Beal Conjecture Convincing Proof

"5% of the people think; 10% of the people think that they think; and the other 85% would rather die than think."----Thomas Edison

"The simplest solution is usually the best solution"---Albert Einstein

Abstract

The author proves directly the original Beal conjecture that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor. In the numerical examples, two approaches have been used to change the sum, $A^x + B^y$, of two powers to a single power, C^z . In one approach, the application of factorization is the main principle, while in the other approach, a derived formula from $A^x + B^y$ was applied. The two approaches changed the sum $A^x + B^y$ to the single power, C^z , perfectly. The derived formula confirmed the validity of the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. It was shown that if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor.

Beal Conjecture Convincing Proof Preliminaries

Process and Requirements Involved in Changing the Sum of Two Powers to a Single Power

The process will be guided as follows. There is a sum of two powers $A^x + B^y$. One will write this sum as a single power C^z such that $A^x + B^y = C^z$, noting that A, B, C, x, y, z are positive integers and x, y, z > 2.

The necessary condition is that the two powers must have a common power as exemplified below. If this requirement is not satisfied, the sum of the two powers cannot be changed to a single power, because of the intermediate product step.

Two main steps are involved in changing the sum $A^x + B^y$ to a single power C^z .

Step 1

In step 1, the **sum** of the two powers is changed to a **product** by factorization and also by a derived formula. The factorization is a common "monomial" factoring which involves a division process. It is the quotient involved which requires the common prime factor requirement so that the resulting product satisfies the requirements, A, B, x, y are positive integers and x, y, > 2. Thus, A and B must have common prime factor (as illustrated below) for the division result to satisfy the conditions where A, B, x, y are positive integers and x, y, z > 2. Any product obtained also has the same common prime factor as the sum of the powers. Note below as in Approach A that it is the second term (a quotient) of the critical sum, where some of the common factors are needed for cancellation and simplification.

Approach A Without factoring the powers first Change $34^5 + 51^4$ to a single term $= 34^5(1 + \frac{51^4}{34^5})$ (A) Critical sum $= 34^5(1 + \frac{17^4 \cdot 3^4}{17^5 \cdot 2^5})$ (B) $= 17^5 \cdot 2^5(1 + \frac{3^4}{17 \cdot 2^5})$ (C) $= 17^5 \cdot 2^5(\frac{17 \cdot 2^5 + 3^4}{17 \cdot 2^5})$ (D) $= 17^4(17 \cdot 2^5 + 3^4)$ (C) $= 17^4(17 \cdot 2^5 + 3^4)$ (C) $= 17^4(625)$ $= 17^4(625)$ $= 17^4(5^4)$ $= (17 \cdot 5)^4$ $= 85^4$ Approach B Factoring each power first (more efficient) Change $34^5 + 51^4$ to a single term $= (17 \cdot 2)^5 + (17 \cdot 3)^4$ $= 17^4(17 \cdot 32 + 81)$ $= 17^4(625)$ $= 17^4(625)$ $= 17^4(5^4)$ $= (17 \cdot 5)^4$ $= 85^4$	euleenation and simplifiedtion.		
Change $34^{3} + 51^{4}$ to a single term $= 34^{5}(1 + \frac{51^{4}}{34^{5}})$ (A) $\underbrace{\text{critical}}_{\text{sum}}$ $= 34^{5}(1 + \frac{174 \cdot 34}{175 \cdot 2^{5}})$ (B) $= 17^{5} \cdot 2^{5}(1 + \frac{3^{4}}{17 \cdot 2^{5}})$ (C) $= 17^{5} \cdot 2^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}})$ (C) $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}})$ (D) $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(5^{4})$ $= (17 \cdot 5)^{4}$ (factoring out the 34^{5} (factoring			
$= 34^{3} (1 + \frac{31}{34^{5}})$ (A) sum $= 34^{5} (1 + \frac{17^{4} \cdot 3^{4}}{17^{5} \cdot 2^{5}})$ (B) $= 17^{5} \cdot 2^{5} (1 + \frac{3^{4}}{17 \cdot 2^{5}})$ (C) $= 17^{5} \cdot 2^{5} (\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}})$ (D) $= 17^{4} (17 \cdot 2^{5} + 3^{4}) $ (C) $= 17^{4} (625) $ $= 17^{4} (625) $ $= 17^{4} (625) $ $= 17^{4} (5^{4}) $ $= (17 \cdot 5)^{4} $ $= 85^{4} $ Change $34^{5} + 51^{4}$ to a single term $= (17 \cdot 2)^{5} + (17 \cdot 3)^{4} $ $= 17^{4} (17 \cdot 32 + 81) $ $= 17^{4} (625) $ $= 17^{4} (5^{4}) $ $= (17 \cdot 5)^{4} $ $= 85^{4} $	e	(factoring out the 34 ⁵)	
sum $= 34^{5}(1 + \frac{17^{4} \cdot 3^{4}}{17^{5} \cdot 2^{5}}) (B)$ $= 17^{5} \cdot 2^{5}(1 + \frac{3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{5} \cdot 2^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(5^{4})$ $= (17 \cdot 5)^{4}$ $= 85^{4}$ $= 85^{4}$	$=34^5(1+\frac{51^4}{34^5})$ (A)	(ractoring out the 54	
sum $= 34^{5}(1 + \frac{17^{4} \cdot 34}{17^{5} \cdot 2^{5}}) (B)$ $= 17^{5} \cdot 2^{5}(1 + \frac{3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{5} \cdot 2^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\underbrace{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\underbrace{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\underbrace{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(5^{4})$ $= (17 \cdot 5)^{4}$ $= 85^{4}$	critical		
$= 34^{3}(1 + \frac{17 \cdot 5}{17^{5} \cdot 2^{5}}) $ (B) $= 17^{5} \cdot 2^{5}(1 + \frac{3^{4}}{17 \cdot 2^{5}}) $ (C) $= 17^{5} \cdot 2^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) $ (D) $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) $ (D) $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) $ (D) $= 17^{4}(625) $ $= 17^{4}(625) $ $= 17^{4}(625) $ $= 17^{4}(5^{4}) $ $= (17 \cdot 5)^{4} $ $= (17 \cdot 5)^{4} $			
$= 17^{5} \cdot 2^{5}(1 + \frac{5}{17 \cdot 2^{5}}) (C)$ $= 17^{5} \cdot 2^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (D)$ $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{4}(\frac{17 \cdot 2^{5} + 3^{4}}{17 \cdot 2^{5}}) (C)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(625)$ $= 17^{4}(5^{4})$ $= (17 \cdot 5)^{4}$ $= (17 \cdot 5)^{4}$ $= (17 \cdot 5)^{4}$	$= 34^{5} (1 + \frac{17^{4} \cdot 3^{4}}{17^{5} \cdot 2^{5}}) \tag{B}$		
$= 17^{5} \bullet 2^{5} (\frac{17 \bullet 2^{5} + 3^{4}}{17 \bullet 2^{5}}) (D)$ $= 17^{4} (\underbrace{17 \bullet 2^{5} + 3^{4}}_{\text{critical sum}}) (-E)$ $= 17^{4} (625)$ $= 17^{4} (5^{4})$ $= (17 \bullet 5)^{4}$ Critical sum satisfies <i>A, B, x, y</i> being, positive integers; <i>x, y, z > 2</i> . $= 17^{4} (5^{4})$	$= 17^5 \bullet 2^5 (1 + \frac{3^4}{17 \bullet 2^5}) \tag{C}$	divided out	
$= 17^{4} (\underbrace{17 \cdot 2^{5} + 3^{4}}_{\text{critical sum}}) < \dots (E)$ $= 17^{4} (625)$ $= 17^{4} (5^{4})$ $= (17 \cdot 5)^{4}$	$= 17^5 \bullet 2^5 (\frac{17 \bullet 2^5 + 3^4}{17 \cdot 2^5}) \qquad (D$		
critical sum = $17^4(625)$ = $17^4(5^4)$ = $(17 \bullet 5)^4$ = 85^4	17.2		
$= 17^{4}(5^{4})$ = (17 • 5) ⁴			
$=(17 \bullet 5)^4$	$=17^{4}(625)$		
	$=17^4(5^4)$		
= 85 ⁴	$=(17 \bullet 5)^4$		
	= 85 ⁴		

Note above that Steps (A) to (C) constitute Step 1.

Note also that Approach B takes less steps.

Step 2: In Step 2, the product from step 1 is changed to a single power.

Example 1A:	$2^3 + 2^3 = 2^4$	$A = 2, B = 2, C = 2, x = 3, y = 3, z = 4, A^{x} + B^{y} = C$	יz .

Change the sum $2^3 + 2^3$ to a single power of 2.

Factor out the greatest common factor.	
$2^3 + 2^3$	
$=2^{3}(1+1)$ (G) <	This step requires that 2^3 and 2^3 have a common prime factor
critical	have a common prime factor
sum	
$=2^{3}(2)$	It is interesting how the "(1+1)" provided
$=2^{4}$	the much needed 2.

The 2^4 must have a common factor as 2^3 and 2^3 , from which it was obtained.. From above, the common prime factor is 2,

Example 1B Using the derived formula: Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$

Let r, s and t be prime factors of A, B and C respectively, where D, E and F are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$

(from $A^x + B^y = C^z$). Also $r^x(D^x + E^y r^{y-x}) = F^z t^z$, where s = r.

Assuming that *A* and *B* have a common prime factor *r*, the above equation becomes $(Dr)^x + (Er)^y = (Ft)^z$. From the left-hand side of this equation, one obtains the conversion formula, $r^x(D^x + E^y r^{y-x})$. This formula will be applied to numerical equations to test the validity of the assumption that *A*, and *B* have a common prime factor before being converted to *C*. **Conversion Formula**: $r^x(D^x + E^y r^{y-x})$, where r = s (i.e., A and B have a common prime factor)

The conversion formula will convert the two-term sum $A^x + B^y$ to a single term, C^z .

For the left-hand-side Change $2^3 + 2^3$ to a single term $(1 \cdot 2)^3 + (1 \cdot 2)^3 = (1 \cdot 2)^4$	For the right-hand side F = 1, t = r = 2, z = 4 $F^{z}t^{z} = 1 \bullet 2^{4}$
Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$ r = 2, D = 1, x = 3, E = 1, y = 3 $= 2^{3}(1^{3} + 1^{3} \cdot 2^{3-3})$ $= 2^{3}(1 + 2^{0})$	$\begin{bmatrix} r & r & -1 & 2 \\ & = 2^4 \end{bmatrix}$ Observe above that it has been shown that $r^x(D^x + E^y r^{y-x}) = F^z t^z$
$= 2^{3}(1+1)$ = 2 ³ (2) = 2 ⁴	

Example 1B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. (from the formula $r^x(D^x + E^y r^{y-x}) = F^z t^z$).

Example 2A $7^{6} + 7^{7} = 98^{3}$ $A = 7, B = 7, C = 98, x = 6, y = 7, z = 3, A^{x} + B^{y} = C^{z}$			
Change the sum $7^6 + 7^7$ to a single power of 98.			
Factor out the greatest common factor.			
$7^{6} + 7^{7}$ = $7^{6}(\underbrace{1+7}_{\text{critical}})$ (G)<	This step requires that 7^6 and 7^7 have a common prime factor		
$= 7^{6}(8)$ = 7 ⁶ (2 ³) = (7 ²) ³ (2 ³) = (7 ² • 2) ³ = (49 • 2) ³	It is interesting how the " $(1+7)$ " provided the much needed 2^3 .		
$=(98)^3$			

Note that if $7^6 + 7^7$ did not have any common factor, one could not factor, and one will not be able write the sum as a product and subsequently change the product to power form.

 $= 98^{3}$

Since 98^3 was obtained from the sum $7^6 + 7^7$, which has a common prime factor. 7, 98^3 has the same common prime factor, 7. Therefore 7^6 , 7^7 and 98^3 have the common prime factor of 7.

Example 2B Using the derived formula: Formula : $r^{x}(D^{x} + E^{y}r^{y-x})$

Let r, s and t be prime factors of A, B and C respectively, where D, E and F are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$ $7^6 + 7^7 = 98^3$ $(1 \bullet 7)^6 + (1 \bullet 7)^7 = (14 \bullet 7)^3$

Conversion Formula:
$$r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$$
, where $r = s$ (i.e., A and B have a common prime factor)

For the left-hand-side	For the right-hand side
Formula : $r^x(D^x + E^y r^{y-x})$	F = 14, t = r = 7, z = 3
r = 7, D = 1, x = 6, E = 1, y = 7	$(Ft)^z = (14 \bullet 7)^3$
$= 7^6 (1^6 + 1^7 \bullet 7^{7-6})$	$=98^{3}$
$=7^{6}(1+1 \bullet 7)$	
$=7^{6}(1+7)$	Observe above that it has been shown that
$=7^{6}(8)$	$r^x(D^x+E^yr^{y-x}) = F^zt^z.$
$=7^6 \bullet 2^3$	
$= (7^2)^3 \bullet 2^3$	
$= (7^2 \bullet 2)^3$	
$= (49 \bullet 2)^3$	
$=98^{3}$	

Example 2B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived.(from the formula $r^x(D^x + E^y r^{y-x}) = F^z t^z$).

Example 3A: $3^3 + 6^3 = 3^5$ $A = 3, B = 6,$	C = 3, $x = 3$, $y = 3$, $z = 5$, $A^x + B^y = C^z$		
Change the sum $3^3 + 6^3$ to a single power of 3			
Factor out the greatest common factor.			
$3^3 + 6^3$			
$=3^3+(3\bullet 2)^3$			
$= 3^3 + 3^3 \bullet 2^3$	This step requires that 3^3 and 6^3		
$=3^{3}(1+2^{3})$ (G)<	have a common prime factor		
critical	_		
23(1+0)	It is interesting how the "(1, 0)" movided		
$=3^{3}(1+8)$	It is interesting how the " $(1+8)$ " provided		
$=3^{3}(9)$	the much needed 3^2 .		
$=3^3 \bullet 3^2$			
= 3 ⁵			

Since 3^5 was obtained from the sum $3^3 + 6^3$, which has a common prime factor. 3, 3^5 has the same common prime factor, 3,

Example 3B Using the derived formula: Formula : $r^x(D^x + E^y r^{y-x})$ Let r, s and t be prime factors of A, B and C respectively, where D, E and F are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$ $3^3 + 6^3 = 3^5$ $(1 \cdot 3)^3 + (2 \cdot 3)^3 = (1 \cdot 3)^5$

Conversion Formula: $r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$, where r = s (i.e., A and B have a common prime factor)

For the left-hand-side Formula : $r^{x}(D^{x} + E^{y}r^{y-x})$	For the right-hand side $F = 1, t = r = 3, z = 5$
$(1 \bullet 3)^3 + (2 \bullet 3)^3 = (1 \bullet 3)^5$	$(Ft)^z = (1 \bullet 3)^5$
r = 3, D = 1, x = 3, E = 2, y = 3	$=3^{5}$
$=3^3(1^3+2^3\bullet 3^{3-3})$	
$=3^{3}(1+2^{3} \bullet 1)$	
$=3^{3}(1+2^{3})$	Observe above that it has been shown that
$=3^{3}(1+8)$	$r^x(D^x+E^yr^{y-x}) = F^zt^z.$
$=3^{3}(9)$	
$=3^{3}(3^{2})$	
$=3^{5}$	

Example 3B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived (from the formula $r^x(D^x + E^y r^{y-x}) = F^z t^z$).

Example 4A $2^9 + 8^3 = 4^5$ $A = 2, B = 8, C = 4, x = 9, y = 3, z = 5, A^x + B^y = C^z$				
Change the sum $2^9 + 8^3$ to a single power	Change the sum $2^9 + 8^3$ to a single power of 4.			
Factor out the greatest common factor.				
$2^9 + 8^3$				
$=2^9+(2^3)^3$				
$=2^9+2^9$	This step requires that 2^9 and 8^3			
$=2^{9}(1+1)$ (G)<	have a common prime factor			
critical				
sum	It is interesting how the $"(1+1)"$ provided			
$=2^9 \bullet 2$	the much needed 2.			
$=2^{10}$				
$=(2^2)^5$				
$=(4)^5$				
= 4 ⁵				

Since 4^5 was obtained from the sum $2^9 + 8^3$, which has a common prime factor. 2, 4^5 has the same common prime factor, 2,

Example 4B Using the derived formula: Formula : $r^{x}(D^{x} + E^{y}r^{y-x})$

Let r, s and t be prime factors of A, B and C respectively, where D, E and F are

positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^{x} + (Es)^{y} = (Ft)^{z}$ $2^{9} + 8^{3} = 4^{5}$ $(1 \cdot 2)^{9} + (4 \cdot 2)^{3} = (2 \cdot 2)^{5}$

Conversion Formula: $r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$, where r = s (i.e., A and B have a common prime factor)

For the left-hand-side	For the right-hand side
Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$	F = 2, r = 2, z = 5
$(1 \bullet 2)^9 + (4 \bullet 2)^3 = (2 \bullet 2)^5$	$(Ft)^z = (2 \bullet 2)^5$
r = 2, D = 1, x = 9, E = 4, y = 3	$= 4^5$
$= 2^9(1^9 + 4^3 \bullet 2^{3-9})$	
$= 2^9 (1 + (2^2)^3 \bullet 2^{-6})$	
$= 2^9 (1 + 2^6 \bullet 2^{-6})$	
$=2^{9}(1+2^{0})$	Observe above that it has been shown that
$=2^{9}(1+1)$	$r^x(D^x+E^yr^{y-x}) = F^zt^z.$
$=2^{9}(2)$	
$=2^{10}$	
$=(2^2)^5$	
$=4^{5}$	

Example 4B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. (from the formula $r^x(D^x + E^y r^{y-x}) = F^z t^z$).

Example 5A	$34^5 + 51^4 = 85^4$	$A = 34, B = 51, C = 85, x = 5, y = 4, z = 4, A^{x} + B^{y} = C^{z}$
	<u> </u>	

Change the sum $34^5 + 51^4$ to a single power of 85.

Factor out the greatest common factor. $34^5 + 51^4$ $=(17 \bullet 2)^5 + (17 \bullet 3)^4$ $= 17^5 \bullet 2^5 + 17^4 \bullet 3^4$ This step requires that 34^5 and 51^4 $=17^4(17 \bullet 2^5 + 3^4)$ (G) <----have a common prime factor critical sum It is interesting how the $=17^{4}(17 \bullet 32 + 81)$ $17 \bullet 2^5 + 3^4$ provided the much needed $=17^{4}(625)$ magic $=17^{4}(5^{4})$ $625 = 5^4$ $=(17 \bullet 5)^4$ $=85^{4}$

Since 85^4 was obtained from 34^5 and 51^4 which have the common prime factor, 17, 85^4 has the same common factor, 17.

Example 5B Using the derived formula: Formula : $r^x(D^x + E^y r^{y-x})$ Let r, s and t be prime factors of A, B and C respectively, where D, E and F are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$ $34^5 + 51^4 = 85^4$ $(2 \bullet 17)^5 + (3 \bullet 17)^4 = (5 \bullet 17)^4$ **Conversion Formula**: $r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$, where r = s (i.e., A and B have a common prime factor) For the left-hand-side For the right-hand side F = 5, t = r = 17, z = 4 $(2 \bullet 17)^5 + (3 \bullet 17)^4 = (5 \bullet 17)^4$ $F^{z}t^{z} = 5^{4}17^{4}$ $= (5 \bullet 17)^{4}$ Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$ r = 17, D = 2, x = 5, E = 3, y = 4 $=17^{5}(2^{5}+3^{4}\bullet 17^{4-5})$ $=85^{4}$ $=17^{5}(2^{5}+3^{4}\bullet 17^{-1})$ $=17^{5}(2^{5}+\frac{3^{4}}{17})$ $=17^{5}(\frac{17 \cdot 2^{5} + 3^{4}}{17})$ Observe above that it has been shown that $r^x(D^x + E^y r^{y-x}) = F^z t^z.$ $=17^{4}(17 \bullet 2^{5} + 3^{4})$ $=17^{4}(17 \bullet 32 + 81)$ $=17^{4}(625)$ $=17^{4}(5^{4})$ $=(17 \bullet 5)^4$ $=85^{4}$

Example 5B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. (from the formula $r^x(D^x + E^yr^{y-x}) = F^zt^z$)..

Example 6A: $3^9 + 54^3 = 3^{11}$ $A = 3, B = 54, C = 3, x = 9, y = 3, z = 11, A^x + B^y = C^z$			
Change the sum $3^9 + 54^3$ to a single power of 3.			
Factor out the greatest common factor.			
$3^9 + 54^3$			
$=3^9 + (9 \bullet 6)^3$			
$= 3^9 + (3 \bullet 3 \bullet 3 \bullet 2)^3$			
$=3^9+(3^3\bullet 2)^3$			
$=3^9+3^9\bullet 2^3$	This step requires that 3^9 and 54^3		
$=3^{9}(1+2^{3})$ (G) <	have a common prime factor		
critical			
sum	It is interesting how the $1+2^3$		
$=3^{9}(1+8)$	provided the much needed 9.		
$=3^{9}(9)$	· .		
$=3^9 \bullet 3^2$			
$=3^{11}$			

Since 3^{11} was obtained from 3^9 and 54^3 which have the common prime factor, 3. 3^{11} has the common factor 3.

Example 6B Using the derived formula: Formula : $r^{x}(D^{x} + E^{y}r^{y-x})$

Let r, s and t be prime factors of A, B and C respectively, where D, E and F are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$ $3^9 + 54^3 = 3^{11}$ $(1 \cdot 3)^9 + (3 \cdot 18)^3 = (1 \cdot 3)^{11}$ Conversion Formula: $r^x(D^x + E^yr^{y-x}) = F^zt^z$, where r = s (i.e., A and B have a common prime factor)

For the left-hand-side For the right-hand side $(1 \bullet 3)^9 + (3 \bullet 18)^3 = (1 \bullet 3)^{11}$ F = 1, r = 3, z = 11Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$ $(1 \bullet 3)^{9} + (18 \bullet 3)^{3} = (1 \bullet 3)^{3}$ $(Ft)^{z} = (1 \bullet 3)^{11}$ $= 3^{11}$ r = 3, D = 1, x = 9, E = 18, y = 3 $=3^{9}(1^{9}+18^{3} \bullet 3^{3-9})$ Observe above that it has been shown that $=3^{9}(1+3^{6} \bullet 2^{3} \bullet 3^{3-9})$ $r^x(D^x + E^y r^{y-x}) = F^z t^z.$ $= 3^{9}(1 + 3^{6} \bullet 3^{3-9} \bullet 2^{3})$ $=3^{9}(1+2^{3})$ $=3^{9}(1+8)$ $=3^{9}(9)$ $=3^{9}(3^{2})$ $=3^{11}$

Example 6B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. (from the formula $r^x(D^x + E^yr^{y-x}) = F^zt^z$).

Example 7A: $33^5 + 66^5 = 33^6$ $A = 33, B = 66, C = 33, x = 5, y = 5, z = 6, A^x + B^y = C^z$			
Change the sum $33^5 + 66^5$ to a single power of 33.			
Factor out the greatest common factor.			
$33^5 + 66^5$			
$= (11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5$			
$= 11^5 \bullet 3^5 + 11^5 \bullet 2^5 \bullet 3^5$	This step requires that 33^5 and 66^5		
$=11^5 \bullet 3^5 (1+2^5)$ (G) <	have a common prime factor		
critical			
sum	It is interesting how the $1+2^5$ provided		
$=(11 \bullet 3)^5(1+2^5)$	the much needed 33		
$=33^{5}(33)$			
= 33 ⁶			

Similarly, as from above, 33^6 has the common prime factors 3 and 11.

Example 7B Using the derived formula: Formula : $r^{x}(D^{x} + E^{y}r^{y-x})$

Let *r*, *s* and *t* be prime factors of *A*, *B* and *C* respectively, where *D*, *E* and *F* are positive integers. Then A = Dr, B = Es, and C = Ft, $(Dr)^x + (Es)^y = (Ft)^z$

$$\frac{33^5 + 66^5 = 33^6}{(11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5 = (11 \bullet 3)^6}$$

Conversion Formula: $r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$, where r = s (i.e., A and B have a common prime factor)

For the left-hand-side		For the right-hand side
There are two prime factors 3 and 11. Here one uses the prime factor 3.	Here one uses the prime factor ,11 $(11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5$	For Prime factor, 3 F = 11, t = 3, z = 6
Formula: $r^{x}(D^{x} + E^{y}r^{y-x})$	r = 11, D = 3, x = 5, E = 6, y = 5	$(Ft)^z = (11 \bullet 3)^6$
$(11 \bullet 3)^5 + (11 \bullet 2 \bullet 3)^5$	$=11^5(3^5+6^5\bullet 11^{5-5})$	$=33^{6}$
r = 3, D = 11, x = 5, E = 22, y = 5	$=11^{5}(3^{5}+6^{5}\bullet 1)$	
$= 3^5(11^5 + 22^5 \bullet 3^{5-5})$	$=11^5(3^5+6^5)$	
$=3^{5}(11^{5}+22^{5}\bullet 1)$	$=11^{5}(3^{5}+2^{5}\bullet 3^{5})$	For Prime factor, 11
$= 3^{5}(11^{5} + 22^{5})$	$=11^5 \bullet 3^5(1+2^5)$	F = 3, t = 11, z = 6 (Ft) ^z = (3 • 11) ⁶
$=3^{5}(11^{5} + (2^{5} \bullet 11^{5})$	$=(11 \bullet 3)^5(1+2^5)$	$(Ft)^{2} = (3 \bullet 11)^{2}$ = 33 ⁶
$=3^5 \bullet 11^5(1+2^5)$	$= 33^5(1+2^5)$	
$=(3 \bullet 11)^5(1+2^5)$	$=33^{5}(33)$	Observe above that it has been shown that
$=33^{5}(1+2^{5})$	$= 33^{6}$	$r^{x}(D^{x} + E^{y}r^{y-x}) = F^{z}t^{z}$
$=33^{5}(33)$	Note: One gets the same result	
$=33^{6}$	as using 3 as the prime factor.	

Example 7B confirmed the assumption that it is necessary that the sum $A^x + B^y$ has a common prime factor before C^z can be derived. (from the formula $r^x(D^x + E^y r^{y-x}) = F^z t^z$.)

Example 8 is to show that the application of the substitution axiom is valid $33^5 + 66^5 = 33^6$
33 ⁵ + 66 ⁵
$33^5(1 + \frac{66^5}{33^5})$
$33^{5}(\frac{33^{6}}{33^{6}} + \frac{66^{5}}{33^{5}})$ <($\frac{33^{6}}{33^{6}} = 1$, applying the substitution axiom.
$= 33^5 \left(\frac{33^6 \bullet 33^5 + 33^6 \bullet 66^5}{33^6 \bullet 33^5}\right)$
$=\frac{33^6 \bullet 33^5 + 33^6 \bullet 66^5}{33^6}$
$=\frac{33^6(33^5+66^5)}{33^6}$
$=\frac{33^{6}}{33^{6}} + 33^{5} \cdot 2^{5})}{33^{6}}$
$=\frac{33^6 \bullet 33^5 (1+2^5)}{33^6}$
$=33^{5}(1+2^{5})$
$=33^{5}(33)$
$=33^{6}$

Note above in Example 1, 2, 3 and 5, 6 and 7, that the derivation of C^z from the sum $A^x + B^y$ is more efficient by factoring than by applying the formula, $r^x(D^x + E^yr^{y-x})$.

Generalized Conversion of $A^x + B^y$ to C^z and Common Prime Factor Conclusion

Given: $A^x + B^y = C^z$, A, B, C, x, y, z are positive integers and x, y, z > 2. **Required:** To prove that A, B and C have a common prime factor.

Plan: A necessary condition for A, B and C to have a common prime factor is that A and B must have a common prime factor. The proof would be complete after showing that If

A and B have a common prime factor, C^z can be produced from the sum $A^x + B^y$.

Proof: Let *r* be a common prime factor of *A* and *B*. Then A = Dr, and B = Er., where *D* and *E* are positive integers. Also let *t* be a prime factor of *C*. Then C = Ft, where *F* is a positive integer. Beginning with $(Dr)^x + (Er)^y$ one will change this sum to the single power, $C^z = (Ft)^z$ as was done in the preliminaries.

$$(Dr)^{x} + (Er)^{y}$$

$$= (Dr)^{x} [1 + \frac{(Er)^{y}}{(Dr)^{x}}] \qquad (Factoring out the (Dr)^{x})$$

$$= (Dr)^{x} [\frac{(Ft)^{z}}{(Ft)^{z}} + \frac{(Er)^{y}}{(Dr)^{x}}] \qquad (\frac{(Ft)^{z}}{(Ft)^{z}} = 1, \text{ applying the substitution axiom}$$

$$= (Dr)^{x} [\frac{(Ft)^{z}(Dr)^{x} + (Ft)^{z}(Er)^{y}}{(Ft)^{z}Dr)^{x}}] \qquad (Adding the terms within the brackets)$$

$$= \frac{(Ft)^{z}(Dr)^{x} + (Ft)^{z}(Er)^{y}}{(Ft)^{z}} \qquad (canceling out the (Dr)^{x})$$

$$= \frac{(Ft)^{z}[(Dr)^{x} + (Er)^{y}]}{(Ft)^{z}} \qquad (Factoring out (Ft)^{z})$$

$$= \frac{(Ft)^{z} \cdot (Ft)^{z}}{(Ft)^{z}} \qquad (Dr)^{x} + (Er)^{y} = (Fr)^{z}$$

Since $C^z = (Ft)^z$ was obtained from $A^x = (Dr)^x$ and $B^y = (Er)^y$ which have the common prime factor r, C^z also has the common prime factor, r and one can write $(Dr)^x + (Er)^y = (Fr)^z$, where t = r. Therefore, A, B and C have a common prime factor.

Conclusion

The main principle in this paper is that the two powers, A^x and B^y of a common prime factor are being added to form a single third power, C^z . A factorization process and a conversion formula derived from $A^x + B^y$ tested perfectly in converting $A^x + B^y$ to C^z on the numerical sample equations. Thus the conversion formula confirmed the necessity that A and B must have a common prime factor, otherwise, the sum $A^x + B^y$ cannot be converted to a single power of C. Step (G) in each numerical equation requires that A and B have a common power. Since C is derived from $A^x + B^y$, C will have the same common factor as $A^x + B^y$. Therefore, without $A^x + B^y$ with a common factor, there would be no C. Note in the examples that C is derived solely from the sum $A^x + B^y$. Thus, to derive C, A and B must have a common prime factor, and if C is derived from $A^x + B^y$ with a common prime factor, C will also have the same common prime factor. Therefore if $A^x + B^y = C^z$, where A, B, C, x, y, z are positive integers and x, y, z > 2, then A, B and C have a common prime factor.

PS: Other proofs of Beal Conjecture by the author are at viXra:1702.0331; viXra:1609.0383, viXra:1609.0157. **Adonten**