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Abstract  

The beautiful Titius-Bode law about Solar planetary orbits discovered in 1766, is considered that it is a 

mathematical coincidence rather than an "exact" law, because it has not yet been physically proved. 

However, if we consider the disturbance restoration and the stability of the asteroid belt orbit, there must 

be some underlying logical necessity.  

Planetary orbits are often computed by Newtonian mechanics with the kinetic energy and the universal 

gravitation energy. Nevertheless, applying the principle of energy-minimum to the Newtonian mechanics 

leads to the result that the stable orbital radius is only one value, which is totally incompatible with actual 

phenomena. This discrepancy must result from the shortage of elements which rule over the planetary 

orbits. Other elements to rule over the planetary orbits are the electric charge energy and the rotation 

energy, both of which are guided by the Kerr-Newman solution (discovered in 1965) of the general 

relativity theory (discovered in 1915). Here, I mathematically demonstrated the Titius-Bode law, and also 

calculated the number of Saturn’s rings, maximum 31 and the radius of the Fine-Ring, for the first time by 

applying the principle of energy-minimum to the complicated energy equation which adopts mass, electric 

charge and rotation elements of the central core star and solving the sole differential equation.  
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1.  Introduction 

The Titius–Bode law (𝜉 = 0.4 + 0.3 × 2n), discovered 250 years ago, is considered to be a mathematical 

coincidence rather than an "exact" law [1], because it has not yet been physically proved. However, if we 

consider the disturbance restoration and the stability of the asteroid belt orbit, there must be some 

underlying logical necessity. Here, by Newtonian methods using the Kerr-Newman solution of the general 

relativity theory, I demonstrate the Titius-Bode law and apply its solution method to the calculation of the 

number of Saturn’s rings and the radius of Fine-Ring for the first time. This is a mathematical equation 

calculation and the memos of detailed analysis processes are provided in a separate sheet of paper [2]. 

 

2.  Methods 

The outline of the solution method and the key equation numbers in this article are as follows.  

1) The equation for energy in the space-time field is obtained from the Kerr-Newman solution, a strict 

solution of the Einstein equations of the general relativity theory. 

                         f 1(ρ, θ, dρ/dt, dθ/dt, dφ/dt, ε) = 0           (eq. 3） 

2) This energy equation is partially differentiated by θ to the minimum energy. The result is θ=π/2, and 

the calculation below proceeds at θ=π/2, i.e., on the equatorial plane. 

f 2(ρ, π/2, dρ/dt, 0, dφ/dt, ε) = 0  
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3)The angular momentum equivalent J is obtained by applying the variational principle to the Kerr- 

Newman solution to calculate dφ/dt .   

   ξ(ρ, dφ/dt, J) = 0                           (eq. 6) 

4) Because an additional radius is dρ＝0 at the aphelion and perihelion distances R, the calculation below 

proceeds at distance R.  

f 3(R, π/2, 0, 0, dφ/dt, ε) = 0                 (eq. 7) 

5) Substituting dφ/dt from ξ = 0 into f 3= 0 results in a relational expression of the radius, the angular 

momentum equivalent, and the energy. 

f 4(R, π/2, 0, 0, J, ε) = 0                       (eq. 9) 

6) The orbital distance R is determined by the energy and the angular momentum equivalent, i.e., 

 𝑅 = 𝑅(휀, 𝐽). R is partially differentiated by ε , that is, f 4  is partially differentiated by ε. 

                 g (R, J, ε, 𝜕𝑅/𝜕휀) = 0                         (eq. 10) 

7) Derive the angular momentum equivalent J from f 4(R, π/2, 0, 0, J ,ε) = 0 and substitute it into 

 g (R, J, ε, 𝜕𝑅/𝜕휀) = 0. Make this into an important differential equation which is just composed of the 

 radius and the energy to analyze unique characteristics of orbits.  

        h(R, ε, dε/dR) = 0                            (eq. 11) 

8) Solving the differential equation h results in a complicated set of arctan, log, power functions and  

an integration constant K. 

                 H(R, ε, K) = 0                               (eq. 14)  (eq. 15) 

9) By using that the minimum energy is dε/dR=0 in h(R, ε, dε/dR) =0, following simultaneous 

 equations are obtained and solved.                                    

                h(r, εmin , 0) = 0  ①      H(r, εmin , K) = 0  ②    (eq. 16)     

10) Because the integration constant K is common to all orbits, the Titius–Bode law is demonstrated  

and also the number of Saturn’s rings and the radius of Fine-Ring are calculated. 

                 I (r, K) = 0                              ( eq. 23) ( eq. 26) ( eq. 27)  

 

2.1.  The Energy Equation 

2.1.1.  Introduction to the Energy Equation  

  There are two preconditions for the following analysis besides it in the Kerr-Newman solution.  

1) The analysis object must be sufficiently far from the center of mass. 

2) The rotation speed of the center of mass must not be too fast. The characteristic Boyer-Lindquist 

coordinates in the Kerr solution are equal to general polar coordinates in the first-order term 𝑎/𝜌[3]. 

The strict Boyer-Lindquist metric of the Kerr-Newman geometry [4] is as follows. 

   ds2 = −
R2Δ

ρ2
(dt − asin2θdφ)

2
+

ρ2

R2Δ
dr2 + ρ2dθ2+ 

R4sin2θ

ρ2
  (dφ−

a
R2
dt)

2

               

At the large radius r, the Boyer-Lindquist metric is as follows. 

  ds2 → −(1 −
2M

r
)dt2

 

−
4aMsin2θ 

 

r
dtdφ + (1 +

2M

r
) dr2+ r2(dθ2 + sin2θ dφ)

 
     

Symbols are changed from the Boyer-Lindquist metric to the general polar coordinate. 
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The Kerr-Newman solution of the general relativity theory is given by (eq.1). In this expression, 𝑚, 𝑎 

and e are the mass, rotation and electric charge elements respectively. 

    (1)    𝑑𝑠2 = (1 −
2𝑚𝜌 − 𝑒2

𝜌2 + 𝑎2cos2𝜃
)(𝑐𝑑𝑡)2 −

𝜌2 + 𝑎2 cos2 𝜃

𝜌2 + 𝑎2 − 2𝑚𝜌 + 𝑒2
𝑑𝜌2 − (𝜌2 + 𝑎2cos2𝜃)𝑑𝜃2 

     − [ (𝜌2 + 𝑎2)  +
(2𝑚𝜌−𝑒2)𝑎2sin2𝜃

𝜌2 + 𝑎2 cos2 𝜃
] sin2𝜃 𝑑𝜑2 −

2(2𝑚𝜌 − 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
𝑐𝑑𝑡 ∙ 𝑑𝜑 

Γ is as follows when ds is divided by the time elements (c dt). 

    
1

𝛤2
= (

𝑑𝑠

𝑐𝑑𝑡
)
2

 

The Lorentz transformation factor γ (= c dt/ds) in the Minkowski space-time of the special relativity 

theory is an important component of the energy E = M c2 = M0 γ c2 . Γ (= c dt/ds) of the Kerr-Newman 

solution of the general relativity theory is analogous to γ. 

On this occasion, by following the principle of minimum energy, the sign of 𝑚 is changed to −𝑚 , 𝑎 is 

changed to +𝑎, and e is changed to +e. Therefore, the energy equation is Ｅ＝Γ ( ρ, θ, φ, t, −𝑚, 𝑎, e). 

     (2)    
1

𝐸2
= (1+

2𝑚𝜌 + 𝑒2

𝜌2 + 𝑎2cos2𝜃
) −

𝜌2 + 𝑎2 cos2 𝜃

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

− (𝜌2 + 𝑎2cos2𝜃)(
𝑑𝜃

𝑐𝑑𝑡
)
2

 

         − [(𝜌2 + 𝑎2)  −
(2𝑚𝜌+𝑒2)𝑎2sin2𝜃
𝜌2 + 𝑎2 cos2 𝜃

] sin2𝜃 (
𝑑𝜑

𝑐𝑑𝑡
)
2

+
2(2𝑚𝜌 + 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
(
𝑑𝜑

𝑐𝑑𝑡
) 

Since E has a decisive massive energy M0c 2, it is converted into ε    1/𝐸2 = 1 − 2휀  in (eq.3).       

      (3)    − 2ε =
2𝑚𝜌 + 𝑒2

𝜌2 + 𝑎2cos2𝜃
−

𝜌2 + 𝑎2cos2𝜃

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

− (𝜌2 + 𝑎2cos2𝜃) (
𝑑𝜃

𝑐𝑑𝑡
)
2

 

          − [(𝜌2 + 𝑎2)  −
(2𝑚𝜌+𝑒2)𝑎2sin2𝜃

𝜌2 + 𝑎2 cos2 𝜃
]sin2𝜃 (

𝑑𝜑

𝑐𝑑𝑡
)
2

+
2(2𝑚𝜌 + 𝑒2)𝑎 sin2𝜃

𝜌2 + 𝑎2cos2𝜃
(
𝑑𝜑

𝑐𝑑𝑡
) 

Partial differentiation is used to minimize the energy ε(ρ，θ，φ，t) by using 𝜕휀/𝜕𝜃 = 0.  

        
(2𝑚𝜌 + 𝑒2)𝑎2

(𝜌2 + 𝑎2cos2𝜃)2
+

𝑎2

𝜌2 + 𝑎2 + 2𝑚𝜌 + 𝑒2
(
𝑑𝜌

𝑐𝑑𝑡
)
2

+ 𝑎2 (
𝑑𝜃

𝑐𝑑𝑡
)
2

 

        − [(𝜌2 + 𝑎2) −
(2𝑚𝜌 + 𝑒2)2𝑎2sin2𝜃

𝜌2 + 𝑎2cos2𝜃
−
(2𝑚𝜌 + 𝑒2)𝑎4sin4𝜃

(𝜌2 + 𝑎2cos2𝜃)2
](
𝑑𝜑

𝑐𝑑𝑡
)
2

 

        + [
2(2𝑚𝜌 + 𝑒2)𝑎

𝜌2 + 𝑎2 cos2 𝜃
+
2(2𝑚𝜌 + 𝑒2)𝑎3sin2𝜃

(𝜌2 + 𝑎2 cos2 𝜃)2
] (
𝑑𝜑

𝑐𝑑𝑡
) 

That is, the energy E and ε are minimized at θ=π/2 and the planets gather on the equatorial plane where 

the energy is stable.  

 

2.1.2.  Time component from the variational principle 

When the rotation speed of the center of mass is not too fast, the Kerr-Newman solution expanded in the 

first order of 𝑎/𝜌 takes the form given in (eq.4): 

     (4)    (
𝑑𝑠

𝑑𝑠
)
2

= 1 = (1 −
2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
)
2

−
1

1−
2𝑚
𝜌
+
𝑒2

𝜌2

(
𝑑𝜌

𝑑𝑠
)
2

− 𝜌2 (
𝑑𝜃

𝑑𝑠
)
2

− 𝜌2sin2𝜃 (
𝑑𝜑

𝑑𝑠
)
2

 

          −
2𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
)sin2𝜃 (

𝑐𝑑𝑡

𝑑𝑠
) (
𝑑𝜑

𝑑𝑠
) 

・sin 2θ ＝ 0 
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The Euler–Lagrange equation [5] is adopted by applying the variational principle to the Kerr-Newman 

solution. 

         𝛅∫  (1 −
2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
)
2

−
1

1−
2𝑚
𝜌
+
𝑒2

𝜌2

(
𝑑𝜌

𝑑𝑠
)
2

− 𝜌2 {(
𝑑𝜃

𝑑𝑠
)
2

+ sin2𝜃 (
𝑑𝜑

𝑑𝑠
)
2

}

−
2𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
) sin2𝜃 (

𝑐𝑑𝑡

𝑑𝑠
)(
𝑑𝜑

𝑑𝑠
)     𝑑𝑠 = 0 

Eventually, (eq.5) is obtained at the equatorial plane of the rotating center of mass where the energy is 

stable. Hereafter, I perform the calculation at the equatorial plane (θ＝π/2) of the rotating center of 

mass. 

          
𝑑

𝑑𝑠
[(1 −

2𝑚

𝜌
+
𝑒2

𝜌2
)(
𝑐𝑑𝑡

𝑑𝑠
) −

𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
) (
𝑑𝜑

𝑑𝑠
)] = 0                   time component             

          
𝑑

𝑑𝑠
[𝜌2 (

𝑑𝜑

𝑑𝑠
)+

𝑎

𝜌
(2𝑚 −

𝑒2

𝜌
) (
𝑐𝑑𝑡

𝑑𝑠
)] = 0                                           𝜑 component               

 
The two equations in (eq.5) are integrated over ds. 𝑑𝜑/𝑑𝑡 (eq. 6) with an integration variable J is 

obtained by using the resulting pair of simultaneous equations, 

   (6)    
𝑑𝜑

𝑑𝑡
=
(
𝑑𝜑
𝑑𝑠
)

(
𝑑𝑡
𝑑𝑠)

=  
𝐽 (𝜌 − 2𝑚 +

𝑒2

𝜌
) + 𝑎 (

𝑒2

𝜌
− 2𝑚)

𝜌3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝜌
)

∙ 𝑐 
𝐽 ∶ the angular momentum equivalent  

  （a kind of Carter constant in relativity theory）
  

The distance variables are defined as follows: 

ρ：An arbitrary orbital distance in two- or three-dimensional coordinates.  

R：The aphelion and perihelion distances at the equatorial plane of the rotating center of mass. 

r：The aphelion and perihelion distances, both of which are energetically stable at the equatorial plane.  

 

2.1.3.  Introduction of the angular momentum equivalent   

Because additional ρ at the aphelion and perihelion distances is dρ＝0, the energy equation is given by 

(eq.7).  

     (7)      0 = 2휀 +
2𝑚

𝑅
+
𝑒2

𝑅2
−𝑅2 (

𝑑𝜑

𝑐𝑑𝑡
)
2

+
4𝑎

𝑅
(𝑚 +

𝑒2

2𝑅
)(

𝑑𝜑

𝑐𝑑𝑡
) 

dφ/cdt (eq. 6) is composed of the angular momentum equivalent and is substituted into (eq.7). J is 

obtained as in (eq.8) by adopting the secondary order R. 

     (8)      𝐽 =
4𝑎𝑚 + 𝑅𝛿√𝑅(2휀𝑅 + 2𝑚 +𝐶)

𝑅2(𝑅 − 2𝑚 + 𝐶) − 𝑎(2𝑚 − 𝐶)𝛿√𝑅(2휀𝑅 + 2𝑚+ 𝐶)
𝑅2 

Here, 𝛿 = ±1  and 𝐶 = 𝑒2/𝑅. δ is related to the orbital rotation direction. 

 

2.2.  The Space Fantasy Differential Equation 

2.2.1.  Introduction of the Space Fantasy differential equation 

It leads not to the numerical analysis but to the analytical unique characteristics. The relation of R , ε, and 

J are given as (eq.9) at the aphelion and perihelion distances R by changing the angular momentum 

equivalent J (eq. 8).  

 (eq.9) is far more complicated than the Kepler-Newton equation 2휀𝑅2 + 2𝑚𝑅 − 𝐽2 = 0  

    
(

2𝑚
𝜌 )

(
2𝑚𝑎
2𝑚𝑎)

      (5) 
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     (9)     0 = 2휀 +
2𝑚

𝑅
+
𝑒2

𝑅2
− 𝑅2 [

𝐽 (𝑅 − 2𝑚 +
𝑒2

𝑅
) + 𝑎 (

𝑒2

𝑅
− 2𝑚)

𝑅3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝑅
)

]

2

 

          +
4𝑎

𝑅
(𝑚 +

𝑒2

2𝑅
)[
𝐽 (𝑅 − 2𝑚 +

𝑒2

𝑅
) + 𝑎 (

𝑒2

𝑅
− 2𝑚)

𝑅3 + 𝐽𝑎 (2𝑚 −
𝑒2

𝑅
)

] 

  Since the orbital distance R is determined by the energy ε and the angular momentum equivalent J, 𝑅 =

𝑅(휀, 𝐽). A new differential equation is given as (eq.10) by partially differentiating R by ε, then substituting 

J into this, and adopting the reciprocal of 𝜕𝑅/𝜕휀.  

     (10)     
𝜕휀

𝜕𝑅
[𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)]2 

         =
(𝑚 + 𝐶)[𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)]2

𝑅2
+
[𝐽(𝑅 − 2𝑚 + 𝐶) − 2𝑎𝑚 + 𝑎𝐶] [𝐽(𝑅 − 2𝑚 + 𝐶) + 3𝑎𝐶] ∙ 𝑅

1
 

               +
2𝑅2[𝐽(𝑅 − 2𝑚 + 𝐶) − 4𝑎𝑚] [𝐽2𝑎(𝑚 − 𝐶) − 𝐽𝑅2(𝑅 − 3𝑚 + 2𝐶) + 𝑎𝑅2(3𝑚 − 2𝐶)]

𝑅3 + 𝐽𝑎(2𝑚 − 𝐶)
 

Here, by substituting J of (eq. 8) into (eq.10), the second order R is obtained.  

Through all these extensive calculation processes, the relation between ε and R is summarized as (eq.11). 

    (11)    
𝒅𝜺

𝒅𝑹
𝑹𝟒(𝑹𝟐 − 𝟒𝒎𝑹+ 𝟐𝑪𝑹+ 𝟒𝒎𝟐) 

              = 𝒎𝑹𝟐(−𝑹𝟐 + 𝟖𝒎𝑹− 𝟒𝑪𝑹− 𝟏𝟐𝒎𝟐) + 𝜺 ∙ 𝟐𝑹𝟑(−𝑹𝟐 + 𝟔𝒎𝑹− 𝟒𝑪𝑹− 𝟖𝒎𝟐) 

              +𝟐𝒂𝒎(𝟐𝑹𝟐 + 𝟐𝒎𝑹−𝑪𝑹 −𝟏𝟐𝒎𝟐)𝜹√𝑹(𝟐𝜺𝑹+ 𝟐𝒎+𝑪) 

              +𝜺 ∙ 𝟒𝒂𝑹(𝟑𝒎𝑹− 𝟐𝑪𝑹− 𝟔𝒎𝟐 + 𝟕𝑪𝒎)𝜹√𝑹(𝟐𝜺𝑹 + 𝟐𝒎+ 𝑪)         𝐶 = 𝑒2/𝑅   (𝑅  2ry order) 

 

I call tentatively this second order equation (eq. 11) “the Space Fantasy (SF) differential equation”. 

The change of variables is performed to solve the SF differential equation for S. The result is (eq.12).  

            𝑆 = 𝑅√𝑅(2휀𝑅 + 2𝑚+ 𝐶) 

    (12)    
𝒅𝑺

𝒅𝑹
=
𝟐𝒆𝟐(𝒆𝟐 + 𝟐𝒎𝟐)

𝑺𝑹
+
𝟒𝒂𝜹𝒎+ 𝑺

𝑹
+
𝟔𝒂𝜹𝒎𝑺𝟐

𝑹𝟓
                                           ( 𝑅  0 order) 

 

The form of the differential equation in (eq.12) is more complicated than the Riccati's differential 

equation, which never has an exact general solution [6]. Since 6𝑎𝛿𝑚𝑆2/𝑅5 is much smaller than 

S/R and  4𝑎𝛿𝑚/𝑅, it can be treated as a constant θ. Also, (eq.12) can be reduced to the problem of an 

approximate differential equation, and it is given as (eq.13).  

       
𝑑𝑆

𝑑𝑅
=
1

𝑆
[
2𝐸4

𝑅
+
4𝑎𝛿𝑚𝑆

𝑅
(1 +

6𝑆2

4𝑅4
) +

𝑆2

𝑅
]               𝐸4 = 𝑒2(𝑒2 + 2𝑚2) 

           ≒
1

𝑆
[
2𝐸4

𝑅
+
4𝑎𝛿𝑚𝑆

𝑅
(1 + 𝜃) +

𝑆2

𝑅
]                      𝜃 =

3𝑆0
2

2𝑅0
4    (𝑆0

2 , 𝑅0
4  are centroids ∶ 𝑆2/3  , 𝑅4/5) 

    (13)        
𝑆𝑑𝑆 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4
=
𝑑𝑅

𝑅
       

Solving (eq.13) by the quadrature formulae [7] leads to (eq.14), (eq.15) and (eq.16). 

http://ejje.weblio.jp/content/centroid
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Without use of the SF differential equation which leads the analysis solution, there is a method of 

numerical solution i.e. simultaneous equations consist of an integral constant equation and an energy 

minimum orbit equation. However, a numerical solution composed of power algebraic expressions is 

difficult to understand the characteristics of orbits.  

 

In the case that the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0: 

          
1

2
log[𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4] −

4𝑎𝛿𝑚(1 + 𝜃)

2√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

2S + 4𝑎𝛿𝑚(1 + 𝜃)

2√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
) 

                          = log𝑅 + 𝐾 

     (14)     𝐾 =
𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4

𝑅2
∙ EXP [

−4𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
)] 

 

In the case that the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＜0: 

         log[𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4] 

             −
2𝑎𝛿𝑚(1 + 𝜃)

√4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
∙ log [

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
 ] =  2 log𝑅 + 𝐾 

     (15)     𝐾 =  log

[
 
 
 
 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑅2

[
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

]
 
 
 
 
   

 

In the case that the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  = 0: 

        
𝑑𝑆

𝑑𝑅
=
1

𝑆
∙
 (𝑆 + √2𝐸2)2

𝑅
   Solving this equation by the quadrature formulae leads                   

  (16)     𝐾 =  
𝑆 + √2𝐸2

𝑅
EXP [

√2𝐸2

𝑆 + √2𝐸2
]                                                                                                                       

 

2.2.2.  Conditions of the energy minimum orbit 

  Since the minimum energy is 𝑑휀/𝑑𝑅 = 0 in the SF differential equation (eq. 11), it is a cubic equation in ε.  

             0 =  휀3 ∙ 32𝑎2𝑟3(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)2 

                      + 휀2 ∙ 𝑟2   16𝑎2(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)2(2𝑚+ 𝐶) 

                          +32𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚) 

                          −4𝑟3(−𝑟2 + 6𝑚𝑟 − 4𝐶𝑟 − 8𝑚2)2 
 

                      + 휀 ∙ 4𝑚𝑟   2𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2 

                       +4𝑎2(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚)(2𝑚 + 𝐶) 

                        −𝑟3(−𝑟2 + 8𝑚𝑟 − 4𝐶𝑟 − 12𝑚2)(−𝑟2 + 6𝑚𝑟 − 4𝐶𝑟 − 8𝑚2) 
 

                       +𝑚2[4𝑎2(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2(2𝑚+ 𝐶) − 𝑟3(−𝑟2 + 8𝑚𝑟 − 4𝐶𝑟 − 12𝑚2)2] 

 

Solve this cubic equation. A solution  휀𝑚𝑖𝑛  (eq.17) very close to 0 is adopted in accordance with the 

principle of the energy minimum. 
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              −𝑚    𝑟3(𝑟2 − 8𝑚𝑟 + 4𝐶𝑟 + 12𝑚2)2 − 4𝑎2(2𝑚 + 𝐶)(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2   

              4𝑟       𝑟3(𝑟2 − 8𝑚𝑟 + 4𝐶𝑟 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝐶𝑟 + 8𝑚2) 

                 −4𝑎2(2𝑚+ 𝐶)(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)(3𝑚𝑟 − 2𝐶𝑟 − 6𝑚2 + 7𝐶𝑚) 

                 −2𝑎2𝑚(2𝑟2 + 2𝑚𝑟 − 𝐶𝑟 − 12𝑚2)2 
 

                           ≒  
−𝑚

4𝑟
                     ( 𝑟  0 order)                      

     휀𝑚𝑖𝑛 (eq. 17)  is substituted into the change of variables S = 𝑟√𝑟(2휀𝑟 + 2𝑚 + 𝐶) (eq. 12).  

     −𝑚𝑟4     𝑟4(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)2 − 4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 

      2    𝑟5(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝑒2 + 8𝑚2) 

        −4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)(3𝑚𝑟2 − 2𝑒2𝑟 − 6𝑚2𝑟 + 7𝑚𝑒2) 

        −2𝑎2𝑚𝑟2(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 
 

                             + 𝑟2(2𝑚𝑟 + 𝑒2)  

                        =
 𝑟4 × [𝑟8 polynomial ]  + 𝑟2(2𝑚𝑟 + 𝑒2) × [𝑟9 polynomial ]

[𝑟9polynomial ]
 =  

 𝑟2 ×  𝑃

 𝑄
 

                        ≒
3𝑚

2
𝑟3                             ( 𝑟  0 order)               

   Here, P and Q are given by (eq.18) and (eq.19). 

      (18)      𝑃 = −𝑚𝑟2/2 〔 𝑟4(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)2 − 4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2 〕     

                                +(2𝑚𝑟 + 𝑒2)  × 𝑄                                             [𝑟10 polynomial ] 

      (19)     𝑄 =  𝑟5(𝑟2 − 8𝑚𝑟 + 4𝑒2 + 12𝑚2)(𝑟2 − 6𝑚𝑟 + 4𝑒2 + 8𝑚2) 

                                  −4𝑎2(2𝑚𝑟 + 𝑒2)(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)(3𝑚𝑟2 − 2𝑒2𝑟 − 6𝑚2𝑟 + 7𝑚𝑒2) 

                                  −2𝑎2𝑚𝑟2(2𝑟2 + 2𝑚𝑟 − 𝑒2 − 12𝑚2)2                             [𝑟9 polynomial ] 

And for 𝜃,    

           𝜃 =
3𝑆0

2

2𝑅0
4 =

5𝑆2

2𝑟4
=

5𝑃

2𝑄𝑟2
   ≒   

15𝑚

4𝑟
     ( 𝑟 at  0 order)             

 

2.3  The Titius –Bode Law 

In the case that the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0 of the SF differential equation, the 

function 𝑓(θ) is given in (eq.14) and is subjected to a Maclaurin series expansion. Terms above 𝜃2 are 

neglected. The result is given in (eq.20). 

   𝑓(θ) =
𝑆2 + 4𝑎𝛿𝑚(1 + 𝜃)𝑆 + 2𝐸4

𝑅2
 EXP [

−4𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
arctan(

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃)

√2𝐸4 − 4𝑎2𝑚2(1 + 𝜃)2
)] 

      −𝐾 = 0 

           𝑓(θ) = 𝑓(0) +
1

1!
∙
𝜕𝑓(0)

𝜕𝜃
𝜃 +

1

2!
∙
𝜕2𝑓(0)

(𝜕𝜃)2
𝜃2 +⋯ = 0 

 

   (20)       𝑓(θ) =
3𝑚𝑟

2
EXP [

−4𝑎𝛿𝑚

√2𝐸4 − 4𝑎2𝑚2
arctan(

𝑟√3𝑚𝑟

2√𝐸4 − 2𝑎2𝑚2
)] × 

           × [1 −
30𝑎𝛿𝑚2𝐸4

𝑟[2𝐸4 − 4𝑎2𝑚2]
3
2

× arctan(
𝑟√3𝑚𝑟

2√𝐸4 − 2𝑎2𝑚2
)] − 𝐾 = 0 

  Since r is very large, it is given as arctan(
𝑟√3𝑚𝑟

2√𝐸4−2𝑎2𝑚2) = 𝜋/2 + 𝜋𝑁 −
2√𝐸4−2𝑎2𝑚2

𝑟√3𝑚𝑟
 .   

This is substituted into (eq.20). 

(17)  εmin =     ・ 

 

S2 =    ・ 
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     𝐾 =
3mr

2
EXP [

−2𝑎𝛿𝑚𝜋(1 + 2𝑁)

√2𝐸4 − 4𝑎2𝑚2
] ∙ [1 −

30𝑎𝛿𝑚2𝐸4

𝑟[2𝐸4 − 4𝑎2𝑚2]
3
2

∙
𝜋(1 + 2𝑁)

2
]         

Since the integration constant K is common to all planets that orbit the center of mass, the base planet 

and the distance ratio to the base planet can be set as follows. r1 , N1 , N－N1＝𝑛 − 1, and 𝜉 = 𝑟/𝑟1. The 

result is given in (eq.21).  

    (21)    𝑛 − 1 =
√2𝐸4 − 4𝑎2𝑚2

4𝑎𝛿𝑚𝜋
∙ log

[
 
 
 
 𝜉 −

15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 2𝑛 − 1)

𝑟1[2𝐸
4 − 4𝑎2𝑚2]

3
2

1 −
15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 1)

𝑟1[2𝐸
4 − 4𝑎2𝑚2]

3
2 ]

 
 
 
 

 

On the other hand, the Titius-Bode law is changed into (eq.22).  

    𝜉
𝐸𝑎𝑟𝑡ℎ

＝ 0.4 + 0.3 × 2𝑛  ＝ 0.4 + 0.6 × 2𝑛−1       ( 𝜉
𝐸𝑎𝑟𝑡ℎ

：the Earth basis 𝝃)    

    (22)     𝑛 − 1 =  
1

log 2
∙ log

𝜉
𝐸𝑎𝑟𝑡ℎ

− 0.4

1 − 0.4
 

The Titius-Bode law (eq. 22) is remarkably similar to the solution (eq. 21) of the approximate SF 

differential equation. If the two coefficients are the same, the two equations are almost equal. 

(The Earth is the base planet, 𝑛=1.) 

      
1

log2
 =  

√2𝐸4 − 4𝑎2𝑚2

4𝑎𝛿𝑚𝜋
        0.4 =  

15𝑎𝛿𝑚2𝐸4𝜋(2𝑁1 + 1)

𝑟1[2𝐸
4 − 4𝑎2𝑚2]

3
2

 

 

     Since   𝑟1 = 1.5 × 108𝑘𝑚 for the Earth, and,𝑚＝1.476𝑘𝑚 and  𝑎＝0.32𝑘𝑚 [8]  for the Sun, it is calculated 

that e = 2.1𝑘𝑚, and 𝑁1 = 1.5 × 107. The 2n on the right side of (eq.21) is neglected because of the very 

large 𝑁1. Thus,  

     (23)       𝝃 = [𝟏 −
𝟑𝟎𝒂𝜹𝒎𝟐𝑬𝟒𝝅𝑵𝟏

𝒓𝟏[𝟐𝑬
𝟒 −𝟒𝒂𝟐𝒎𝟐]

𝟑
𝟐

] ∙ 𝐄𝐗𝐏 [
𝟒𝒂𝒎𝝅(𝒏− 𝟏)

√𝟐𝑬𝟒 − 𝟒𝒂𝟐𝒎𝟐
] + 

𝟑𝟎𝒂𝜹𝒎𝟐𝑬𝟒𝝅𝑵𝟏

𝒓𝟏[𝟐𝑬
𝟒 − 𝟒𝒂𝟐𝒎𝟐]

𝟑
𝟐

        

𝛿 = ±1 is related to the orbital rotation direction.  

If the rotation direction of orbits is same that of the central core star, 𝛿 = +1 and (Eq.23) is now exactly 

equal to (eq.22). The Titius-Bode law has therefore been demonstrated.  

              𝜉𝛿=+1 = [1 −
30𝑎𝑚2𝐸4𝜋𝑁1

𝑟1[2𝐸
4−4𝑎2𝑚2]

3
2

] ∙ EXP [
4𝑎𝑚𝜋(𝑛−1)

√2𝐸4−4𝑎2𝑚2
] +  

30𝑎𝑚2𝐸4𝜋𝑁1

𝑟1[2𝐸
4−4𝑎2𝑚2]

3
2

        

                        𝜉
𝐸𝑎𝑟𝑡ℎ

= (𝟏 − 𝟎. 𝟒) ∙  𝟐𝒏−𝟏  +  𝟎. 𝟒    ‥… The Titius-Bode law 

 

2.4.  The orbits with counter rotation direction against the fixed star   

In the case that 𝛿 = −1 i.e. the rotation direction of orbits and it of the fixed star are opposite each other, 

the ratio of orbital radii in some exoplanets is reversed against the solar system planets.[9] 

  𝜉𝛿=−1 = [1 +
30𝑎𝑚2𝐸4𝜋𝑁1

𝑟1[2𝐸
4−4𝑎2𝑚2]

3
2

] ∙ EXP [
4𝑎𝑚𝜋(𝑛−1)

√2𝐸4−4𝑎2𝑚2
] −  

30𝑎𝑚2𝐸4𝜋𝑁1

𝑟1[2𝐸
4−4𝑎2𝑚2]

3
2

 

 

If   
1

log2
=

√2𝐸4−4𝑎2𝑚2

4𝑎𝑚𝜋
,    0.4 =

30𝑎𝑚2𝐸4𝜋𝑁1

𝑟1[2𝐸
4−4𝑎2𝑚2]

3
2

  like as the solar system planets, then  𝜉𝛿=+1,   𝜉𝛿=−1  and 

 𝑟n / 𝑟𝑛−1 are shown in the table1. n is larger and larger, 𝑟n / 𝑟𝑛−1nears 2.0 in both 𝜉𝛿=+1 and  𝜉𝛿=−1, but 

http://ejje.weblio.jp/content/is
http://ejje.weblio.jp/content/remarkably
http://ejje.weblio.jp/content/similar+to
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𝑟n / 𝑟𝑛−1(in 𝜉𝛿=+1) is a monotonous increase 1.4 < 2.0 ,   𝑟n / 𝑟𝑛−1(in 𝜉𝛿=−1) is a monotonous decrease 

3.3 > 2.0 at n=1.  As a result, there are a few planetary systems with counter rotation direction against 

the fixed star really in the universe. 

                 Table 1.  the ratio of orbital radii 𝑟n / 𝑟𝑛−1 and n 

 

 

 

 

 

 

2.5  The Saturn’s Rings  

Since the autorotation of the Saturn is fast, the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  ＞0. The 

solution (eq. 15) of the SF differential equation is as follows. 

                     𝐾 =  log

[
 
 
 
 

𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑅2

[
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

]
 
 
 
 
   

 
𝛿 = ±1 is related to the orbital rotation direction. 

Since the power number [
2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4
]  is nearly 1, the denominator is expressed as ( 1 − 𝜆). 𝜆  is 

extremely small, but not zero. The solution of the SF differential equation is (eq.24).  
 

           1 − 𝜆 = [
𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) − √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4

𝑆 + 2𝑎𝛿𝑚(1 + 𝜃) + √4𝑎2𝑚2(1 + 𝜃)2 − 2𝐸4
]

2𝑎𝛿𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

 

(24)       𝐾 =  
𝑆2 + 4𝑎𝛿𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑟2
∙

1

(1 − 𝜆)
 

The integration constant K is common to all the rings that belong to the Saturn. For the base ring, the 

variables are r1 and F =K, and the polynomial of S is (eq.25). 

    (25)       𝑆4 − 2𝑆2[𝐹(1 − 𝜆)𝑟2 − 2𝐸4 + 8𝑎2𝑚2(1 + 𝜃)2] + [𝐹(1 − 𝜆)𝑟2 − 2𝐸4]2 = 0 

 

𝑃 (eq. 18) and 𝑄 (eq. 19) are substituted into (eq.25) to give S and 𝜃. Finally, the polynomial of r is 

(eq.26).  

    (26)         𝑸𝒓𝟐 ( 𝑷𝒓𝟐 −𝑸 〔 𝑭(𝟏 − 𝝀)𝒓𝟐 − 𝟐𝑬𝟒 ] )𝟐  − 𝟒𝒂𝟐𝒎𝟐𝑷 ( 𝟐𝑸𝒓𝟐 +𝟓𝑷 )𝟐  = 𝟎                                               

 

The degree of (eq.26) is the highest at the first term 𝑃2𝑄𝑟6, and is 𝑟 to the power of 35〔10×2+9+6〕． 

That is, (eq.26) is a polynomial of  𝑟35 with high degree coefficient 𝛌 and has four micro roots. Thus, 

planets with rings such as the Saturn have a maximum of 31 rings. The real number of rings decreases 

because of roots of complex number, minus roots, equal roots and the swelling of the central core star.  

It is expected to observe and determine the rotation element 𝑎 and the electric charge element e . 

 

 

ｎ -3 -2 -1 0 1 2 3 4 5 6 7 8 

ξδ=＋1   (1 − 0.4) ∙ 2𝑛−1  +  0.4 0.4 0.5 0.6 0.7 1.0 1.6 2.8 5.2 10 20 39 77 

rn / rn-1 1.0 1.1 1.2 1.3 1.4 1.6 1.8 1.9 1.9 2.0 2.0 2.0 

ξδ=―１    (1 + 0.4) ∙ 2𝑛−1 − 0.4 -0.3 -0.2 -0.1 0.3 1.0 2.4 5.2 11 22 44 89 179 

rn / rn-1 0.9 0.7 0.2 -6.0 3.3 2.4 2.2 2.1 2.0 2.0 2.0 2.0 

http://ejje.weblio.jp/content/denominator
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2.6.  The rings with counter rotation direction against the central core star  

𝛿 = ±1 is related to the orbital rotation direction. The coefficients 𝜆 and F contain 𝛿. 

In the case of 𝛿 = −1, there are a few ring stars having the rings with the counter rotation direction 

against the central core star each other really and they have a maximum of 31 rings. 

(eq.24) changes as follow. 

           1 − 𝜆 = [
𝑆 − 2𝑎𝑚(1 + 𝜃) − √4𝑎2𝑚2(1+ 𝜃)2 − 2𝐸4

𝑆 − 2𝑎𝑚(1 + 𝜃) + √4𝑎2𝑚2(1+ 𝜃)2 − 2𝐸4
]

−2𝑎𝑚(1+𝜃)

√4𝑎2𝑚2(1+𝜃)2−2𝐸4

 

               𝐾 = 
𝑆2 − 4𝑎𝑚𝑆(1 + 𝜃) + 2𝐸4

𝑟2
∙

1

(1 − 𝜆)
 

 

2.7   The Fine Ring star  

In the case that the discriminant is 𝛥 ＝𝐸4 − 2𝑎2𝑚2(1 + 𝜃)2  = 0  because the balance of the mass, 

rotation and electric charge elements is exquisite.  

𝑑𝑆

𝑑𝑅
=
1

𝑆
[
2𝐸4

𝑅
+
4𝑎𝛿𝑚𝑆

𝑅
(1 +

3𝑆2

2𝑅4
) +

𝑆2

𝑅
]       𝐸4 = 𝑒2(𝑒2 + 2𝑚2)      

the discriminan      𝛥＝2𝐸4 − 4𝑎2𝑚2 (1 +
3𝑆2

2𝑅4
)

2

= 0                  ①                                                     

 the differenntial equation 
𝑑𝑆

𝑑𝑅
=
1

𝑆
∙
 (𝑆 + √2𝐸2)

2

𝑅
          solving this  equation              

         𝐾 =
𝑆 + √2𝐸2

𝑅
𝐸𝑋𝑃( 

√2𝐸2

𝑆 + √2𝐸2
)            ②              

    the energy stable equation    S = 𝑟√3𝑚𝑟/2                ③ 

 𝑟 , 𝑆 and 𝐾 are unknown, then solve simultaneous equations ①, ②, ③ 

 (27)       𝒓 =
𝟗𝒂𝜹𝒎𝟐

𝟐√𝟐(𝑬𝟐 − √𝟐𝑎𝛿𝒎)
                                                     ( in this case, 𝛿 = +1 )                                              

    𝑚 , 𝑒 and 𝑎 are small constant value, but if it is  𝐸2 − √2𝑎𝛿𝑚 ≃ 0 generally,  𝑟 grows larger. That is, in 

the case of exquisite balance𝑠 𝑎2 ≃  𝑒2(1 +  𝑒2/2 𝑚2), the Super Fine-Ring is formed. In the case that the 

discriminant is 𝛥 ≠ 0  slightly out of alignment, the Fine-Ring is formed and has some components of 

the Saturn’s rings or Solar System planets.   

 

3.   Discussion 

An astronomical task is now solved not by the computer analysis but by the theoretical analysis. 

The Kerr-Newman solution of the Einstein’s equation is considered as follows. The no-hair theorem 

postulates that all black hole solutions of the Einstein-Maxwell equations of gravitation and 

electromagnetism in general relativity can be completely characterized by only three externally 

observable classical parameters: mass, electric charge, and angular momentum. [10], [11]  

In this manner, since this theory is based on the steady state of Kerr-Newman solution in the mature 

galaxies, it cannot be applied to the galaxies which are still young, unstable and transitional. Three 

important equations can be summarized as follows.  

https://ejje.weblio.jp/content/exquisite


11 

(eq.11) is a fundamental differential equation based on the steady state, and it can be applied to the Solar 

system, other planets and rings in the galaxies. There must be many solutions of (eq.11).   

(eq.23) is one of the approximate solutions of (eq.11). Since this is energetically stable, it is applicable to 

the Solar system planets and many of the around 4000 extrasolar planets in the galaxies. However, it is 

not applicable to still young, unstable and transitional planets like comets.  

Also (eq.26) is one of the approximate solutions. This is also energetically stable and applicable to 

Saturn’s rings and some other extrasolar planets’ rings. 

    𝑚 , 𝑒 and 𝑎 are small constant value, but in the case of exquisite balance𝑠 𝑎2 ≃  𝑒2(1 +  𝑒2/2 𝑚2), the 

Super Fine Ring is formed (eq.27).  

  These phenomena are occurred by the sole rotating central core star and also by resonances of some 

stars. 

  

 

Declarations 

Acknowledgments 
Funding: This research did not receive any specific grant from funding agencies in the public, commercial, 
or not-for-profit sectors.  
I thank Dr. Yuko Masaki and Edanz Group (www.edanzediting.com/ac) for editing an early draft of this 
manuscript. 

 
Author Contributions 
F. I. developed the theory and wrote the manuscript. 

 
Competing Interests 
The author declares no competing interests including financial and non-financial interests. 

 

 

References 

1) Internet   Titius–Bode law - Wikipedia   

https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law, accessed in Jan 2018. 

2) Internet   A demonstration of the Titius–Bode law and the number of Saturn’s rings by Newtonian 

methods using the Kerr-Newman solution of the general relativity theory  

https://sayuri-fumitaka.icurus.jp, accessed in Oct 2018. 

3) Internet   Boyer–Lindquist coordinates - Wikipedia 

             https://en.wikipedia.org/wiki/Boyer%E2%80%93Lindquist_coordinates, accessed in Jan 

2018. 

4) Internet   General Relativity, Black Holes and Cosmology, Andrew J S. Hamilton 

http://jila.colorado.edu/~ajsh/astr5770_14/grbook.pdf#search=%27general+relativity%  

2C+black+hole+and+cosmology%27, accessed in Jan 2018. 

 5) Internet   Euler-Lagrange Differential Equation 

             http://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html, accessed in Jan 

2018. 

 6) Internet   Riccati equation - Wikipedia (similar to Japanese) 

             https://en.wikipedia.org/wiki/Riccati_equation, accessed in Jan 2018. 

https://ejje.weblio.jp/content/exquisite
http://www.edanzediting.com/ac
https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law
https://en.wikipedia.org/wiki/Titius%E2%80%93Bode_law
https://en.wikipedia.org/wiki/Boyer%E2%80%93Lindquist_coordinates
https://en.wikipedia.org/wiki/Boyer%E2%80%93Lindquist_coordinates
http://jila.colorado.edu/~ajsh/astr5770_14/grbook.pdf#search=%27general+relativity%
https://en.wikipedia.org/wiki/Riccati_equation
http://ejje.weblio.jp/content/similar
https://en.wikipedia.org/wiki/Riccati_equation


12 

 7) Formeln+Hilfen Höhere Mathematik, 2013 (translated into Japanese) 

           Gerhard Merziger, Günter Mühlbach, Detlef Wille, Thomas Wirth.  

 8) Exploring Black Holes: Introduction to General Relativity, 2000, Edwin F. Taylor, John Archibald Wheeler   

(p272, translated into Japanese by Nobuyoshi Makino) 

9) Winn & Fabrycky (2015). “The Occurrence and Architecture of Exoplanetary Systems”. Annual Review of 

Astronomy and Astrophysics 53: p.409- 

10) Internet  No-hair theorem - Wikipediaen. 

  https://en.wikipedia.org/wiki/No-hair_theorem, accessed in Jan 2018. 

11) Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. 

Freeman. pp. 875–876. ISBN 0716703343. Retrieved 24 January 2013.  

 

Removal submission on 73th birthday and just past 45th wedding anniversary with Ms. Sayuri. 

 

 

http://iss.ndl.go.jp/books?rft.au=Gerhard+Merziger%2C+G%C3%BCnter+M%C3%BChlbach%2C+Detlef+Wille%2C+Thomas+Wirth+%5B%E8%91%97%5D&search_mode=advanced
https://www.amazon.co.jp/Exploring-Black-Holes-Introduction-Relativity/dp/020138423X/ref=pd_lpo_sbs_14_t_0?_encoding=UTF8&psc=1&refRID=4417P68A41PBQ3116V92
https://www.amazon.co.jp/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Edwin+F.Taylor&search-alias=books-jp&field-author=Edwin+F.Taylor&sort=relevancerank
https://www.amazon.co.jp/s/ref=dp_byline_sr_book_2?ie=UTF8&text=John+Archibald+Wheeler&search-alias=books-jp&field-author=John+Archibald+Wheeler&sort=relevancerank
file:///C:/Users/ininu/Desktop/NET投稿論文　%20pdf%20%20%20%20Wrd/No-hair%20theorem%20-%20Wikipedia
https://en.wikipedia.org/wiki/No-hair_theorem
https://en.wikipedia.org/wiki/Charles_W._Misner
https://en.wikipedia.org/wiki/Kip_Thorne
https://en.wikipedia.org/wiki/John_Archibald_Wheeler
http://www.whfreeman.com/Catalog/product/gravitation-firstedition-misner
https://en.wikipedia.org/wiki/W._H._Freeman
https://en.wikipedia.org/wiki/W._H._Freeman
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0716703343

