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Abstract. Newton’s mechanics is simple. His equivalence principle is
simple, as is the inverse square law of gravitational force. A simple theory
should have simple solutions to simple models. A system of n particles,
given their initial speed and positions along with their masses, is such
a simple model. Yet, solving for n > 2 is not simple.
This paper discusses, why that is a difficult problem and what could be
done to get around that problem.

1. Problem Statement
Classical mechanics is essentially a linear, ”first order” theory in which the
dynamical quantities describe properties of the particles themselves, such as
the law of inertia, F = ma, as well as energy and momentum conservation
etc.
The graviational force, F = (const)∇ m1m2

|x1−x2| , is the exception to that theory:
it is a product of quantities, namely the mutual interaction the masses, dis-
guised as a linear first order quantity F . That makes it complicated to even
deal with a gravitational interaction of two particles, necessitating elliptic in-
tegrals, Legendre polynoms, Bessel functions, and all that, in order to derive
its solutions. But it can be done, and it involves some beautiful mathematics
and calculations, which explains, why it’s done in physics first hand up to
this day. The result is that the particles move (with their reduced masses)
around the center of mass in all curves given by the intersection of a plane
with a cone.
That is mathematically interesting, as it allows to describe the set of solutions
through a hyperbolic, quadratic equation, namely that of the cone itself. And
it straight leads to the question, if not a quadratic approach to the dynamics
might be simpler to describe gravitational interaction.
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2. The Cone
The picture of that cone is always that of a two-dimensional surface in three
dimensions, because it is easy to visualize, but, even given the fact that one
angular, cyclic coordinate can be eliminated, this is still inconvenient:
it is mathematically the product of two non-parallel intersecting lines and a
circle. And the circle is well-known to yield us the conservation of angular
momentum, which the Hamiltonean does then not depend on. So, let’s drop
it. We are then left with the two non-parallel lines in a two dimensional
(Euclidean) coordinate system, which by proper scaling, transform into the
diagonals of R2, that intersect in the origin. Let a, b denote horizontal and
vertical axes. Then the original condition that the path of motion is to be
the intersection of a plane with the cone reduces to the intersection of a line
with the diagonals, i.e.: a2−b2 = 0. That is an invariant, in fact the invariant
of a mass point moving in a constant gravitational field. I am now free to
scale a2, which I choose to be the square of total energy E2 of the system, up
to an additive constant of motion. Then E2 − b2 = (Const) is a constant of
motion. And, as E is a constant of motion, E2 is conserved, so b2, and b must
be conserved, too. Since a is now measured in units of energy, b will have to
be of the same dimension. Now, in any closed system, there always exists at
least one other energy quantity that must be conserved, namely the energy
of the system, in which all particles are at rest with respect to eachother.
Let me call it a rest system. That system generally is not uniquely defined,
though: At any instance of time t0 I can freeze the system, be it stable or
not, and calulate its energy Erest(t0) at this frozen state, disregarding its
internal kinetic motion. Then, up to an invariant, additive constant, I get for
the two-particle system

E2 − Erest(t0)2 = ±T (t0)2,

where T (t0) = c|p| is c times the absolute value momentum of the particles’
relative motion around the center of mass with reduced mass µ := m1m2

m1+m2
.

In the following I’ll laxly drop the distinction between reduced mass and mass
(which means that I’ll tacitly assume the moving mass to be small compared
with the total mass).

Next, to get rid of the additive constant, I define the energy E to con-
verge to zero at large spatial distances. So, the Hamiltonean function H boils
down to

H2(~x, ~p) = E2
rest + sign(m)c2p2,

where Erest includes the rest energy including all of its potential energy
(which is a function of ~x and sign(m) could be ±1, at least in principle. And
it takes a sheer convention to fix the sign to be always positive: It is agreed
that the energy it takes to speed up a mass, must be positive. So, we end up
with

H2(~x, ~p) = E2
rest + c2p2. (2.1)

Now, it is generally overlooked in classical mechanics, that time inversion
T : t 7→ −t is equivalent to energy inversion E 7→ −E: this is, because
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energy, that is gained along a path γ : t 7→ γ(t) ∈ R3 from start time t0
to end time t1 is equivalent to an energy loss from t1 to t0 in the opposite
time direction, and, by having E be zero outside the system, we fixed the
value of a possible constant to be zero. Likewise, parity P : ~x 7→ −~x inverts
momentum. So, the fact that the above equation is in terms of squares, just
states the local conservation of energy and momentum (for each pair (t, ~x)).

Let’s now see, how we get from 2.1 to the well-known 1st order Hamil-
tonian H(~x, ~p) = mV (x) + 1

2mp
2:

We know that by taking the root of E2, we can determine H or E only up
to an additive constant, i.e. an invariant of the motion, and we know that
the (square of the) kinetic energy is such an invariant. So, we can solve for
H2 − E2

rest = 0 and add add the kinetic energy later. But H2 − E2
rest =

(H − Erest)(H + Erest). To get rid of one of the factors of the r.h.s. it is
(for simplicity) postulated that H and E are of the same sign for all mass
locations ~x. Then H2 − E2

rest = 0 if and only if H − Erest = 0. Defining
mV (~x) := ( 1

2mc2Erest(~x))2 −M2c4, where m > 0 is the mass of the (mov-
ing) particle outside the center of mass with total mass M , H2 − (M2 −
m2)c4 = m2c4 + 2mc2mV (~x) + p2c2, so H is up to a constant equal to√
m2c4 + 2mc2mV (~x) + p2c2, which for c→∞ goes to mc2 +mV (~x)+ 1

2mp
2,

if only mV (~x)/c4 gets small for c → ∞, (which we assume). This gives the
desired relation up to an additive constant.
There is however at least one grain of salt into it: in order to deliver con-
traction, given the positivity of m, V must be negative, so E(~x) is negative,
when the moving particle is sufficiently slow. And the reason for that is that
by picking a special solution for the squared equation, the symmetry of en-
ergy/time inversion is broken: the intersection of the two diagonals with up-
per/lower right/left quadrants of the 2-dimensional coordinate system splits
the diagonals into 4 parts, which bijectively transform onto eachother by one
or two inversions of the coordinate axes. And these inversions happen to be
symmetries. Then each of these four describe the same (equivalent) curves of
motion. What is the deal with gravity? It is the sign of mass we deliberately
assign: we assign it such that gravity attracts, and then we say, that mass
is positive. Note, that the symmetric equation depends on the square of the
mass, so its sign is irrelevant. That way, given a negative mU , we could make
it positive by mass inversion and will get a positive energy.

3. Stability of the 2-particle system
In order that 2-particle system at rest is to be stable, at least all forces in
the system must add to zero, so that the acceleration vanishes. And if other
forces than gravity were missing, then the only stable solution at rest, is
within the center of mass. So it appears to be natural, to define Erest to be
taken as the energy of all particles is at rest at their (mutual) center mass.
However, the particle generally won’t stably reside in there, because quantum
physics forbids it: without these addititional short ranged forces, the mass
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density of systems would be allowed to become unbounded, which is not
what we observe. The particles will therefore align next to eachother. While
the progress of this alignment itself implies an unelastic collision, which is
outside the bounds of our model, it well decribes small perturbations around
that stable state.

4. Gravity in a closed n-particle system
So far, we have found another dynamic invariant of the two-body problem.
Albeit not a cyclic coordinate for the Lagrangian or Hamiltonian mechanics,
but in terms of squares of energy: it’s E2 − V 2

1 . And because it is a cyclic
coordinate for two particles, it is for any n-particle system with gravitational
interaction, which is invariant over time, such as e.g. a rock or a bar of iron:

In the above two-particle problem, the center of mass at rest could be
itself a system of n− 1 pointwise particles, of which the particles are allowed
to be in motion, while the n-th particle, of which we extracted its kinetic
energy, is at rest w.r.t. the center of mass. As long as the particles don’t
collide with this n-th particle, given that one of the moving particles, say the
k-th particle does not collide with all the others, I can freeze that system at
any time and extract the square of kinetic energy of the k-th particle as a
constant of motion. So, if the system is such that all particles do not collide
with eachother, I end up with E2 − E2

rest =
∑

1≤j≤n T
2
j , where the T 2

j is
the square of the of the kinetical energy of the j-th particle (for the reduced
mass).
I have some trouble, though to determine E2 and E2

rest, but the r.h.s. is a
conserved quantity, and it qualifies as square of heat or temperature, T 2.

If only we could extend that relation to closed n-particle systems that
allow for collisions, then we would have shown that the temperature of a
closed gravitational system of particles was a dynamic invariant, which would
prove that heat would be freely tranferrable from one gravitational system
to another!
So, let’s do that:

Mathematically, a free 1-particle system is a particle of some mass
m > 0, that moves in time along a straight line at constant speed, an as
such has a constant momentum and energy. With this, a free n-partical sys-
tem can mathematically easily defined as the n-fold product of 1-particle
systems.
Physically, even a 1-particle system is constrained over time t to the inner
of a 3-dimensional box with elastic walls, namely the walls of the laboratory,
which shield to the outside, and the mathematical line becomes a segmented
path of lines with edges at the boundary, where the collisions with the box
happen. Because at the collision with the boundary the ingoing angle is equal
to outgoing angle and the absolute value of speed of the particle before and
after collision with the box are the same, the whole path still qualifies as a
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line, if only taken modulo inversion P of the location coordinates: the outgo-
ing line is bent parallel to the ingoing line by a suitable reflection of location
coordinates: the principle of momentum conservation is equivalent to the
symmetry of space-inversion. So, physically, the reflected path is dynami-
cally equivalent to the path, that just passes straight through the boundary
without any impact.
Now let’s overlay n such pathes within the container. Then the paths will
probably intersect. Let k paths of masses intersect in a point ~x0 at a given
time t0. Then, knowing the momenta of these particle paths, we know the
momentum of the center of mass of the colliding particles and can transform
to the system where the center of mass is at rest. In this frame all colliding
particles bounce back at the collision point in opposite direction (given elas-
ticity). That is: outgoing paths are the location inverted ingoing paths. So,
again we get that momentum and energy conserving collisions are invariants,
not affecting the dynamics.
In the presence of gravitational interaction, the only change to the above
is the addition of a velocity-independent acceleration to the center of mass
of the colliding particles, and we get the same result locally again, because
gravity is invariant w.r.t. space-reflection.
What will happen, when collisions are allowed to be inelastic? Then the flux
of energy within the system will not be constant in time, contradicting the
assumption made that the system is to be invariant over time.

Remark 4.1 (Hamitonian of free n-particle systems). In a free n-particle sys-
tem, each particle obeys the square Hamiltonian H2

k = E2
k = m2

kc
4 + p2

kc
2,

(1 ≤ k ≤ n), each particle living in its own, independent coordinate system.
And by projection to a single coordinate system, these square Hamiltoni-
ans sum up as a vector H2 =

∑
km

2
kc

4 + p2
kc

2, or, if we assume distinct-
ness of the ~xk at each time t, we can write it as a function H2(t, ~x) =∑
k 1(t, ~xk)(m2

kc
4 + p2

kc
2), where 1(t,~x) is the characteristic function of (t, ~x),

defined to be 1 for (t, ~xk) and 0 elsewhere. In either view, elastic collisions,
which amount to space reflections, are symmetries, and we get symmetry
problems only, if we consider the symmetry-breaking square root. In both
views, H2 not being a scalar, but a tuple of scalars, taking the square-
root means taking it for each particle component, or individually for each
mass point, so H(t, ~xk) = 1{t,~x}(m2

kc
4 + p2

kc
2)1/2, which for c → ∞ goes to

1(t,~x)(mkc
2 + 1

2mkv
2). It is straight forward to extend the n-particles sys-

tem to a continuum of particles and to introduce densities or square-root
densities into that theory. More important seems to me to stress that this
free n-particle system is nothing but the model of an ideal gas. And that is
interessant: whether the particles go criss-cross and collide or go altogether
in one or two directions, that is irrelevant: the heat and the pressure is the
same:
in fact, starting with the n coordinate systems for the individual particles,
we could have rotated and displaces each of them, until all particles were
moving parallel in time. The choice of these coordinate system is essentially
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what is called a gauge, and the Galilei transformations then define a gauge
symmetry. In particular, the notion of entropy in an ideal gas apeears to get
lost.

5. The mass problem
In all, we showed that for a closed gravitational system ofN masses (mj)1≤j≤N ,
which is invariant over time, the quantity

E2 − E2
rest = T 2 :=

∑
j

p2
jc

2, (5.1)

is conserved, where E2 is the square of its total energy, E2
rest the square of

energy of the system, for which the particles’ motion is frozen out at a given
time t0, and T 2, its square temperature, is sum of the squares of the kinetic
energy of the particles. As above, we may deliberately restrict the system to
be deviating slightly from a stable frozen system with all particles at rest.

So, given the masses and intial motions of these, we determine and ex-
tract the kinetical energy of the closed system, which leaves us a system with
all particles at rest. And of this system we can then calculate its potential
gravitational energy V , say. But neither do we know E2, nor E2

rest: Because
with this, we could perhaps calculate, how much of the potential energy max-
imally may be transformed into motion and therefore into mechanical work!
Because the gravitational potential is negative and proportional to 1

r , where
r is the distance of the mass to the center of mass, the potential can be
minimized by rearranging the body to a densely and packed ball of radius
r. But, because that potential energy is also proportional to the mass m of
the body itself, we can deliberately partition that mass into fractions that
all add up to the same mass m again, and the field itself, representing the
potential energies of these pieces must weigh 0.
Not astonishingly, General Relativity says the same: If we extract the ener-
gies mkc

2 from Erest and arrange these with their kinetic energy |pk| c then
what remains of Erest is a massless field, which is to be replaced with the
corresponding space-time curvature, caused by the masses mk.

And now test it against the inert energy: We have from 5.1 above:
E2 = E2

rest+T 2, and because the center of mass is at rest for the total system,
T 2 being only its internal kinetic energy, E2 and not E2

rest is the energy of its
rest mass! And this makes M =

√
E2
rest + T 2/c2 its rest mass. So, inert and

gravitational mass should differ. And the straightforward, perhaps difficult
way to test that (because of heat dissipation), will be to to heat up the mass
of a mathematical pendulum (preferrably shielding it by a tube in vacuum):
From F =

√
m2

0 + T 2/c4 = −m0gφ, where g is the gravitational constant
and φ a small angle with the vertical rest position, the period Π becomes
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Π =
4
√
m2

0+T 2/c4
√
m0

2π
√

l
g , (l being the rod’s length), which raises the the period

for T = 0 by the factor
4
√
m2

0+T 2/c4
√
m0

.
In order to get at the equivalence of inert and gravitational mass for T >

0, it would then be necessary to allow gravity to increase with temperature.
But that will result into a temperature-dependent blue-shift of the atomic
spectrum, which cannot be observed. So, the equivalence of the masses is
lost.

In view of the inequality of inert and gravitational mass for T > 0, what
can be done to align with General Relativity, is to express the inert mass in
terms of curvature of space and time. That way, the masses mk would again
be extracted from the from the ”frozen system”, described by E2

rest, and
assembled with the momenta pk. And the rest of Erest would then go into
the space-time curvature.

So, again there is strong evidence, that only a fraction of the total energy
of a rigid body can be transformed into kinetic energy, which might appear
possible from the equation E2 = E2

rest+T 2: If only E is to be constant, then
we can lower Erest, whilst increasing T 2: However, at a minimum, Erest must
still contain all the individual rest masses of the particles; so, not all of Erest
could be transformed into T .

6. Anti-Gravity
Take a step back and return to the 2-dimensional unit cone in three dimen-
sions, the product of the diagonals with the unit circle, in which the vertical
axis is taken to be the gravitational potential. Hyperplanes parallel to the
horizonal plain then intersect the cone in a circle (where the potential is con-
stant), at polar angles from 0 < θ < π

4 the interections are ellipes, at θ = π
4

these are parabolae, and then up to θ ≤ π
2 the intersections are hyperbolae.

Rotation around the vericle axis the covers the possible intersections in the
upper halfpane. The lower halfplane, which is symmetrical, is left out: why?
- because, if the upper vertical axis is to be understood to be negative (in
order to gain at the concept of attraction, then the lower, inverted axis will
represent a positive potential, which would represent the opposite of attrac-
tion.
The answer given in the beginning was that the fear is unfounded: The grav-
itational potential V (r) is not defined as the potential energy of a mass m at
distance r, but per mass m. Hence, the energies mV (r) and (−m) · (−V (r))
are the same in both regions.

Though, since the masses in E2 = E2
rest + T 2 come in squares, allowing

masses of either sign, then also (−m) · V (r) should be physically realizable,
which would mean anti-gravity.

To get around the anti-gravity, General Relativity considers the whole
physically experienciable world to live inside a closed and convexly curved
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space-time. Hence, all observers will just see the inside, but not the mali-
ciously concavely curved outside.
Perhaps surprisingly, that argument overlooks the immaterial heat T :=

√
T 2:

Add heat to a sytem of masses: if not already moving (w.r.t. the center of
mass), the particles will start to move around the center of mass (if not trans-
fering that heat in an inelastic collision to other particles), and the moving
ones will increase their distance to that center otherwise, in other words, the
negative potential energy will become less negative. So, that heat is trans-
formed into potential energy. No matter is known that may sustain heat:
it rips even atoms apart and lifts molecular fractions as gas up in the sky
(against the gravitational force), and conversely the lifted gas particles will
fall down again towards that center, if their temperature becomes lower than
that of their neighborhood: even Helium atoms fall down as T → 0.
In terms of General Relativity: The immaterial heat is flattening out the
convexly curved space-time again: In a non-expansive and non-contracting
conservative system gravitational pressure and thermal expansive pressure
add to zero. And that would be anti-gravity. We can even go a step further:
We can define the gravitational mass as the maximal amount of heat that
the system may withstand the thermal expansion (and vice versa).

7. Electrical mass
All that is simply 19th century chemistry. Let’s proceed with it: It is cur-
rently commonly said that the driving motor for the industrialization of mid
18th till end of the 19th century was the steam engine: I beg to differ: en-
ergy consumption would not be possible without energy delivery. And it was
chemistry that showed how to get more out of matter than just gravitational
energy, like throwing pebbles or pouring water downhill:
Take a chunk of coal, coke it for a day say, i.e.: add heat to it, until you
get a porous solid piece of carbon (with other fluid an gaseous substances).
Then pour the same amount of liquid O2 over the carbon and ignite that
immersion. The result will be gaseous carbon dioxide and millions of times
more heat than could be gained from its gravitational energy: any gas al-
ready steadily expands, if not constrained by an external force. According to
chemistry, that enormous amount of energy came from the binding energy
that was released by the reaction C +O2 → CO2.

This opens the next layer of E2 = E2
rest + T 2: Because the force be-

tween charges is proportional to the graviational force, they still obey that
equation. The only difference up to a constant, big factor is that charges
are anti-symmetrical w.r.t. parity P, whereas neutral masses are symmetri-
cal w.r.t. parity. So, given the symmetry of time-inversion T , the product
C := T P is to be an anti-symmetry for charges, which is the charge inversion
(see e.g. [1]). (Again, it is nothing new: Maxwell formulated his equations
in terms of Hamilton’s quaternions, which are mathematically equivalent to
spin matrices; and he did that in view of the fact that the magnetic field of
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a flux of charges inverts under parity.) Today we also know that all particles
that come with an a non-zero gravitational mass, are composed of charged
particles.

Two unanswered problems for experimental physics: Is the weight of the
gas CO2 equal to the weight of O2 plus the weight of carbon before? And the
second: we know that a single electron has an inert mass greater zero. Does
it also have a gravitational mass?

For now, missing experimental verification, what remains is to deduce
the answers theoretically: Because the total energy, the total energy of all
particles at rest, and the heat of a closed system of masses is to be the
same as that of its charged particle composites, the heat or thermal energy
created by the chemical process O2 +C → CO2 must come from E2

rest, which
therefore decreases: a weight loss is to be expected on side of CO2. Since
electrical charges are supposed to be elementary and conserved - note that
only the squares of the charges enter E2

rest, so it’s the square of charges that
is conserved first hand, and from that the charge conservation is derived -
charges cannot be converted into thermal energy, and one could expect the
electron to weigh nothing. Gravitational energy would hence be conceivable
as being caused by the chemical/electromagnetic binding of charged particles.
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