Further proofs for the 1-photon path Entanglement communications scheme

Remi Cornwall
University of London Alumni Society, Malet Street, London WC1E 7HU
http://webspace.qmul.ac.uk/rocornwall http://ulondon.academia.edu/RemiCornwall

Abstract

The author had previously set out devices to communicate over space-like intervals, with a full proof for the 2photon device and only a partial proof for the 1 -photon device. The 2 -photon device exploits entangled pairs; the 1 -photon device utilises path-entanglement. The 1-photon device is fully analysed, then similarities (and differences) are drawn to the 2 -photon device to show the holes in the No-communications Theorem: the creation operators representing the sum of paths through the device can be mapped outside the device and quantum state reduction/measurement is a space-like operation. Furthermore, global phase factors indicating causal delay are removed by the trace operation anyway.

Keywords: EPR, Bell's Theorem, Aspect-Zbinden Experiments, No-communications theorem

1. Introduction

Interest in space-like communication has been aroused by the EPR paradox, Bell[1-2], then Aspect, Grangier and Roger's[3], then Gisin and Zbinden's[4] experiments. The correlations that exist are much more than classical correlations (as proven by Bell), as they aren't predetermined and happen at the instant of measurement and appear to be a physical effect, though other interpretations exist[5-7]. Cosmic censorship-type theories[8-10] have been shown wanting by the author- indeed the author has corresponded with the said theoreticians, with one open-minded and the others shutting down the discussion. As regards noted experimenters in the field (such as listed by reference above), a similar situation exists and for the open-minded one, this paper hopes to address their concern regarding the 1-photon setup[11], where they admitted modulation but were doubtful on the information being sent over a space-like separation.

We regard this project as being on a more secure footing for the hard experimental facts-of-the-matter[3-4] with related phenomena and the theoretical underpinning killing off the censorship theories[11-13], which show new ground to, perhaps, patch old systems of thought to the new phenomena[14]. This in contrast to experiment lead only claims (as Sagan said, "Extraordinary claims require extraordinary evidence") such as the celebrated 2011 CERN fast neutrino mistake[15], which in that case was down to a delay in a data line. However, this is not to dismiss any marginal, purely experimental claims[16] of superluminal effects, despite the results largely being asserted to be believed (rather than proven by first principles as a contradiction to existing theories or built on robust well acknowledged phenomena with agreed
interpretations). We note that, that experiment[16] would either need to produce an output going faster than Maxwell's equations will permit or for the output to somehow anticipate the inputs. It can probably be ignored, unlike the well-known EPR phenomenon.

The author first looked into a 2-photon communication device [13, 17] (figure 1). This used two photons in HV polarisation in one of the Bell states, which were produced by a process of spontaneous parametric down-conversion. The source was in the middle with one photon being sent to "Alice" where she measured or not and the other photon was sent to "Bob's" interferometer. The act of Alice's measurement was discerned by Bob for the production of a mixed state. If she left her photon alone, Bob would perceive interference. Michael Hall's incredulous initial words (private correspondence) about this were "you don't believe that the state $|H\rangle|V\rangle+|V\rangle|H\rangle$ behaves like $|H\rangle+|V\rangle$ through the interferometer?" His view point, along with Ginacarlo Ghiradi's was that the mere act of looking at one particle in the pair would automatically cause the mixed state, the system wasn't factorisable. However the author found a flaw in the Nocommunications theorem (NCT): one has to consider the joint evolution[13] of both systems (through space and then the interferometer apparatus, say $O_{1} O_{2}\left(\left|H_{1}\right\rangle\left|V_{2}\right\rangle+\left|V_{1}\right\rangle\left|H_{2}\right\rangle\right)$ - indeed entanglement wouldn't even exist if the particles couldn't travel through empty space, no trace operation here) and both acts were unitary; the system stayed entangled even after the interferometer and Bob could discern interference (or not) effects[13]. Interestingly the entanglement of the 2 -photons was swapped to path entanglement of one photon of the pair (Bob's) as it went through the interferometer. It became a simple matter to show by state vector reduction or by using the density matrix form, that the collapse process was space-like, that

A single photon souree (SPS) is incident on a Mach-Zehnder type interferometer with $50: 50$ beamsplitters. Alice's measurements diseerned over space-like separations by Bob at his detectors C (constructive) or D (destructive). Many single photons (a spot from a beam-expander is used with an attenuator on a laser source) are used to represent one bit.

This is the fundamental law of Quantum Mechanics:-

If the paths can be distinguished then add probabilities
else if the paths can't be, then add amplitudes before calculating probabilities
Thus when Alice measures, both of Bob's paths to his detectors become distinguishable.

$$
\left.\begin{array}{l|l}
\text { Alice sends } & \text { Bob receives } \\
\hline \text { Binary 0: No measurement } & \text { Binary 0: Min signal, destructive interference from pure state at D } \\
\text { Binary 1: Measurement } & \text { Binary 1: Max signal from mixed state at D }
\end{array}\right\} \begin{aligned}
& P(\text { Bob few photons, binary 0 Alice no measurement })=\left|\frac{i}{\sqrt{2}}\right|^{2}+\left|\frac{e^{i \theta}}{\sqrt{4}}\right|^{2}+2\left|\frac{i}{\sqrt{2}}\right|\left|\frac{e^{i \theta}}{\sqrt{4}}\right| \cos \theta \\
& =0.5+0.25-\frac{1}{\sqrt{2}} \cos \theta \\
& =0.75 \pm 0.707 \cos \theta \\
& =0.043 \text { minimum } \\
& P(\text { Bob lots of photons, binary 1 Alice measurement })=\left|\frac{i}{\sqrt{2}}\right|^{2}+\left|\frac{i}{\sqrt{4}}\right|^{2} \\
& =0.5+0.25 \\
& =0.75
\end{aligned}
$$

is, there appears to be no dynamics to the process[4] (no wave equation etc.) and all that mattered was the sequence in which the two operations were performed (Alice or Bob measures first).

Next in the said paper[13] the 1-photon system (figure 2) was re-appraised (originally presented in [11]) and stressed that the result obtained did not speak about sub-systems, tensor products and partial traces but just one particle, with the sum of paths/sum of amplitudes approach; this was seen as a further foil to NCT, which was couched in such terms. Hugo Zbinden pointed out (private correspondence) that the device was correct (as by the sum of paths approach) but he didn't think it would allow space-like communication. He is of course correct - the sum of path proof shows only modulation but it doesn't necessarily show spacelike communication. This then is the goal of this paper, to complete the proof and show state reduction/collapse by a similar method to the 2-photon considerations.

The key point to Zbinden's limiting belief was that Alice was close to the interferometer (figure 2) and her influence through measurement, propagated causally through the interferometer to Bob and of course this occurred at the speed of light.

Zbinden's mind-set is limited to the dimensions of the device (although figure 2 implied Alice and Bob were a long way from the interferometer, see figure 3 with its depiction of the wavefunction).

Figure 3 - Alice and Bob at a distance much greater than the dimensions of the device

The proof for the 2-photon setup (figure 1) didn't dwell on the dimensions of the interferometer because it was inferred automatically that both the protagonists were a long way from the source in the
centre, which was equidistant from their detectors/modulators. The analysis popped out fine and if state collapse is to be believed[4] deduced space-like communication.

So in a nutshell, to dispel Zbinden's concerns, our final proof for the 1-photon setup only has to show the creation operators at the first beam-splitter (figure 2) mapped outside the device and that there is a sum of upper (modulated by Alice) and lower path wavefunctions. If the implication of the state collapse procedure is correct, distance has no bearing on the matter.
2. Modelling the whole system considering each output as a sub-system

Let us concentrate on the modified MZ interferometer setup and label the inputs and outputs (figure 4). The letters in brackets means that that port is unused. For a 1:1 beamsplitter, the transfer function leads to the rule for mapping the creation operators to the output[18-20] in the Heisenberg evolution picture, thus:

$$
\hat{a}_{\text {input }}^{\dagger}|0\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2}}\left(\hat{a}_{\text {transmitted }}^{\dagger}+i \hat{a}_{\text {reflected }}^{\dagger}\right)|0\rangle|0\rangle \quad \text { eqn. } 1
$$

And so we can model the path of a single photon through the device:

$$
\begin{align*}
& \hat{a}_{a}^{\dagger}\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle \\
& \rightarrow \frac{1}{\sqrt{2}}\left(\hat{a}_{c}^{\dagger}+i \hat{a}_{d}^{\dagger}\right)\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle \tag{eqn. 2}\\
& \rightarrow \frac{1}{\sqrt{2}}\left(\hat{a}_{c}^{\dagger}+\frac{i e^{i \theta_{1}}}{\sqrt{2}}\left(\hat{a}_{h}^{\dagger}+i \hat{a}_{g}^{\dagger}\right)\right)\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle
\end{align*}
$$

The possible output states are shown as a tensor product. An arbitrary phase has been introduced $e^{i \theta_{1}}$ along the path from d to f, and the output at d becomes the input at f, which then is transformed by eqn. 1 to the outputs h and g.

Continuing in the same vein for output c, off the mirror, through the delay to the last splitter and outputs l and $k\left(e^{i \theta_{2}}\right)$, this is obtained,

$$
\begin{aligned}
& \hat{a}_{a}^{\dagger}|0\rangle_{h}|0\rangle_{k}|0\rangle_{l} \\
& \rightarrow \frac{1}{\sqrt{2}}\left(\frac{i e^{i \theta_{2}}}{\sqrt{2}}\left(\hat{a}_{l}^{\dagger}+i \hat{a}_{k}^{\dagger}\right)+\frac{i e^{i \theta_{1}}}{\sqrt{2}}\left(\hat{a}_{h}^{\dagger}+i \hat{a}_{g}^{\dagger}\right)\right)|0\rangle_{h}|0\rangle_{k}|0\rangle_{l}
\end{aligned}
$$

eqn. 3
And once again, finally, to change the output g to an input at i and then outputs at l and k (introducing another arbitrary phase $e^{i \theta_{3}}$ along the leg g to i. This expression has mapped the creation operators all the way through to the other side of the device:-

Figure 4 - Ports of the 1-photon device enumerated

$$
\begin{align*}
& \hat{a}_{a}^{\dagger}|0\rangle_{h}|0\rangle_{k}|0\rangle_{l} \\
& \rightarrow \frac{1}{\sqrt{2}}\left(\frac{i e^{i \theta_{2}}}{\sqrt{2}}\left(\hat{a}_{l}^{\dagger}+i \hat{a}_{k}^{\dagger}\right)+\frac{i e^{i \theta_{1}}}{\sqrt{2}}\left(\hat{a}_{h}^{\dagger}+\frac{i e^{i \theta_{3}}}{\sqrt{2}}\left(i \hat{a}_{l}^{\dagger}+\hat{a}_{k}^{\dagger}\right)\right)\right)|0\rangle_{h}|0\rangle_{k}|0\rangle_{l} \tag{eqn. 4}
\end{align*}
$$

Figure 5 - The Creation Operators mapped to the other side of the interferometer

Note that the port k is transmitted and l is reflected in the final expression. This also shows the output wavefunction is a sum of upper and lower paths propagating away from the device:

$$
\begin{equation*}
\psi_{\text {output }}=\psi_{\text {lower }}^{\overrightarrow{2}}+\psi_{\text {upper }}^{\overrightarrow{2}} \tag{eqn. 5}
\end{equation*}
$$

Most people would agree that eqn. 4 is sufficient to show not only the modulation scheme of figure 2 but that it is space-like too - the superimposed wavefunctions it represents coming from the upper and lower paths can be any distance away from the source or device (as shown in figure 3).
Nethertheless we shall carry the analysis through to the end by the state vector or the density matrix approach.

Tidying up,

$$
\begin{align*}
|\psi\rangle=\quad & +\frac{1}{2}\left|1_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle \\
& +\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}} e^{i \theta}\right)\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle \tag{eqn. 6}\\
& +\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}} e^{i \theta}\right)\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle
\end{align*}
$$ difference in the expectation values but the path phase difference is shown in the variable θ. The effect of the glass plate delay can be seen at outputs k and l as a favouring of a particular output. The wavefunction moves through space as a superposition of these output states.

The result of the calculation leads to the wavefunction (figure 6) below (which clearly is entangled),

Figure 6 - Unmeasured by Alice case

The act of no measurement by Alice (call it binary 0) gives interference at Bob. The expectation value at Bob's detectors can be found (with the number operator) and tracing out the redundant states, i.e.

Bob's l output:

$$
\begin{aligned}
& \left\langle 1_{l}\right| N^{\dagger}\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}} e^{-i \theta}\right)\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}} e^{i \theta}\right) N\left|1_{l}\right\rangle \\
& =\frac{3}{8}+\frac{\cos \theta}{2 \sqrt{2}} \\
& \text { eqn. } 7 \\
& \begin{array}{l}
\text { cf figure } 2 \text { with differential } \\
\text { output across } l \text { and } k
\end{array}
\end{aligned}
$$

Bob's k output:

$$
\begin{aligned}
& \left\langle 1_{k}\right| N^{\dagger}\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}} e^{-i \theta}\right)\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}} e^{i \theta}\right) N\left|1_{k}\right\rangle \text { eqn. } 8 \\
& =\frac{3}{8}-\frac{\cos \theta}{2 \sqrt{2}} \quad \begin{array}{l}
\text { cf figure } 2 \text { with differential } \\
\text { output across } l \text { and } k
\end{array}
\end{aligned}
$$

Via the density matrix approach we obtain the same result - from eqn. 6, then by analogy,

$$
|\psi\rangle=a\left|1_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle+b\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle+c\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle
$$

eqn. 9
The density matrix is:

$$
\left.\begin{array}{l}
\rho_{h k l}=|\psi\rangle\langle\psi| \\
=\begin{array}{l}
\left|1_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle \\
\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right|\left\langle 0_{k}\right|\left\langle 1_{h}\right|
\end{array} \\
\quad\left\langle 0_{l}\right|\left\langle 1_{k}\right|\left\langle 0_{h}\right|
\end{array} \begin{array}{ccc}
\left\langle 1_{l}\right|\left\langle 0_{k}\right|\left\langle 0_{h}\right| \\
\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle
\end{array} \quad \begin{array}{ccc}
a^{2} & a b^{*} & a c^{*} \\
b a^{*} & b^{2} & b c^{*} \\
c a^{*} & c b^{*} & c^{2}
\end{array}\right] .
$$

$$
\text { eqn. } 10
$$

The partial trace is taken, so let's trace out h first,

The measurement at port l or k is obtained by tracing the other out thus,

$$
\begin{aligned}
& \rho_{k}=\operatorname{Tr}_{l}\left(\rho_{k l}\right)=\left\langle 0_{l}\right| \rho_{k l}\left|0_{l}\right\rangle+\left\langle 1_{l}\right| \rho_{k l}\left|1_{l}\right\rangle \\
& \rho_{l}=\operatorname{Tr}_{k}\left(\rho_{k l}\right)=\left\langle 0_{k}\right| \rho_{k l}\left|0_{k}\right\rangle+\left\langle 1_{k}\right| \rho_{k l}\left|1_{k}\right\rangle \\
& \rho_{k}=\left(a^{2}+b^{2}\right)|0\rangle\langle 0|+c^{2}|1\rangle\langle 1| \\
& =\left(\frac{5}{8}+\frac{\cos \theta}{2 \sqrt{2}}\right)|0\rangle\langle 0|+\left(\frac{3}{8}-\frac{\cos \theta}{2 \sqrt{2}}\right)|1\rangle\langle 1| \\
& \text { or } \\
& \rho_{l}=\left(a^{2}+c^{2}\right)|0\rangle\langle 0|+b^{2}|1\rangle\langle 1| \\
& =\left(\frac{5}{8}-\frac{\cos \theta}{2 \sqrt{2}}\right)|0\rangle\langle 0|+\left(\frac{3}{8}+\frac{\cos \theta}{2 \sqrt{2}}\right)|1\rangle\langle 1|
\end{aligned}
$$

$$
\begin{align*}
& \rho_{k l}=\left\langle 0_{h}\right| \rho_{h k l}\left|0_{h}\right\rangle+\left\langle 1_{h}\right| \rho_{h k l}\left|1_{h}\right\rangle \\
& \Rightarrow \tag{eqn. 11}
\end{align*}
$$

After substitution we can see the same probabilities are calculated, as eqn. 7 and eqn. 8 , but with the explicit representation of the vacuum state interleaving between the times a photon isn't present. Note that the path difference in the phases is represented by $\cos (\theta)$ and that this is constant over the timescale of the measurement.

To illustrate the act of measurement by Alice (binary 1), let us return to eqn. 4 and notice that its form is a sum of paths on the upper and lower legs of figure 2 (eqn. 5) after the final splitter (hence the forward arrow on the subscripts on the creation operators),

The two wavefunctions by eqn. 4 are:

$$
\begin{align*}
\psi_{\text {lower }}^{\rightarrow} & =-\frac{e^{i \theta_{2}}}{2}\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle \tag{eqn. 14}\\
& +\frac{e^{i\left(\theta_{2}+\frac{\pi}{2}\right)}}{2}\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|l_{l}\right\rangle
\end{align*}
$$

$$
\begin{align*}
\psi_{u p p e r}= & \frac{e^{i\left(\theta_{1}+\frac{\pi}{2}\right)}}{2}\left|1_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle \\
& -\frac{e^{i\left(\theta_{l}+\theta_{3}\right)}}{2 \sqrt{2}}\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle \tag{eqn. 15}\\
& -\frac{e^{i\left(\theta_{1}+\theta_{3}+\frac{\pi}{2}\right)}}{2 \sqrt{2}}\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle
\end{align*}
$$

And we'll represent it like this:

$$
\psi_{\text {lower }}^{\vec{~}}=a\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle+b\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle \text { eqn. } 16
$$

$$
\begin{array}{r}
\psi_{\text {upper }}^{\overrightarrow{2}}=c\left|1_{h}\right\rangle\left|0_{k}\right\rangle\left|0_{l}\right\rangle+d\left|0_{h}\right\rangle\left|1_{k}\right\rangle\left|0_{l}\right\rangle+e\left|0_{h}\right\rangle\left|0_{k}\right\rangle\left|1_{l}\right\rangle \\
\text { eqn. } 17
\end{array}
$$

On the latter, we'll trace out system h, to show measurement by Alice:

$$
\operatorname{Tr}_{h}\left(\psi_{\text {upper }}\right)=\left\langle 0_{h}\right| \psi_{\text {upper }}+\left\langle 1_{h}\right| \psi_{\text {upper }}
$$

$$
\begin{equation*}
=c\left|0_{k}\right\rangle\left|0_{l}\right\rangle+d\left|1_{k}\right\rangle\left|0_{l}\right\rangle+e\left|0_{k}\right\rangle\left|1_{l}\right\rangle \tag{eqn. 18}
\end{equation*}
$$

$$
\begin{aligned}
& \psi_{\text {measured }}^{\vec{~}}=\psi_{\text {lower }}^{\vec{~}}+T r_{h}\left(\psi_{\text {upper }}^{\overrightarrow{2}}\right) \\
& \psi_{\text {measured }}^{\vec{~}}=c\left|0_{k}\right\rangle\left|0_{l}\right\rangle+(a+d)\left|1_{k}\right\rangle\left|0_{l}\right\rangle+(b+e)\left|0_{k}\right\rangle\left|1_{l}\right\rangle
\end{aligned}
$$

eqn. 19

And then we construct the density matrix from this (system h is traced out the lower path too but this doesn't introduce the vacuum state, though on the upper path, the vacuum will introduce a random phase between the arms: $e^{i\left(\theta_{1}(t)+\theta_{3}(t)\right)}$ vs. $\left.e^{-i \theta_{2}(t)}\right)$, $\rho_{k l}=$
$\left\langle 0_{l}\right|\left\langle 0_{k}\right|$
$\left|0_{k}\right\rangle\left|0_{l}\right\rangle$
$\left|1_{k}\right\rangle\left|0_{l}\right\rangle$
$\left|0_{k}\right\rangle 1_{k} \mid$
$\left.\left|0_{k}\right\rangle 1_{l}\right\rangle$$\left(\begin{array}{ccc}c^{2} & c(a+d)^{*} & c(b+e)^{*} \mid\left\langle 0_{k}\right| \\ (a+d) c^{*} & |a+d|^{2} & (a+d)(b+e)^{*} \\ (b+e) c^{* *} & (b+e)(a+d)^{*} & |b+e|^{2}\end{array}\right)$
eqn. 20
And then extract ρ_{k} and ρ_{l} again by eqn. 12,

$$
\rho_{k}=\left(\begin{array}{cc}
c^{2} & c(b+e)^{*} \\
(b+e) c^{*} & |b+e|^{2}
\end{array}\right)
$$

and

$$
\rho_{l}=\left(\begin{array}{cc}
c^{2} & c(a+d)^{*} \\
(a+d) c^{*} & |a+d|^{2}
\end{array}\right)
$$

Tracing out for measurement and substitution yields the same result as figure 2,

$$
\begin{align*}
\rho_{k} & =c^{2}|0\rangle\langle 0|+|a+d|^{2}|1\rangle\langle 1| \\
& =\frac{1}{4}|0\rangle\langle 0|+\frac{3}{8}|1\rangle\langle 1| \tag{eqn. 22}
\end{align*}
$$

or

$$
\begin{aligned}
\rho_{l} & =c^{2}|0\rangle\langle 0|+|b+e|^{2}|1\rangle\langle 1| \\
& =\frac{1}{4}|0\rangle\langle 0|+\frac{3}{8}|1\rangle\langle 1|
\end{aligned}
$$

Since $|a+d|^{2}$ or $|b+e|^{2}$ are of this form, respectively:

$$
\begin{aligned}
& -\frac{e^{i \theta_{2}(t)}}{2}-\frac{e^{i\left(\theta_{1}(t)+\theta_{3}(t)\right)}}{2 \sqrt{2}} \text { or } \frac{e^{i\left(\theta_{2}(t)+\frac{\pi}{2}\right)}}{2}-\frac{e^{i\left(\theta_{1}(t)+\theta_{3}(t)+\frac{\pi}{2}\right)}}{2 \sqrt{2}} \\
& \Rightarrow-e^{-i \theta_{2}(t)}\left(\frac{1}{2}+\frac{e^{-i \theta(t)}}{2 \sqrt{2}}\right) \text { or } e^{i\left(\theta_{2}(t)+\frac{\pi}{2}\right)}\left(\frac{1}{2}-\frac{e^{-i \theta(t)}}{2 \sqrt{2}}\right)
\end{aligned}
$$

Whose moduli are respectively,

$$
\frac{1}{4}\left(\frac{3}{2}+\frac{2}{\sqrt{2}} \cos \theta(t)\right) \text { or } \frac{1}{4}\left(\frac{3}{2}-\frac{2}{\sqrt{2}} \cos \theta(t)\right)
$$

Their expectations will complement each other and on average equal $3 / 8$, such that a differential measurement across the ports yields $3 / 4$, in agreement with figure 2 .

There is no contradiction in the expressions for the ρ_{k} and ρ_{l} vacuum states, as it is the same vacuum state at both ports of the beamsplitter's output. Overall, $1 / 4$ would be measured at Alice's ports, $6 / 8$ at Bob's two ports and so probability is conserved.

3. Discussion and conclusion

The sum of paths/sum of amplitudes proof given in earlier papers for the 1 -photon system (figure 2) was criticised as being a necessary but not a necessary and sufficient proof for superluminality - that is in some putative communication scheme, we must have modulation but that doesn't automatically imply superluminality. The proof, some believe, gives the impression of a photon wavefunction moving through the apparatus and traversing each component in a timelike fashion. We beg to differ: eqn. 4 shows the summation of the wavefunctions from the upper and lower legs after they have been through the final beamsplitter. The expectation values at Bob's detectors have a feed-through component from Alice's splitter and her influence collapses her wavefunction, which is summed at Bob outside the apparatus (figure 3).

Is it to be believed that the wave function propagating through the interferometer is really the issue? If Alice's measurement is near to the interferometer, it would just seem that her influence has to propagate through the apparatus until the final beamsplitter. We argue that the interferometer is merely the device for the correct setup of the rays emanating from the source to: go to Alice and then to Bob with some component from Alice. An overall global phase in the wavefunctions (representing the causal delay transiting the apparatus) does not appear in the expectation values and has no effect on it. What is relevant is her coherence or not on Bob's interference pattern.

Quantum Mechanics indicates the measurement/trace process is space-like. The absolute temporal sequence is important:-

Alice measures first (partial trace), Bob performs his trace for one of the outputs.

Alice doesn't measure first, Bob measures for one (or both) of his outputs and observes interference.

What is intriguing is that the density matrix description of the system applies far away from the interferometer (it just sets up the rays from the source) and has no time element (no propagator), only the sequence in which the operations are performed matters. This implies space-like communication and corresponds to
the notion that wavefunction collapse is instantaneous or near instantaneous.

References

1. Bell, J.S., On the Einstein-Podolsky-Rosen Paradox. Physics Letters A, 1964. 1: p. 195-200.
2. Bell, J.S., Foundations of Quantum Mechanics. New York: Academic, 1971. 171.
3. Roger, A. Aspect P. Grangier G., Experimental Realization of Einstein-Podolsky-Rosen-Bohm
Gedankenexperiment: A New Violation of Bell's Inequalities. Phys. Rev. Lett., 1982. 49(91).
4. Zbinden H., Gisin N., Testing the speed of 'spooky action at a distance'. Nature, 2008. 454.
5. Sheehan D. P. Quantum Retrocausation III. 2016. University of San Diego, C.A.: AIP.
6. Everett H., Relative State Formulation of Quantum Mechanics. Reviews of Modern Physics, 1957. 29: p. 454-462.
7. Zurek, W.H., Decoherence and the Transition from Quantum to Classical. Los Alamos Science, 2002. 27.
8. Hall, M.J.W., Imprecise Measurements and Non-Locality in Quantum Mechanics. Physics Letters A, 1987. 125(2,3): p. 89,91.
9. Ghirardi, G. C.; Rimini, A.; Weber, T., A General Argument against Superluminal Transmission through the Quantum Mechanical Measurement Process. Lettere al Nuovo Cimento, 1980, 8th March. 27(10): p. 293-298.
10. Ghirardi, G. C.; Rimini, A.; Weber, T., Experiments of the EPR Type Involving CP-Violation do not allow Faster-thanLight Communications Between Distant Observers. Europhys. Lett., 1988. 6(2): p. 95-100.
11. Cornwall, R.O., Superluminal Signalling by Path Entanglement. 2015
(https://www.academia.edu/12881902/Disproof_of_the_ No-communication_Theorem_by_Decoherence_Theory).
12. Cornwall R. O., Disproof of the Nocommunication Theorem by Decoherence Theory. 2015
(https://www.academia.edu/12881902/Disproof_of_the_ No-communication_Theorem_by_Decoherence_Theory).
13. Cornwall R. O., The misuse of the Nocommunication Theorem. 2016
(https://www.academia.edu/29296558/The_misuse_of_th e_No-communication_Theorem).
14. Cornwall, R.O., A Mechanism for the effects of Relativity 2014
(https://www.academia.edu/11587819/A_Mechanism_for _the_effects_of_Relativity).
15. Wikipedia. Faster-than-light neutrino anomaly. 2019; Available from: https://en.wikipedia.org/wiki/Faster-thanlight_neutrino_anomaly.
16. Lett, Ryan T. Glasser; Ulrich Vogl; Paul D., Stimulated generation of superluminal light pulses via four-wave mixing. Arxiv preprint, 2018 (https://arxiv.org/abs/1204.0810).
17. Cornwall, R.O., Secure Quantum Communication and Superluminal Signalling on the Bell Channel. Infinite Energy, 2006. 69 (https://www.academia.edu/11587674/Secure_Quantum_ Communication_and_Superluminal_Signalling_on_the_B ell_Channel http://vixra.org/abs/1311.0074).
18. Ralph, Hans-A Bachor; Timothy C., A Guide to Experiments in Quantum Optics. 2004: Wiley-VCH.
19. Zeilinger, A., General properties of lossless beam splitters in interferometry. Am. J. Phys., 1981. 49(9).
20. Gerry, Christopher; Knight, Peter, Introductory Quantum Optics. 2004: CUP.
