Momentarily Comoving
Momentarily Comoving Non-Inertial Reference Frames

Inertial Reference Frames with the same instantaneous
with the same instantaneous velocity and acceleration than B

velocity than B

→ dτ ′ = dt
γ

→ dτ ′ = 1
γ

(
1− γ2avt

c2

)
dt

holds for v = v(t) holds for a = a(t)

Proper acceleration α′(t) = d
dt
dxB
dτ ′

Proper acceleration α′(t) = d
dt
dxB
dτ ′

α′(t) = aγ3 α′(t) =

(
1−( vc )

4
+atv3

c4

)
a+( vc )

2
(
1−( vc )

2
)
t da
dt(

1−( vc )
2
−atv
c2

)2√
1−( vc )

2

Table 1: Comparison of the method between the current theory and this study to construct an
accelerated frame of reference. In both cases, γ = 1/

√
1− (v/c)2.
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Rindler This study

vRi(t) =
α′
0t√

1+

(
α′0t
c

)2
vRi(t) =

α′
0t√

1+

(
α′0t
c

)2

α′(t) = α′0 α′(t) = α′0

(
1 + 3

(
α′
0t

c

)2)

x =
(
c2

α′
0
+ x′

)
cosh

(
α′
0t

′

c

)
− c2

α′
0

x =
(
c2

α′
0
+ x′

)
γ̃ − c2

α′
0

ct =
(
c2

α′
0
+ x′

)
sinh

(
α′
0t

′

c

)
ct =

(
c2

α′
0
+ x′

)
γ̃
α′
0

c
t′

with γ̃ = 1√
1−
(
α′0t

′

c

)2

(ds)2 =
(
1 +

α′
0x

′

c2

)2
(cdt′)2 − (dx′)2 (ds)2 =

 1+
α′0x

′

c2

1−
(
α′0t

′

c

)2

2

(cdt′)2 − (dx′)2

In the rest frame of B In the rest frame of B(
1 +

α′
0x

c2

)2
−
(
α′
0t

c

)2
= 1

(
1 +

α′
0x

c2

)2
−
(
α′
0t

c

)2
= 1

τ ′ = c
α′
0
ln

(
α′
0t

c
+

√
1 +

(
α′
0t

c

)2)
τ ′ = t√

1+

(
α′0t
c

)2

Behavior for α′
0t

′

c
<< 1 or α′

0t

c
<< 1 : identical

Behavior for t = +∞ Behavior for t = +∞
v = c v = c
a = 0 a = 0
α′ = α′0 α′ = +∞
τ ′ = +∞ τ ′ = c

α′
0

Table 2: Comparison between the Rindler coordinates and this study for the same velocity
vRi(t). α′(t) is the proper acceleration of B, α′0 a constant and ds2 = (cdt)2 − dx2.
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This study Rindler Clock hypothesis valid

Figure 1: Proper time (left panel) and proper acceleration (right panel) versus coordinate time
of a particle associated with a velocity vRi(t) = α′0t/

√
1 + (α′0t/c)

2.

The hyperbolic motion is only derived from the velocity vRi, there is therefore a strict equiv-

alence between Rindler and this study for the motion, velocity and coordinate acceleration of

an accelerated particle. However, the coordinates, proper acceleration, proper time and met-

ric have changed. The terms cosh and sinh in the expression of the Rindler coordinates have

been replaced by a factor that is more consistent with the rest of the mathematical framework:

γ̃ = 1/
√
1− (α′0t

′/c)2, analogous to γ. The proper acceleration α′ is now increasing with time,

and its quadratic expression is surprisingly simple knowing the convoluted differential equation

(Eq. (6)) it comes from. The proper time progressively freezes until becoming constant (c/α′0)

when the particle reaches the speed of light (Fig. 1). This is in agreement with the idea that

photons do not experience time. A temporal factor 1/(1−(α′0t′/c)2)2 has appeared in the metric

of the system and originates from the loss of the clock hypothesis. Additionally, an event hori-

zon x′h can be calculated in the proper frame of the accelerated particle (no information beyond

this limit can reach the particle), with x′h = −c2/α′0, identical to the Rindler horizon (see the
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Appendix).

Rindler and this study behave identically for α′0t/c � 1 using a Taylor expansion. The

clock hypothesis is restored in this regime: dτ ′ = dt(1 − γ2avt/c2)/γ becomes equivalent

to dτ ′ = dt/γ. The metric of Rindler is known to be locally equivalent to the metric of

Schwarzschild (9). This result can be easily explained by the fact that the Equivalence Prin-

ciple requires the acceleration to be constant, and here α′(t) = α′0 only for α′0t/c� 1.

To the best of my knowledge, only one study has experimentally verified the clock hypoth-

esis for longitudinal motion (3), and the average acceleration goes up to 1016 g. Roos et al.

did not explicitly specify the time during which this acceleration is maintained, but they gave

maximum values of cτ ′ ∼ 0.05 m. Therefore τ ′ ∼ 10−10 s, v ∼ aτ ′ ∼ 107 m.s−1. For these

order of magnitudes, γ2avt/c2 ∼ 10−3 and the relative difference between dτ ′ = dt/γ and

dτ ′ = dt(1− γ2avt/c2)/γ is only 0.1 %: any discrepancies are impossible to detect.

The easiest way to experimentally validate or invalidate this study would be to reproduce

the measurements at two different heights of the Muons (10) or Mesons (11) traversing the at-

mosphere. By estimating the high deceleration experienced on their trajectory, we can predict

the impact of the time dilation on their half life and see which prediction is the closest to the

observation: the one with the clock hypothesis, or the one without?

In this study, particles with a velocity vRi have no constant proper acceleration. Apparently,

no analytical (or even numerical) expression of v(t) from the Equation (6) exists considering

α′(t) constant. What happens to the Equivalence Principle if trajectories with constant proper

acceleration do not exist anymore? A possible idea is to consider a constant coordinate ac-
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celeration instead, knowing that t = γτ ′ is still valid when a = dv/dt = d2xB/dt
2 constant.

By choosing an initial velocity of zero, the particle motion is therefore x = a t
2

2
, leading to

v2 = 2ax. The time dilation formula becomes:

τ ′ = t
√

1− 2ax
c2

(7)

Now consider a Schwarzschild metric, with t the coordinate time of an observer A far away

from a massive object (massM ) and τ ′ the proper time of an observer B within the gravitational

field. Let’s define g = GM/r2 with r as the radial coordinate of the observer B and G the

Gravitational constant. If both A and B are at rest with the massive body, it becomes:

τ ′ = t
√

1− 2gr
c2

(8)

The problem now is that Eq (8) holds for an arbitrarily long time, while (7) is evolving

due to an increasing x(t). This can be solved by an interesting idea: g can stay constant with

different M and r. By following the particle at three successive instants t1, t2 and t3 so that

τ ′i = ti

√
1− 2axi

c2
with i = 1, 2 or 3, we have x1 < x2 < x3. Similarly, three sets of (Mi, ri)

are chosen so that g stays constant: g = GM1

r21
= GM2

r22
= GM3

r23
with r1 < r2 < r3 and M1 <

M2 < M3. For each ti, with xi = ri, a perfect analogy exists between an accelerated frame

with a constant and a gravitational field with g constant, at least in terms of time dilation. When

the velocity of the particle reaches the speed of light, a black hole forms in the comparison

(2gr/c2 = 1 because ri was increasing). There is therefore an analogy between the existence

of black holes and the existence of superluminal particles, for which the proper time is an

imaginary time.
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Conclusion

This study claims that the clock hypothesis is incorrect for longitudinal motions and the results

presented here have no consequences for circular motions with a constant angular velocity. The

starting assumption is to consider as ”unnatural” the way accelerated frames of reference are

constructed in Special Relativity. The Lorentz transformations are only valid for constant ve-

locities between two inertial observers, and they have been forced with the clock hypothesis to

construct the Rindler coordinates.

The Lorentz Transformations first need to be generalized to non-inertial frames to construct

accelerated frames of reference. The idea of replacing x by x + at2/2 in the Lorentz Trans-

formations to create a ”natural” framework in which accelerated referentials can be studied for

t < (c−v0)/a is intuitive and cannot be logically demonstrated. The relationship τ ′ = t/γ stays

valid for a constant, and the differentiation of this formula leads to dτ ′ = dt (1− γ2avt/c2) /γ.

The clock hypothesis is now equivalent to γ2avt/c2 � 1. The use of successive MCNIRFs per-

mits to construct new coordinates for a particle with a velocity vRi(t) = α′0t/
√

1 + (α′0t/c)
2,

which is the velocity of a Rindler particle. Comparison with the Rindler coordinates is fruitful:

the mathematical framework of the new coordinates is remarkable as cosh and sinh have disap-

peared without the loss of the hyberbolic motion or the horizon event. The proper time becomes

constant for light speed particles, and this new system is equivalent to Rindler for small times

and accelerations (Table 2, Fig. 1). Additionally, this study explains why the Rindler metric

and the Schwarzschild metric are equivalent only locally: the proper acceleration of a hyper-

bolically accelerated particle is actually not constant.

The most important change is in the metric of the system. The term 1/(1 − (α′0t
′/c)2)2
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cannot be found in the General Relativity as Einstein built his theory with the clock hypothesis.

If this study is correct, a similar temporal term must exist in General Relativity and therefore

the Einstein field equations must be modified to accept the loss of the clock hypothesis when

the magnitude of the velocity changes.

It has been quantitatively proved that the only experiment testing for the clock hypothe-

sis for longitudinal motions (3) could not detect the factor γ2avt/c2 present in the new time

dilation formula. Modern and accurate measurements of the flux of atmospheric Muons or

Mesons performed at two different heights will validate or invalidate this study. Finally, this

work is missing many updates compared to the current theory: the relativistic Doppler effect

for accelerated bodies, the Unruh effect, the development of a new relativistic dynamic and a

Group theory study on the asymmetrical Generalized Lorentz Transformations. If these new

transformations are correct, fundamental changes are expected to occur in our understanding of

acceleration and space-time dynamic.
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Appendix

Proof of Eq. 3

Let’s calculate the differentiate of Eq. 1 and Eq. 2 with a constant. It comes:

dx′ = γ (dx− vdt) + γatdt− γtdv + γ3vdv

c2

(
x+ a

t2

2
− vt

)
dt′ = γ

(
dt− v

c2
dx
)
− γ v

c2
atdt− γ

c2

(
x+ a

t2

2

)
dv +

γ3vdv

c2

(
t− v

c2

(
x+ a

t2

2

))
dx+ atdt = γ (dx′ + vdt′) + γt′dv +

γ3vdv

c2
(x′ + vt′)

dt = γ
(
dt′ +

v

c2
dx′
)
+ γx′

dv

c2
+
γ3vdv

c2

(
t′ +

v

c2
x′
)

Knowing that γ2 = 1+(γv/c)2, the first line needs to be factorized by (−γtdv), the second

line by (−γxdv/c2), the third line by (γt′dv) and the fourth by (γx′dv/c2). It comes:

dx′ = γ (dx− vdt) + γatdt− γ3tdv + γ3vdv

c2

(
x+ a

t2

2

)
dt′ = γ

(
dt− v

c2
dx
)
− γ v

c2
atdt− γ3xdv

c2
− γ

c2
a
t2

2
dv +

γ3vdv

c2

(
t− v

c2
a
t2

2

)
dx+ atdt = γ (dx′ + vdt′) + γ3t′dv +

γ3vdv

c2
x′

dt = γ
(
dt′ +

v

c2
dx′
)
+
γ3x′dv

c2
+
γ3vdv

c2
t′

Now, the first line needs to be factorized by (−γ2dv/c), the third line by (γ3dv) and the

fourth line by (γ3dv/c2). The second line needs first to be factorized by (−at2γ3dv/(2c2)) and

simplified with γ−2 + (v/c)2 = 1. Then, it needs to be factorized by (−γ2dv/c2). Using Eq. 1

and 2, it comes:

dx′ = γ (dx− vdt) + γatdt− γ2

c
ct′dv

dt′ = γ
(
dt− v

c2
dx
)
− γ

c2
avtdt− γ2

c2
x′dv

dx+ atdt = γ (dx′ + vdt′) + γ2tdv

dt = γ
(
dt′ +

v

c2
dx′
)
+
γ2

c2

(
x+ a

t2

2

)
dv
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Which leads to Eq. 3.

Proof of Eq. 4

Eq. 4 comes the difference of the square of the second and first line of Eq. 3. So let’s calculate:

W =
(
γ
(
cdt− v

c
dx
)
− γ

c
avtdt

)2
−
(
γ (dx− vdt) + γ

c
actdt

)2
It is trivial that (γ(cdt− vdx/c))2 − (γ(dx− vdt))2 = c2dt2 − dx2. W becomes:

W = c2dt2 − dx2 + γ2

c2
a2v2t2dt2 − 2

γ2

c

(
cdt− v

c
dx
)
avtdt− γ2a2t2dt2 − 2γ2(dx− vdt)atdt

Knowing that γ2 − (γv/c)2 = 1 and factorizing by (−a2t2dt2), it comes:

W = c2dt2 − dx2 − 2
γ2

c

(
cdt− v

c
dx
)
avtdt− a2t2dt2 − 2γ2(dx− vdt)atdt

Then it needs to be factorized by (−2γ2atdt/c).

W = c2dt2 − dx2 − 2
γ2

c
atdt

(
cdx− v2

c
dx

)
− a2t2dt2

= c2dt2 − dx2 − 2atdtdx− a2t2dt2

= c2dt2 − (dx+ atdt)2

= c2dt2 −
(
d

(
x+ a

t2

2

))2

= c2dT 2 − dX2

with T = t and X = x+ at2/2.
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Proof of Eq. 6

Eq. 6 comes from α′ = d
dt
dxB
dτ ′

and dτ ′ = dt(1 − γ2avt/c2)/γ with a = a(t) and v = dxB/dt.

It comes:

α′ =
d

dt

(
γv

1

1− γ2avt
c2

)
=

d

dt

(γv
U

)
Let’s calculate first dU/dt:

dU

dt
= −γ

2

c2

(
2γ2a2v2t

c2
+ vt

da

dt
+ a2t+ av

)
= −γ

2

c2
V

It comes:

α′ = γU−2
(
γ2
(v
c

)2
Ua+ Ua+ v

γ2

c2
V

)
= γU−2

(
γ2Ua+ v

γ2

c2
V

)
= γ5U−2

(
Ua

γ2
+

v

c2γ2
V

)
Then Ua/γ2 and vV/(c2γ2) need to be calculated:

Ua

γ2
= a

(
1

γ2
− avt

c2

)
vV

c2γ2
= a

(
2av3t

c4
+

avt

γ2c2
+

v2

γ2c2

)
+
(v
c

)2 t

γ2
da

dt

Finally:
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α′ = γ5U−2
(
a

(
1

γ2
− avt

c2
+

2av3t

c4
+

avt

γ2c2
+

v2

γ2c2

)
+
(v
c

)2 t

γ2
da

dt

)
= γ5U−2

(
a

(
1−

(v
c

)4
− avt

c2
+

2av3t

c4
+

avt

γ2c2

)
+
(v
c

)2 t

γ2
da

dt

)
= γ5U−2

(
a

(
1−

(v
c

)4
+
atv3

c4

(
c2

γ2v2
− c2

v2
+ 2

))
+
(v
c

)2 t

γ2
da

dt

)
= γ5U−2

(
a

(
1−

(v
c

)4
+
atv3

c4

)
+
(v
c

)2 t

γ2
da

dt

)
The final expression of Eq. 6 is found with:

γ5U−2 = γ

(
1−

(v
c

)2
− avt

c2

)−2
Proof of α′(t) = α′0(1 + 3(α′0t/c)

2) for v = vRi(t)

For vRi(t) = α′0t/
√

1 + (α′0t/c)
2, the first and second derivatives are:

a =
α′0(

1 +
(
α′
0t

c

)2)3/2

da

dt
=

−3 (α′
0)

3t

c2(
1 +

(
α′
0t

c

)2)5/2

Now I define ε = α′0t/c, and all the following relationships are correct:

(v
c

)2
=

ε2

1 + ε2

1−
(v
c

)2
=

1

1 + ε2

a =
α′0

(1 + ε2)3/2

atv

c2
=

ε2

(1 + ε2)2

t
da

dt
= −3α′0

ε2

(1 + ε2)5/2
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The term in (1 + ε2)
9/2 cancels itself in the denominator and numerator of Eq. 6 and the

simplification is trivial at the end.

Construction of the coordinates

The velocity vRi(t) = α′0t/
√

1 + (α′0t/c)
2 needs first to be plugged into Eq. 5:

dτ ′ = 1(
1+

(
α′0t
c

)2
)3/2dt

Integration gives:

τ ′(t) = t√
1+(

α′0t
c

)2

Now, let’s reverse the equation:

t(τ ′) = τ ′√
1−(

α′0τ
′

c
)2

x(t) is given by integrating vRi(t) = dx/dt, and choosing x(0) = 0:

x(t) = c2

α′
0

√
1 + (

α′
0t

c
)2 − c2

α′
0

Replacing with the expression of t(τ ′), it comes:

x = c2

α′
0

1√
1−(

α′0τ
′

c
)2
− c2

α′
0

ct = cτ ′√
1−(

α′0τ
′

c
)2

And these two equations verify the same hyperbolic relationship than Rindler in the proper

frame of B:

(
1 +

α′
0x

c2

)2
−
(
α′
0t

c

)2
= 1
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The last step is to leave the rest frame of B to make the x′ appear (τ ′ becomes t′). A simple

analogy with the Rindler coordinates gives the final expression:

x =
(
c2

α′
0
+ x′

)
γ̃ − c2

α′
0

ct =
(
c2

α′
0
+ x′

)
γ̃
α′
0

c
t′

with γ̃ = 1/
√

1− (α′0t
′/c)2.

Metric of the new coordinates

Knowing that dγ̃ = α′0t
′γ̃3dt′/c2 and (α′0t

′γ̃/c)2+1 = γ̃2, the differentiation of the coordinates

x and ct gives:

dx = γ̃
(
dx′ +

(
1 +

α′
0x

′

c2

)
γ̃2

α′
0t

′

c
cdt′
)

cdt = γ̃
(
α′
0t

′

c
dx′ +

(
1 +

α′
0x

′

c2

)
γ̃2cdt′

)
The difference of the squares gives:

(cdt)2 − dx2 = −(dx′)2 + (cdt′)2γ̃4
(
1 +

α′
0x

′

c2

)2
which leads to the final expression.

Event horizon

Exactly like for the Rindler coordinates, in the proper frame of B (x′ = 0, τ ′ = t′) is found the

following hyperbolic relationship:

(
1 +

α′
0x

c2

)2
−
(
α′
0t

c

)2
= 1

For x > 0 and t > 0, this hyperbolic motion is delimited by the asymptote:

ct = x+ c2

α′
0
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Any information sent from an event located above this asymptote will never reach the ac-

celerated particle. Where is this horizon located in the proper frame of the particle ? Coming

back to the new coordinates, with γ̃ = 1/
√

1− (α′0t
′/c)2:

x =
(
c2

α′
0
+ x′

)
γ̃ − c2

α′
0

ct =
(
c2

α′
0
+ x′

)
γ̃
α′
0t

′

c

The equation of the asymptote needs to be replaced in the first line. It gives:

ct =
(
c2

α′
0
+ x′h

)
γ̃

ct =
(
c2

α′
0
+ x′h

)
γ̃
α′
0t

′

c

Let’s calculate the square of the first line and the second line. The difference gives:

0 =
(
c2

α′
0
+ x′h

)2
And the event horizon is seen at a constant distance x′h = −c2/α′0 by the accelerated particle,

which is an identical result compared to the Rindler coordinates.

21


