Beal Conjecture Convincing Proof

" 5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison
"The simplest solution is usually the best solution"---Albert Einstein

Abstract

The author proves directly the original Beal conjecture that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers and $x, y, z>2$, then A, B and C have a common prime factor. In the numerical examples, two approaches have been used to change the sum, $A^{x}+B^{y}$, of two powers to a single power, C^{z}. In one approach, the application of factorization is the main principle, while in the other approach, a derived formula from $A^{x}+B^{y}$ was applied. The two approaches changed the sum $A^{x}+B^{y}$ to the single power, C^{z}, perfectly. The derived formula confirmed the validity of the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. It was shown that if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers and $x, y, z>2$, then A, B and C have a common prime factor.

Beal Conjecture Convincing Proof Preliminaries

Process and Requirements Involved in Changing the Sum of Two Powers to a Single Power

The process will be guided as follows. There is a sum of two powers $A^{x}+B^{y}$. One will write this sum as a single power C^{z} such that $A^{x}+B^{y}=C^{z}$, noting that A, B, C, x, y, z are positive integers and $x, y, z>2$.
The necessary condition is that the two powers must have a common power as exemplified below. If this requirement is not satisfied, the sum of the two powers cannot be changed to a single power, because of the intermediate product step.
Two main steps are involved in changing the sum $A^{x}+B^{y}$ to a single power C^{z}.

Step 1

In step 1, the sum of the two powers is changed to a product by factorization and also by a derived formula. The factorization is a common "monomial" factoring which involves a division process. It is the quotient involved which requires the common prime factor requirement so that the resulting product satisfies the requirements, A, B, x, y are positive integers and $x, y,>2$. Thus, A and B must have common prime factor (as illustrated below) for the division result to satisfy the conditions where A, B, x, y are positive integers and $x, y, z>2$. Any product obtained also has the same common prime factor as the sum of the powers. Note below as in Approach A that it is the second term (a quotient) of the critical sum, where some of the common factors are needed for cancellation and simplification.

Approach A		Approach B
Without factoring the powers first Change $34^{5}+51^{4}$ to a single term $=34^{5}(\underbrace{1+\frac{51^{4}}{34^{5}}}_{\begin{array}{c}\text { critical } \\ \text { sum }\end{array}})$	(factoring out the 34^{5}	Factoring each power first (more efficient) Change $34^{5}+51^{4}$ to a single term $\begin{align*} & =(17 \bullet 2)^{5}+(17 \bullet 3)^{4} \tag{A}\\ & =17^{5} \bullet 2^{5}+17^{4} \bullet 3^{4} \end{align*}$
$\begin{equation*} =34^{5}\left(1+\frac{17^{4} \cdot 3^{4}}{17^{5} \cdot 2^{5}}\right) \tag{B} \end{equation*}$	(some common factors	$=17^{4} \underbrace{\left(17 \bullet 2^{5}+3^{4}\right)}_{\text {critical sum }}$
$\begin{equation*} =17^{5} \cdot 2^{5}\left(1+\frac{3^{4}}{17 \cdot 2^{5}}\right) \tag{C} \end{equation*}$	divided out	$\begin{aligned} & =17^{4}(17 \cdot 32+81) \\ & =17^{4}(625) \end{aligned}$
$=17^{5} \cdot 2^{5}\left(\frac{17 \cdot 2^{5}+3^{\text {a }}}{17 \bullet 2^{5}}\right) \quad(\mathrm{D}$	Critical sum satisfies	$=17^{4}\left(5^{4}\right)$
$=17^{4}(\underbrace{17 \cdot 2^{5}+3^{4}})<-------(\mathrm{E})$	A, B, x, y being, positive	$=(17 \bullet 5)^{4}$ $=85^{4}$
critical sum $=17^{4}(625)$	integers; $x, y, z>2$.	$=85^{4}$
$=17^{4}\left(5^{4}\right)$		
$=(17 \cdot 5)^{4}$		
$=85^{4}$		

Note above that Steps (A) to (C) constitute Step 1.
Note also that Approach B takes less steps.
Step 2: In Step 2, the product from step 1 is changed to a single power.

Example 1A: $2^{3}+2^{3}=2^{4} \quad A=2, B=2, C=2, x=3, y=3, z=4 ; A^{x}+B^{y}=C^{z}$.
Change the sum $2^{3}+2^{3}$ to a single power of 2 .

Factor out the greatest common factor.

$$
\begin{aligned}
& 2^{3}+2^{3} \\
= & 2^{3}(\underbrace{1+1}_{\begin{array}{c}
\text { critical } \\
\text { sum }
\end{array}}) \\
= & 2^{3}(2) \\
= & 2^{4}
\end{aligned}
$$

This step requires that 2^{3} and 2^{3} have a common prime factor

It is interesting how the " $(1+1)$ " provided the much needed 2 .

The 2^{4} must have a common factor as 2^{3} and 2^{3}, from which it was obtained..
From above, the common prime factor is 2 ,
Example 1B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$
$\left(\right.$ from $\left.A^{x}+B^{y}=C^{z}\right)$. Also $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $s=r$.
Assuming that A and B have a common prime factor r, the above equation becomes $(D r)^{x}+(E r)^{y}=(F t)^{z}$. From the left-hand side of this equation, one obtains the conversion formula, $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$. This formula will be applied to numerical equations to test the validity of the assumption that A, and B have a common prime factor before being converted to C.
Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$, where $r=s$ (i.e., A and B have a common prime factor)
The conversion formula will convert the two-term sum $A^{x}+B^{y}$ to a single term, C^{z}.

Example 1B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$).

Example 2A $7^{6}+7^{7}=98^{3} \quad A=7, B=7, C=98, x=6, y=7, z=3, A^{x}+B^{y}=C^{z}$
Change the sum $7^{6}+7^{7}$ to a single power of 98 .
Factor out the greatest common factor.

$$
\begin{aligned}
& 7^{6}+7^{7} \\
= & 7^{6}(\underbrace{1+7}_{\substack{\text { critical } \\
\text { sum }}}) \quad(G)<---------------- \\
= & 7^{6}(8) \\
= & 7^{6}\left(2^{3}\right) \\
= & \left(7^{2}\right)^{3}\left(2^{3}\right) \\
= & \left(7^{2} \bullet 2\right)^{3} \\
= & (49 \bullet 2)^{3} \\
= & (98)^{3} \\
= & 98^{3}
\end{aligned}
$$

Note that if $7^{6}+7^{7}$ did not have any common factor, one could not factor, and one will not be able write the sum as a product and subsequently change the product to power form.
Since 98^{3} was obtained from the sum $7^{6}+7^{7}$, which has a common prime factor. 7 , 98^{3} has the same common prime factor, 7 . Therefore $7^{6}, 7^{7}$ and 98^{3} have the common prime factor of 7 .
Example 2B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$ $7^{6}+7^{7}=98^{3}$

$$
(1 \bullet 7)^{6}+(1 \bullet 7)^{7}=(14 \bullet 7)^{3}
$$

Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)

For the left-hand-side	For the right-hand side
Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$	$F=14, t=r=7, z=3$
$r=7, D=1, x=6, E=1, y=7$	$(F t)^{z}=(14 \bullet 7)^{3}$
$=7^{6}\left(1^{6}+1^{7} \bullet 7^{7-6}\right)$	$=98^{3}$
$=7^{6}(1+1 \cdot 7)$	
$=7^{6}(1+7)$	Observe above that it has been shown that
$=7^{6}(8)$	$r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$.
$=7^{6} \cdot 2^{3}$	
$=\left(7^{2}\right)^{3} \cdot 2^{3}$	
$=\left(7^{2} \cdot 2\right)^{3}$	
$=(49 \cdot 2)^{3}$	
$=98{ }^{3}$	

Example 2B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived.(from the formula $\left.r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}\right)$.

Example 3A: $3^{3}+6^{3}=3^{5} \quad A=3, B=6, C=3, x=3, y=3, z=5, A^{x}+B^{y}=C^{z}$
Change the sum $3^{3}+6^{3}$ to a single power of 3 ..
Factor out the greatest common factor.
$3^{3}+6^{3}$
$=3^{3}+(3 \cdot 2)^{3}$
$=3^{3}+3^{3} \cdot 2^{3}$
$=3^{3}(\underbrace{1+2^{3}}_{\substack{\text { critical } \\ \text { sum }}})$
(G)<---------------------

This step requires that 3^{3} and 6^{3}
have a common prime factor

It is interesting how the " $(1+8)$ " provided the much needed 3^{2}.
$=3^{3}(9)$
$=3^{3} \cdot 3^{2}$
$=35$
Since 3^{5} was obtained from the sum $3^{3}+6^{3}$, which has a common prime factor. 3, 3^{5} has the same common prime factor, 3 ,

Example 3B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are

$$
\begin{aligned}
& \text { positive integers. Then } A=D r, B=E s, \text { and } C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z} \\
& 3^{3}+6^{3}=3^{5} \\
& (1 \bullet 3)^{3}+(2 \bullet 3)^{3}=(1 \bullet 3)^{5}
\end{aligned}
$$

Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)
For the left-hand-side

Formula $: r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
$(1 \bullet 3)^{3}+(2 \bullet 3)^{3}=(1 \bullet 3)^{5}$
r

$=3^{3}\left(1^{3}+2^{3} \bullet 3^{3-3}\right)$
$=3^{3}\left(1+2^{3} \bullet 1\right)$
$=3^{3}\left(1+2^{3}\right)$
$=3^{3}(1+8)$
$=3^{3}(9)$
$=3^{3}\left(3^{2}\right)$
$=3^{5}$

For the right-hand side

$$
F=1, t=r=3, z=5
$$

$$
(F t)^{z}=(1 \bullet 3)^{5}
$$

$=3^{5}$
$=3^{3}\left(1^{3}+2^{3} \cdot 3^{3-3}\right)$
$=3^{3}\left(1+2^{3} \cdot 1\right)$
$=3^{3}\left(1+2^{3}\right)$
$=3^{3}(1+8)$
$=3^{3}(9)$
$=3^{3}\left(3^{2}\right)$
$=3^{5}$

Example 3B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$).

Example 4A $2^{9}+8^{3}=4^{5} \quad A=2, B=8, C=4, x=9, y=3, z=5, A^{x}+B^{y}=C^{z}$
Change the sum $2^{9}+8^{3}$ to a single power of 4 .
Factor out the greatest common factor.

$$
2^{9}+8^{3}
$$

$$
=2^{9}+\left(2^{3}\right)^{3}
$$

$$
=2^{9}+2^{9}
$$

$$
=2^{9} \underbrace{(1+1)}_{\substack{\text { critical } \\ \text { sum }}}
$$

$$
=2^{9} \cdot 2
$$

$$
=2^{10}
$$

This step requires that 2^{9} and 8^{3} have a common prime factor

It is interesting how the " $(1+1)$ " provided the much needed 2 .

$$
=\left(2^{2}\right)^{5}
$$

$$
=(4)^{5}
$$

$$
=4^{5}
$$

Since 4^{5} was obtained from the sum $2^{9}+8^{3}$, which has a common prime factor. 2, 4^{5} has the same common prime factor, 2 ,

Example 4B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$ $2^{9}+8^{3}=4^{5}$
$(1 \cdot 2)^{9}+(4 \cdot 2)^{3}=(2 \cdot 2)^{5}$
Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)

For the left-hand-side
Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
$(1 \bullet 2)^{9}+(4 \bullet 2)^{3}=(2 \bullet 2)^{5}$
$r=2, D=1, x=9, E=4, y=3$
$=2^{9}\left(1^{9}+4^{3} \bullet 2^{3-9}\right)$
$=2^{9}\left(1+\left(2^{2}\right)^{3} \bullet 2^{-6}\right)$
$=2^{9}\left(1+2^{6} \bullet 2^{-6}\right.$
$=2^{9}\left(1+2^{0}\right)$
$=2^{9}(1+1)$
$=2^{9}(2)$
$=2^{10}$
$=\left(2^{2}\right)^{5}$
$=4^{5}$

For the right-hand side
$F=2, r=2, z=5$
$(F t)^{z}=(2 \cdot 2)^{5}$
$=4^{5}$
$=2^{9}\left(1^{9}+4^{3} \cdot 2^{3-9}\right)$
$=2^{9}\left(1+\left(2^{2}\right)^{3} \cdot 2^{-6}\right)$
$=2^{9}\left(1+2^{6} \cdot 2^{-6}\right.$
$=2^{9}\left(1+2^{0}\right)$
$=2^{9}(1+1)$
$=2^{9}(2)$
$=2^{10}$
$=\left(2^{2}\right)^{5}$

Example 4B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$).

Example 5A $34^{5}+51^{4}=85^{4} \quad A=34, B=51, C=85, x=5, y=4, z=4, A^{x}+B^{y}=C^{z}$
Change the sum $34^{5}+51^{4}$ to a single power of 85 .
Factor out the greatest common factor.

$$
\begin{aligned}
& \quad 34^{5}+51^{4} \\
& =(17 \bullet 2)^{5}+(17 \bullet 3)^{4} \\
& =17^{5} \bullet 2^{5}+17^{4} \bullet 3^{4} \\
& =17^{4} \underbrace{\left(17 \bullet 2^{5}+3^{4}\right)}_{\text {critical sum }} \\
& =17^{4}(17 \bullet 32+81) \\
& =17^{4}(625) \\
& =17^{4}\left(5^{4}\right) \\
& =(17 \bullet 5)^{4} \\
& =85^{4}
\end{aligned}
$$

(G) <--------------

This step requires that 34^{5} and 51^{4} have a common prime factor

It is interesting how the

$$
\underbrace{17 \bullet 2^{5}+3^{4}}_{\text {magic }} \text { provided the much needed }
$$

$$
625=5^{4}
$$

Since 85^{4} was obtained from 34^{5} and 51^{4} which have the common prime factor, 17, 85^{4} has the same common factor, 17 .

Example 5B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$ $34^{5}+51^{4}=85^{4}$

$$
(2 \cdot 17)^{5}+(3 \cdot 17)^{4}=(5 \bullet 17)^{4}
$$

Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)

	For the left-hand-side
	$(2 \bullet 17)^{5}+(3 \bullet 17)^{4}=(5 \bullet 17)^{4}$
Formula $: r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$	
$r=17, D=2, x=5, E=3, y=4$	
$=$	$17^{5}\left(2^{5}+3^{4} \bullet 17^{4-5}\right)$
$=$	$17^{5}\left(2^{5}+3^{4} \bullet 17^{-1}\right)$
$=$	$17^{5}\left(2^{5}+\frac{34}{17}\right)$
$=$	$17^{5}\left(\frac{17 \bullet 2^{5}+3^{4}}{17}\right)$
$=$	$17^{4}\left(17 \bullet 2^{5}+3^{4}\right)$
$=$	$17^{4}(17 \bullet 32+81)$
$=$	$17^{4}(625)$
$=$	$17^{4}\left(5^{4}\right)$
$=$	$(17 \bullet 5)^{4}$
$=$	85^{4}

For the right-hand side
$F=5, t=r=17, z=4$
$F^{z} t^{z}=5^{4} 17^{4}$
$=(5 \cdot 17)^{4}$
$=85^{4}$

Observe above that it has been shown that $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$.

Example 5B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$)..

Example 6A: $3^{9}+54^{3}=3^{11} \quad A=3, B=54, \mathrm{C}=3, x=9, y=3, z=11, A^{x}+B^{y}=C^{z}$
Change the sum $3^{9}+54^{3}$ to a single power of 3 .
Factor out the greatest common factor.
$3^{9}+54^{3}$
$=3^{9}+(9 \bullet 6)^{3}$
$=3^{9}+(3 \cdot 3 \cdot 3 \bullet 2)^{3}$
$=3^{9}+\left(3^{3} \bullet 2\right)^{3}$
$=3^{9}+3^{9} \cdot 2^{3}$
$=3^{9} \underbrace{\left(1+2^{3}\right)}_{\begin{array}{c}\text { critical } \\ \text { sum }\end{array}}$
(G)

This step requires that 3^{9} and 54^{3} have a common prime factor

It is interesting how the $1+2^{3}$
$=3^{9}(1+8)$
$=3^{9}(9)$
$=3^{9} \cdot 3^{2}$
$=3^{11}$
Since 3^{11} was obtained from 3^{9} and 54^{3} which have the common prime factor, 3 . 3^{11} has the common factor 3 .

Example 6B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$ $3^{9}+54^{3}=3^{11}$ $(1 \bullet 3)^{9}+(3 \bullet 18)^{3}=(1 \bullet 3)^{11}$
Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)

For the left-hand-side $(1 \bullet 3)^{9}+(3 \bullet 18)^{3}=(1 \bullet 3)^{11}$	For the right-hand side $F=1, r=3, z=11$
Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$	$(F t)^{z}=(1 \cdot 3)^{11}$
$(1 \bullet 3)^{9}+(18 \cdot 3)^{3}=(1 \bullet 3)^{3}$	$=3^{11}$
$r=3, D=1, x=9, E=18, y=3$	
$=3^{9}\left(1^{9}+18^{3} \cdot 3^{3-9}\right)$	Observe above that it has been shown that
$=3^{9}\left(1+3^{6} \cdot 2^{3} \cdot 3^{3-9}\right)$	$r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$.
$=3^{9}\left(1+3^{6} \cdot 3^{3-9} \cdot 2^{3}\right)$	
$=3^{9}\left(1+2^{3}\right)$	
$=3^{9}(1+8)$	
$=3^{9}(9)$	
$=3^{9}\left(3^{2}\right)$	
$=3^{11}$	

Example 6B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$).

Example 7A: $33^{5}+66^{5}=33^{6} \quad A=33, B=66, C=33, x=5, y=5, z=6, A^{x}+B^{y}=C^{z}$
Change the sum $33^{5}+66^{5}$ to a single power of 33 ..
Factor out the greatest common factor.

	$33^{5}+66^{5}$
$=$	$(11 \bullet 3)^{5}+(11 \bullet 2 \bullet 3)^{5}$
$=$	$11^{5} \bullet 3^{5}+11^{5} \bullet 2^{5} \bullet 3^{5}$
$=$	$11^{5} \bullet 3^{5} \underbrace{}_{\substack{\text { critical } \\ \text { sum } \\ \left(1+2^{5}\right)}}(\mathrm{G})<-\cdots-\cdots$
$=$	$(11 \bullet 3)^{5}\left(1+2^{5}\right)$
$=$	$33^{5}(33)$
$=$	33^{6}

This step requires that 33^{5} and 66^{5} have a common prime factor

It is interesting how the $1+2^{5}$ provided the much needed 33

Similarly, as from above, 33^{6} has the common prime factors 3 and 11 .

Example 7B Using the derived formula: Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$
Let r, s and t be prime factors of A, B and C.respectively, where D, E and F are positive integers. Then $A=D r, B=E s$, and $C=F t,(D r)^{x}+(E s)^{y}=(F t)^{z}$

$$
33^{5}+66^{5}=33^{6}
$$

$$
(11 \cdot 3)^{5}+(11 \cdot 2 \cdot 3)^{5}=(11 \bullet 3)^{6}
$$

Conversion Formula: $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$, where $r=s$ (i.e., A and B have a common prime factor)

For the left-hand-side		For the right-hand side
There are two prime factors 3 and 11. Here one uses the prime factor 3.	Here one uses the prime factor , 11 $(11 \cdot 3)^{5}+(11 \cdot 2 \cdot 3)^{5}$	For Prime factor, 3 $F=11, t=3, z=6$
Formula : $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$	$\begin{aligned} & r=11, D=3, x=5, E=6, y=5 \\ & =11^{5}\left(3^{5}+6^{5} \bullet 11^{5-5}\right) \end{aligned}$	$\begin{gathered} (F t)^{z}=(11 \bullet 3)^{6} \\ =33^{6} \end{gathered}$
$\begin{aligned} & (11 \bullet 3)^{5}+(11 \bullet 2 \bullet 3)^{5} \\ & r=3, D=11, x=5, E=22, y=5 \end{aligned}$	$\begin{aligned} & =11^{5}\left(3^{5}+6^{5} \bullet 11^{5-5}\right) \\ & =11^{5}\left(3^{5}+6^{5} \bullet 1\right) \end{aligned}$	
$=3^{5}\left(11^{5}+22^{5} \cdot 3^{5-5}\right)$	$=11^{5}\left(3^{5}+6^{5}\right)$	
$=3^{5}\left(11^{5}+22^{5} \bullet 1\right)$	$=11^{5}\left(3^{5}+2^{5} \cdot 3^{5}\right)$	For Prime factor, 11 $F=3, t=11, z=6$
$=3^{5}\left(11^{5}+22^{5}\right)$	$=11^{5} \cdot 3^{5}\left(1+2^{5}\right)$	$(F t)^{z}=(3 \cdot 11)^{6}$
$=3^{5}\left(11^{5}+\left(2^{5} \bullet 11^{5}\right)\right.$	$=(11 \bullet 3)^{5}\left(1+2^{5}\right)$ $=33^{5}\left(1+2^{5}\right)$	$=33^{6}$
$=3^{5} \bullet 11^{5}\left(1+2^{5}\right)$	$=33^{5}\left(1+2^{5}\right)$	
$=(3 \bullet 11)^{5}\left(1+2^{5}\right)$	$=33^{5}(33)$	Observe above that it has
$=33^{5}\left(1+2^{5}\right)$	$=33^{6}$	been shown that $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$
$=33^{5}(33)$	Note: One gets the same result	
$=33^{6}$	as using 3 as the prime factor.	

Example 7B confirmed the assumption that it is necessary that the sum $A^{x}+B^{y}$ has a common prime factor before C^{z} can be derived. (from the formula $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)=F^{z} t^{z}$.)

Example 8 is to show that the application of the substitution axiom is valid

$$
\begin{aligned}
& 33^{5}+66^{5}=33^{6} \\
& 33^{5}+66^{5} \\
& 33^{5}\left(1+\frac{66^{5}}{33^{5}}\right) \\
& 33^{5}\left(\frac{33^{6}}{33^{6}}+\frac{66^{5}}{33^{5}}\right)<-\cdots-\cdots-\cdots-\cdots-\cdots-\cdots 3^{3}+\cdots 3^{6}=1, \text { applying the substitution axiom. } \\
& =33^{5}\left(\frac{33^{6} \bullet 33^{5}+33^{6} \bullet 66^{5}}{33^{6} \bullet 33^{5}}\right. \\
& =\frac{33^{6} \bullet 33^{5}+33^{6} \bullet 66^{5}}{33^{6}} \\
& =\frac{33^{6}\left(33^{5}+66^{5}\right)}{33^{6}} \\
& =\frac{33^{6}\left(33^{5}+33^{5} \bullet 2^{5}\right)}{33^{6}} \\
& =\frac{33^{6} \bullet 33^{5}\left(1+2^{5}\right)}{33^{6}} \\
& =33^{5}\left(1+2^{5}\right) \\
& =33^{5}(33) \\
& =33^{6}
\end{aligned}
$$

Note above in Example 1,2,3 and 5, 6 and 7, that the derivation of C^{z} from the sum $A^{x}+B^{y}$ is more efficient by factoring than by applying the formula, $r^{x}\left(D^{x}+E^{y} r^{y-x}\right)$.

Generalized Conversion of $A^{x}+B^{y}$ to C^{z} and Common Prime Factor Conclusion

Given: $A^{x}+B^{y}=C^{z}, A, B, C, x, y, z$ are positive integers and $x, y, z>2$.
Required: To prove that A, B and C have a common prime factor.
Plan: A necessary condition for A, B and C to have a common prime factor is that A and B must have a common prime factor. The proof would be complete after showing that If A and B have a common prime factor, C^{z} can be produced from the sum $A^{x}+B^{y}$.
Proof: Let r be a common prime factor of A and B. Then $A=D r$, and $B=E r$., where D and E are positive integers. Also let t be a prime factor of C. Then $C=F t$, where F is a positive integer. Beginning with $(D r)^{x}+(E r)^{y}$ one will change this sum to the single power, $C^{z}=(F t)^{z}$ as was done in the preliminaries.

$$
\begin{array}{rlr}
& (D r)^{x}+(E r)^{y} & \\
= & (D r)^{x}\left[1+\frac{(E r)^{y}}{(D r)^{x}}\right] & \left(\begin{array}{l}
(F t)^{z} \\
= \\
= \\
(D r)^{x} x
\end{array}\left[\frac{(F t)^{z}}{(F t)^{z}}+\frac{(E r)^{y}}{(D r)^{x}}\right]\right. \\
= & (D r)^{x}\left[\frac{(F t)^{z}(D r)^{x}+(F t)^{z}(E r)^{y}}{\left.(F t)^{z} D r\right)^{x}}\right] & \text { (Adding the terms within the brackets) }) \\
= & \frac{(F t)^{z}(D r)^{x}+(F t)^{z}(E r)^{y}}{(F t)^{z}} & \left(\text { canceling out the }(D r)^{x}\right) \\
= & \frac{(F t)^{z}\left[(D r)^{x}+(E r)^{y}\right]}{(F t)^{z}} & \left(\text { Factoring out }(F t)^{z}\right) \\
= & \frac{(F t)^{z} \cdot(F t)^{z}}{(F t)^{z}} & (D r)^{x}+(E r)^{y}=(F r)^{z} \\
= & (F t)^{z} &
\end{array}
$$

$$
\left(\frac{(F t)^{z}}{(F t)^{z}}=1, \quad\right. \text { applying the substitution axiom }
$$

Since $C^{z}=(F t)^{z}$ was obtained from $A^{x}=(D r)^{x}$ and $B^{y}=(E r)^{y}$ which have the common prime factor r, C^{z} also has the common prime factor, r. and one can write $(D r)^{x}+(E r)^{y}=(F r)^{z}$, where $t=r$. Therefore, A, B and C have a common prime factor.

Conclusion

The main principle in this paper is that the two powers, A^{x} and B^{y} of a common prime factor are being added to form a single third power, C^{z}. A factorization process and a conversion formula derived from $A^{x}+B^{y}$ tested perfectly in converting $A^{x}+B^{y}$ to C^{z} on the numerical sample equations. Thus the conversion formula confirmed the necessity that A and B must have a common prime factor, otherwise, the sum $A^{x}+B^{y}$ cannot be converted to a single power of C . Step (G) in each numerical equation requires that A and B have a common power. Since C is derived from $A^{x}+B^{y}, \mathrm{C}$ will have the same common factor as $A^{x}+B^{y}$. Therefore, without $A^{x}+B^{y}$ with a common factor, there would be no C. Note in the examples that C is derived solely from the sum $A^{x}+B^{y}$. Thus, to derive C, A and B must have a common prime factor, and if C is derived from $A^{x}+B^{y}$ with a common prime factor, C will also have the same common prime factor. Therefore if $A^{x}+B^{y}=C^{z}$, where A, B, C, x, y, z are positive integers and $x, y, z>2$, then A, B and C have a common prime factor.
PS: Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157.
Adonten

