Energies of Atomic Electrons from Krypton to Fermium

Daniele Sasso

Abstract

The electronic configuration of xenon regarding more external sub-levels (2+6),2 gives stability and inertia to xenon atom and it allows to understand the behaviour of subsequent chemical elements represented by transition elements including rare earths and actinides. The same thing happens for radon atom that has in external sub-levels the configuration $(8+2), 6$. The prime difficulty in calculating energies of atomic electrons is no doubt the appraisal of effective shielding of internal electrons with regard to external electrons and it is important because that shielding reduces the size of nuclear charge that has to be considered in calculation.

1. Introduction

In a preceding article ${ }^{[1]}$ we have calculated energies of electrons inside atom starting from hydrogen $(Z=1)$ to krypton $(Z=36)$. In this article we intend to continue this work with regard to atoms of subsequent chemical elements to fermium. Nevertheless while for preceding chemical elements we calculated energies of all electrons inside atom, for subsequent elements we will do the calculation only for electrons that are in more external sub-levels because from a physico-chemical viewpoint these electrons are more revealing.
The preceding calculation ${ }^{[1]}$ has demonstrated energies of electrons inside atoms are very regular and they increase, in negative value, for electrons that are in more external sublevels. Near nucleus, and hence for more internal electrons, energies are smaller.
Like this for instance, krypton has an energy of about -17000 eV for the two more internal electrons (sub-level 1s) and of about -105 eV for the eight more external electrons (4s). Therefore for rubidium atom ($\mathrm{Z}=37$), that is the first chemical element after krypton, we will calculate only energy levels of electrons that are into the energy level $n=4$.
To that end we make use of the deterministic quantum model of atom ${ }^{[1][2][3][4]}$:
$E_{n k j s}=\frac{-2 Z^{2} R h c}{n^{2}}\left(1-\frac{k^{2}}{2 n^{2}}\right)\left(1-\frac{1}{2} \frac{\alpha^{2} Z^{2}(j-s)^{2}}{n^{4}}\right)$
in which
$n=1,2, \ldots \ldots . \quad$ quantum number of level
$\mathrm{k}=1,2, \ldots \ldots . \mathrm{n} \quad$ quantum number of sub-level
$j= \pm 1, \pm 2, \ldots \pm k \quad$ quantum number of orbital momentum
$s=|\underline{j}| \quad$ quantum number of spin that is always positive because the negative sign of electron spin has been considered in (1).

2. Energy levels of atomic electrons of rubidium atom $\mathbf{R b}(Z=37)$

Rubidium atom has an atomic number $Z=37$, therefore it has 37 electrons that are distributed in energy levels according the following configuration:

$1 s$	2 electrons
$2 s$	4 electrons
$2 p$	4 electrons
$3 s$	6 electrons
$3 p$	6 electrons
$3 d$	6 electrons
$4 s$	8 electrons
$4 p$	1 electron

We will calculate for rubidium only energies of electrons $4 s$ and $4 p$, even if in actuality only electron $4 p$ is revealing in order to understand the chemical behaviour of this atom in bonds with other atoms.
Energies of electrons 4 s have to be calculated considering that these electrons are shielded by more internal complete levels for which the nuclear effective charge is $Z=9$.

$E_{4 s 1}=-133.713233589 \mathrm{eV}$	with $n=4, k=1, j=1, s=1 / 2$	$Z=9$
$E_{4 s 2}=-133.712388735 \mathrm{eV}$	with $n=4, k=1, j=2, s=1$	$Z=9$
$E_{4 s 3}=-133.710980642 \mathrm{eV}$	with $n=4, k=1, j=3, s=3 / 2$	$Z=9$
$E_{4 s 4}=-133.709009315 \mathrm{eV}$	with $n=4, k=1, j=4, s=2$	$Z=9$
$E_{4 s 5}=-133.710980642 \mathrm{eV}$	with $n=4, k=1, j=-1, s=1 / 2$	$Z=9$
$E_{4 s 6}=-133.703376947 \mathrm{eV}$	with $n=4, k=1, j=-2, s=1$	$Z=9$
$E_{4 s 7}=-133.690704119 \mathrm{eV}$	with $n=4, k=1, j=-3, s=3 / 2$	$Z=9$
$E_{4 s 8}=-133.672962162 \mathrm{eV}$	with $n=4, k=1, j=-4, s=2$	$Z=9$

The unique electron of the second sub-level p of the fourth level $n=4$ is shielded also by 8 electrons of the complete sub-level 4 s for which the effective nuclear charge is $Z=1$ and consequently its energy is
$E_{4 p 1}=-1.49103079567 \mathrm{eV} \quad$ with $n=4, k=2, j=1, s=1 / 2 \quad Z=1$
Like all atoms that have only one electron into the most external level, also rubidium has a smallest value of energy for the most external electron and hence a smallest value of ionization energy.

3. Energy levels of atomic electrons of strontium atom $\mathrm{Sr}(\mathrm{Z}=38)$

In concordance with the preceding consideration we will calculate only energy levels of electrons that are into the second sub-level p of the level $n=4$. Hence

$E_{4 p 1}=-5.96412318353 \mathrm{eV}$	with $n=4, k=2, j=1, s=1 / 2$	$Z=2$
$E_{4 p 2}=-5.96412271839 \mathrm{eV}$	with $n=4, k=2, j=2, s=1$	$Z=2$

4. Energy levels of atomic electrons of yttrium atom $Y(Z=39)$

Energies of electrons of yttrium in the external sub-level p of the level $n=4$ are:

$E_{4 p 1}=-13.4192743716 \mathrm{eV}$	with $n=4, k=2, j=1, s=1 / 2$	$Z=3$
$E_{4 p 2}=-13.4192649506 \mathrm{eV}$	with $n=4, k=2, j=2, s=1$	$Z=3$
$E_{4 p 3}=-13.419249249 \mathrm{eV}$	with $n=4, k=2, j=3, s=3 / 2$	$Z=3$

5. Energy levels of atomic electrons of zirconium atom $\mathrm{Zr}(\mathrm{Z}=40)$

Energies of electrons of zirconium in the external sub-level p of the level $n=4$ are:

$E_{4 p 1}=-23.8564834298 \mathrm{eV}$	with $n=4, k=2, j=1, s=1 / 2$	$Z=4$
$E_{4 p 2}=-23.856453655 \mathrm{eV}$	with $n=4, k=2, j=2, s=1$	$Z=4$
$E_{4 p 3}=-23.8564040302 \mathrm{eV}$	with $n=4, k=2, j=3, s=3 / 2$	$Z=4$
$E_{4 p 4}=-23.856334556 \mathrm{eV}$	with $n=4, k=2, j=4, s=2$	$Z=4$

6. Energy levels of atomic electrons of niobium atom $\mathrm{Nb}(Z=41)$

Energies of electrons of niobium in the external sub-level p of the level $n=4$ are:
$E_{4 p 1}=-37.2757466355 \mathrm{eV}$
$E_{4 p 2}=-37.2756739435 \mathrm{eV}$
$E_{4 p 3}=-37.2755527896 \mathrm{eV}$
with $n=4, k=2, j=1, s=1 / 2 \quad Z=5$
with $n=4, k=2, j=2, s=1 \quad Z=5$
with $n=4, k=2, j=3, s=3 / 2 \quad Z=5$

$E_{4 p 4}=-37.2753831741 e V$	with $n=4, k=2, j=4, s=2$	$Z=5$
$E_{4 p 5}=-37.2755527896 \mathrm{eV}$	with $n=4, k=2, j=-1, s=1 / 2$	$Z=5$

7. Energy levels of atomic electrons of molybdenum atom Mo (Z=42)

Energies of electrons of molybdenium in the external sub-level p of the level $n=4$ are:
$E_{4 p 1}=-53.6770598032 \mathrm{eV} \quad$ with $n=4, k=2, j=1, s=1 / 2 \quad Z=6$
$E_{4 p 2}=-53.676909068 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=2, \mathrm{~s}=1 \quad \mathrm{Z}=6$
$E_{4 p 3}=-53.6766578436 \mathrm{eV} \quad$ with $n=4, k=2, j=3, s=3 / 2 \quad Z=6$
$E_{4 p 4}=-53.6763061288 \mathrm{eV} \quad$ with $n=4, k=2, j=4, s=2 \quad Z=6$
$\mathrm{E}_{4 p 5}=-53.6766578436 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=-1, \mathrm{~s}=1 / 2 \quad \mathrm{Z}=6$
$E_{4 p 6}=-53.6753012303 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=-2, \mathrm{~s}=1 \quad \mathrm{Z}=6$

8. Energy levels of atomic electrons of technetium atom Tc (Z=43)

Energies of electrons of technetium in the external sub-level p of the level $n=4$ are:

$E_{4 p 1}=-73.0604178127 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$\mathrm{E}_{4 \mathrm{p} 2}=-73.0601385582 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=7$

$E_{4 p 3}=-73.0596731335 \mathrm{eV} \quad$ with $n=4, k=2, j=3, s=3 / 2 \quad Z=7$
$E_{4 p 4}=-73.0590215391 \mathrm{eV} \quad$ with $n=4, k=2, j=4, s=2 \quad Z=7$
$E_{4 p 5}=-73.0596731335 \mathrm{eV} \quad$ with $n=4, k=2, j=-1, s=1 / 2 \quad Z=7$
$E_{4 p 6}=-73.0571598402 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=-2, \mathrm{~s}=1 \quad \mathrm{Z}=7$
$E_{4 p 7}=-73.0529710176 \mathrm{eV}$
with $n=4, k=2, j=-3, s=3 / 2 \quad Z=7$

9. Energy levels of atomic electrons of ruthenium atom $\mathrm{Ru}(\mathrm{Z}=44)$

Energies of electrons of ruthenium in the external sub-level p of the level $n=4$ are:

$E_{4 p 1}=-95.4258146194 \mathrm{eV}$	with $n=4, k=2, j=1, s=1 / 2$	$Z=8$
$E_{4 p 2}=-95.4253382232 \mathrm{eV}$	with $n=4, k=2, j=2, s=1$	$Z=8$
$E_{4 p 3}=-95.4245442279 \mathrm{eV}$	with $n=4, k=2, j=3, s=3 / 2$	$Z=8$
$E_{4 p 4}=-95.4234326372 \mathrm{eV}$	with $n=4, k=2, j=4, s=2$	$Z=8$
$E_{4 p 5}=-95.4245442279 \mathrm{eV}$	with $n=4, k=2, j=-1, s=1 / 2$	$Z=8$
$E_{4 p 66}=-95.4202566615 \mathrm{eV}$	with $n=4, k=2, j=-2, s=1$	$Z=8$
$E_{4 p 7}=-95.4131107155 \mathrm{eV}$	with $n=4, k=2, j=-3, s=3 / 2$	$Z=8$
$E_{4 p 8}=-95.4031063903 \mathrm{eV}$	with $n=4, k=2, j=-4, s=2$	$Z=8$

10. Energy levels of atomic electrons of rhodium atom $R h(Z=45)$

The sub-level $4 p$ is complete in ruthenium and with rhodium the sub-level $d(k=3)$ of the level $n=4$ begins to become full. The completion of the sub-level $4 p$ doesn't involve particular consequences for rhodium atom.
Energies of electrons of rhodium in the sub-level p and in the sub-level d of the level $\mathrm{n}=4$ are:
sub-level $4 p, k=2$
$\mathrm{E}_{4 \mathrm{p} 1}=-120.773243242 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2 \quad \mathrm{Z}=9$
$E_{4 p 2}=-120.772480147 \mathrm{eV} \quad$ with $n=4, k=2, j=2, s=1 \quad Z=9$
$E_{4 p 3}=-120.771208322 \mathrm{eV} \quad$ with $n=4, k=2, j=3, s=3 / 2 \quad Z=9$
$E_{4 p 4}=-120.769427768 \mathrm{eV}$
$E_{4 p 5}=-120.771208322 \mathrm{eV}$
with $n=4, k=2, j=4, s=2 \quad Z=9$
with $n=4, k=2, j=-1, s=1 / 2 \quad Z=9$
$E_{4 p 6}=-120.764340468 \mathrm{eV} \quad$ with $n=4, k=2, j=-2, s=1 \quad Z=9$
$E_{4 p 7}=-120.752894041 \mathrm{eV}$
with $n=4, k=2, j=-3, s=3 / 2 \quad Z=9$
$E_{4 p 8}=-120.73686905 \mathrm{eV}$
with $\mathrm{n}=4, \mathrm{k}=2, \mathrm{j}=-4, \mathrm{~s}=2 \quad \mathrm{Z}=9$
sub-level 4d, k=3

11. Energy levels of atomic electrons of palladium atom $\operatorname{Pd}(Z=46)$

Energies of electrons of palladium in the sub-levels p and d of the level $n=4$ are:
sub-level $4 p, k=2$
$E_{4 p 1}=-149.102695773 \mathrm{eV} \quad$ with $n=4, k=2, j=1, s=1 / 2 \quad Z=10$
$E_{4 p 2}=-149.101532697 \mathrm{eV} \quad$ with $n=4, k=2, j=2, s=1 \quad Z=10$
$E_{4 p 3}=-149.099594234 \mathrm{eV} \quad$ with $n=4, k=2, j=3, s=3 / 2 \quad Z=10$
$E_{4 p 4}=-149.096880388 \mathrm{eV} \quad$ with $n=4, k=2, j=4, s=2 \quad Z=10$
$E_{4 p 5}=-149.099594234 \mathrm{eV} \quad$ with $n=4, k=2, j=-1, s=1 / 2 \quad Z=10$
$E_{4 p 6}=-149.08912654 \mathrm{eV}$
with $n=4, k=2, j=-2, s=1 \quad Z=10$
$E_{4 p 7}=-149.071680382 \mathrm{eV}$
$E_{4 p 8}=-149.047255759 \mathrm{eV}$
with $n=4, k=2, j=-3, s=3 / 2 \quad Z=10$
with $n=4, k=2, j=-4, s=2 \quad Z=10$
sub-level 4d, k=3
$\begin{array}{lll}E_{4 d 1}=-122.477214385 \mathrm{eV} & \text { with } n=4, k=3, j=1, s=1 / 2 & Z=10 \\ E_{4 d 2}=-122.476259001 \mathrm{eV} & \text { with } n=4, k=3, j=2, s=1 & Z=10\end{array}$
With the first 2 electrons of the sub-level $d(n=4, k=3)$ of palladium, the period that begins with rubidium $R b(Z=37)$ is finished and the new period begins with silver.

12. Energy levels of atomic electrons of silver atom $\mathrm{Ag}(\mathrm{Z}=47)$

Energies of electrons of silver in the sub-levels p and d of the level $n=4$ are:
sub-level $4 p, k=2$
$E_{4 p 1}=-180.414163374 \mathrm{eV} \quad$ with $n=4, k=2, j=1, s=1 / 2 \quad Z=11$
$E_{4 p 2}=-180.412460512 \mathrm{eV} \quad$ with $n=4, k=2, j=2, s=1 \quad Z=11$

$E_{4 p 3}=-180.40962241 \mathrm{eV}$	with $n=4, k=2, j=3, s=3 / 2$	$Z=11$
$E_{4 p 4}=-180.405649067 \mathrm{eV}$	with $n=4, k=2, j=4, s=2$	$Z=11$
$E_{4 p 5}=-180.40962241 \mathrm{eV}$	with $n=4, k=2, j=-1, s=1 / 2$	$Z=11$
$E_{4 p 6}=-180.394296657 \mathrm{eV}$	with $n=4, k=2, j=-2, s=1$	$Z=11$
$E_{4 p 7}=-180.368753737 \mathrm{eV}$	with $n=4, k=2, j=-3, s=3 / 2$	$Z=11$
$E_{4 p 8}=-180.332993649 \mathrm{eV}$	with $n=4, k=2, j=-4, s=2$	$Z=11$
sub-level $4 d, k=3$		
$E_{4 d 1}=-122.477214385 \mathrm{eV}$	with $n=4, k=3, j=1, s=1 / 2$	$Z=11$
$E_{4 d 2}=-122.476259001 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=11$

The electron 4d3 of silver is shielded by preceding 46 electrons and it has energy
$E_{4 d 3}=-1.22477504165 \mathrm{eV}$
with $n=4, k=3, j=3, s=3 / 2$
$Z=1$
12. Energy levels of atomic electrons of cadmium atom $\mathrm{Cd}(\mathrm{Z}=48)$

For cadmium we consider only energies of electrons of the sub-level $d(k=3)$:

$E_{4 d 1}=-122.477214385 \mathrm{eV}$	with $n=4, k=3, j=1, s=1 / 2$	$Z=12$
$E_{4 d 2}=-122.476259001 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=12$

Like for silver, also the two subsequent electrons of cadmium are shielded by preceding 46 electrons. Hence energies of these two electrons are:
$E_{4 d 3}=-4.899096728 \mathrm{eV}$
with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=3, \mathrm{~s}=3 / 2$
Z=2
$E_{4 d 4}=-4.89909316125 \mathrm{eV}$
with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=4, \mathrm{~s}=2$
Z=2

13. Energy levels of atomic electrons of indium atom $\ln (Z=49)$

Also for indium we consider only energies of electrons of the sub-level d:
$E_{4 d 1}=-206.986120953 e V \quad$ with $n=4, k=3, j=1, s=1 / 2 \quad Z=13$
$E_{4 d 2}=-206.98339228 \mathrm{eV} \quad$ with $n=4, k=3, j=2, s=1 \quad Z=13$

Three subsequent electrons of indium are shielded by preceding 46 electrons, for which energies of these electrons are:

$E_{4 d 3}=-11.0229547402 \mathrm{eV}$	with $n=4, k=3, j=3, s=3 / 2$	$Z=3$
$E_{4 d 4}=-11.0229366834 \mathrm{eV}$	with $n=4, k=3, j=4, s=2$	$Z=3$
$E_{4 d 5}=-11.0229547402 \mathrm{eV}$	with $n=4, k=3, j=-1, s=1 / 2$	$Z=3$

14. Energy levels of atomic electrons of tin atom $\mathrm{Sn}(\mathrm{Z}=50)$

Also for tin we consider only energies of electrons of the sub-level d:

$E_{4 d 1}=-240.054740978 ~ e V$	with $n=4, k=3, j=1, s=1 / 2$	$Z=14$
$E_{4 d 2}=-240.051070771 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=14$

The subsequent electrons of tin are shilded by preceding 46 electrons, for which:

$E_{4 d 3}=-19.5963318821 e V$	with $n=4, k=3, j=3, s=3 / 2$	$Z=4$
$E_{4 d 4}=-19.5962748137 \mathrm{eV}$	with $n=4, k=3, j=4, s=2$	$Z=4$
$E_{4 d 5}=-19.5963318821 \mathrm{eV}$	with $n=4, k=3, j=-1, s=1 / 2$	$Z=4$
$E_{4 d 6}=-19.5963869122 \mathrm{eV}$	with $n=4, k=3, j=-2, s=1$	$Z=4$

15. Energy levels of atomic electrons of antimony atom $\mathrm{Sb}(\mathrm{Z}=51)$

Energies of electrons of the sub-level $d(k=3)$:

$E_{4 d 1}=-275.572836696 e V$	with $n=4, k=3, j=1, s=1 / 2$	$Z=15$
$E_{4 d 2}=-275.568000057 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=15$

The subsequent 5 electrons of antimony are shielded by preceding 46 electrons, for wich energies of these electrons are:
$E_{4 d 3}=-30.6192040771 \mathrm{eV} \quad$ with $n=4, k=3, j=3, s=3 / 2 \quad Z=5$

$E_{4 d 4}=-30.6190647492 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, j=4, \mathrm{~s}=2$	$\mathrm{Z}=5$
$E_{4 \mathrm{~d} 5}=-30.6192040771 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, j=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=5$
$E_{4 \mathrm{~d} 6}=-30.6186666729 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=-2, \mathrm{~s}=1$	$\mathrm{Z}=5$
$E_{4 \mathrm{~d} 7}=-30.6177709996 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=-3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=5$

16. Energy levels of atomic electrons of tellurium atom $\mathrm{Te}(Z=52)$

Energies of electrons of the sub-level d:

$E_{4 d 1}=-313.54039702 \mathrm{eV}$	with $n=4, k=3, j=1, s=1 / 2$	$Z=16$
$E_{4 d 2}=-313.534135808 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=16$

The subsequent 6 electrons of tellurium are shielded by preceding 46 electrons, for which energies of these electrons are:
$E_{4 d 3}=-44.0915403716 \mathrm{eV} \quad$ with $n=4, k=3, j=3, s=3 / 2 \quad Z=6$
$E_{4 d 4}=-44.0912514629 \mathrm{eV} \quad$ with $n=4, k=3, j=4, s=2 \quad Z=6$
$E_{4 d 5}=-44.0915403716 \mathrm{eV} \quad$ with $n=4, k=3, j=-1, s=1 / 2 \quad Z=6$
$E_{4 d 6}=-44.0904260108 \mathrm{eV} \quad$ with $n=4, k=3, j=-2, s=1 \quad Z=6$
$E_{4 d 7}=-44.0885687427 \mathrm{eV} \quad$ with $n=4, k=3, j=-3, s=3 / 2 \quad Z=6$
$E_{4 d 8}=-44.085968567 \mathrm{eV} \quad$ with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=-4, \mathrm{~s}=2 \quad \mathrm{Z}=6$
17. Energy levels of atomic electrons of iodine atom I (Z=53)

Energies of electrons of the sub-level d:
$\begin{array}{lll}E_{4 d 1}=-353.957410105 \mathrm{eV} & \text { with } n=4, k=3, j=1, s=1 / 2 & Z=17 \\ E_{4 d 2}=-353.949430634 \mathrm{eV} & \text { with } n=4, k=3, j=2, s=1 & Z=17\end{array}$

Subsequent 7 electrons of iodine are shielded by 46 electrons. 6 of these 7 electrons complete the sub-level $d(k=3)$ of the level $n=4$ and the seventh electron occupies the first quantum state of the sub-level $k=4$ of the level $n=4$. Energies of these electrons are:

$E_{4 d 3}=-60.0133029311 \mathrm{eV}$	with $n=4, k=3, j=3, s=3 / 2$	$\mathrm{Z}=7$
$E_{4 d 4}=-60.0127676926 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=7$
$E_{4 d 5}=-60.0133029311 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$E_{4 d 6}=-60.0112384404 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=3, \mathrm{j}=-2, \mathrm{~s}=1$	$\mathrm{Z}=7$
$\mathrm{E}_{4 \mathrm{~d} 7}=-60.0077976213 \mathrm{eV}$	with $n=4, k=3, j=-3, s=3 / 2$	$\mathrm{Z}=7$
$E_{4 d 8}=-60.0029804751 \mathrm{eV}$	with $n=4, k=3, j=-4, s=2$	$\mathrm{Z}=7$
sub-level 4f		
$E_{4 f 1}=-41.7488101791 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$

18. Energy levels of atomic electrons of xenon atom $\mathrm{Xe} \quad(Z=54)$

Energies of electrons of the sub-level $d(k=3)$ of xenon:
$E_{4 d 1}=-396.823863343 \mathrm{eV} \quad$ with $n=4, k=3, j=1, s=1 / 2 \quad Z=18$
$E_{4 d 2}=-396.813834095 \mathrm{eV} \quad$ with $n=4, k=3, j=2, s=1 \quad Z=18$
The remaining 8 electrons of xenon are shielded by 46 electrons like preceding elements. 6 of these electrons complete the sub-level 4d and the remaining 2 electrons occupy the first two quantum states of the sub-level 4 f . Energies of these electrons are:
$E_{4 d 3}=-78.3844470446 \mathrm{eV}$
$E_{4 d 4}=-78.383533952 \mathrm{eV}$
$E_{4 d 5}=-78.3844470446 \mathrm{eV}$
$E_{4 d 6}=-78.3809251149 \mathrm{eV}$
$E_{4 d 7}=-78.3750552299 \mathrm{eV}$
$E_{4 d 8}=-78.3668373913 \mathrm{eV}$
sub-level $4 f$
$E_{4 f 1}=-41.7488101791 \mathrm{eV}$
with $n=4, k=4, j=1, s=1 / 2$
Z=8

The same situation repeats for xenon like for argon. In fact the configuration (6+2) of external electrons of argon in the level $n=3$ gives stability and inertia to atom that belongs to the group of inert elements. Similarly for xenon, the analogus configuration (6+2) of external electrons, 6 electrons in the sublevel 4d and 2 electrons in the sublevel 4 f , gives stability to xenon atom that similarly belongs to the group of inert elements.

19. Energy levels of atomic electrons of caesium atom $C s \quad(Z=55)$

Inert properties of xenon atom involve the subsequent chemical element, represented by caesium ($Z=55$), has the same behaviour for the last external electron as for potassium. That is electron with quantum state 4 f 3 is shielded by $(Z-1)$ electrons.
For the last time we calculate energies of electrons of the sub-level 4d, afterwards we will calculate only energies of electrons of the sub-level 4 f .
Energies of electrons of the sub-level $d(k=3)$:

$E_{4 d 1}=-442.139743354 \mathrm{eV}$	with $n=4, k=3, j=1, s=1 / 2$	$Z=19$
$E_{4 d 2}=-442.127292683 \mathrm{eV}$	with $n=4, k=3, j=2, s=1$	$Z=19$

The subsequent electrons of caesium are shielded by preceding 46 electrons. Energies of these electrons are:

$E_{4 d 3}=-99.2049211218 \mathrm{eV}$	with $n=4, k=3, j=3, s=3 / 2$	$Z=9$
$E_{4 d 4}=-99.2034585236 \mathrm{eV}$	with $n=4, k=3, j=4, s=2$	$Z=9$
$E_{4 d 5}=-99.2049211218 \mathrm{eV}$	with $n=4, k=3, j=-1, s=1 / 2$	$Z=9$
$E_{4 d 6}=-99.1992796711 \mathrm{eV}$	with $n=4, k=3, j=-2, s=1$	$Z=9$
$E_{4 d 7}=-99.1898772501 \mathrm{eV}$	with $n=4, k=3, j=-3, s=3 / 2$	$Z=9$
$E_{4 d 8}=-99.1767138617 \mathrm{eV}$	with $n=4, k=3, j=-4, s=2$	$Z=9$

sub-level 4 f

$E_{4 f 1}=-69.013281853 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=9$
$E_{4 i 2}=-69.0128457994 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=9$

The last electron of caesium is shielded by preceding 54 electrons and it has energy

20. Energy levels of atomic electrons of barium atom $\mathrm{Ba}(\mathrm{Z}=56$)

Considering the first two electrons of the sub-level $4 f$ are shielded by preceding 46 electrons, their energies are:

$E_{4 f 1}=-85.2015404427 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=10$
$E_{4 \mathrm{f} 2}=-85.1982173651 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=10$

The last two external electrons of barium, in the sub-level 4f, are shielded by preceding 54 electrons, their energies are:

$E_{443}=-3.40806728901 \mathrm{eV}$	with $n=4, k=4, j=3, s=3 / 2$	$Z=2$
$E_{444}=-3.40806480766 \mathrm{eV}$	with $n=4, k=4, j=4, s=2$	$Z=2$

21. Energy levels of atomic electrons of lanthanum atom La (Z=57)

Sub-level 4f

$E_{4 f 1}=-103.093807642 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=11$
$E_{4 f 2}=-103.092834578 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=11$
$E_{4 f 3}=-7.66814242811 \mathrm{eV}$	with $n=4, k=4, j=3, s=3 / 2$	$Z=3$
$E_{444}=-7.66812986679 \mathrm{eV}$	with $n=4, k=4, j=4, s=2$	$Z=3$
$E_{4 f 5}=-7.66814242811 \mathrm{eV}$	with $n=4, k=4, j=-1, s=1 / 2$	$Z=3$

22. Energy levels of atomic electrons of cerium atom $\mathrm{Ce}(Z=58)$

Sub-level 4 f

$E_{4 f 1}=-122.69007787 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=12$
$E_{4+2}=-122.688699723 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=12$

$E_{4 i 3}=-13.6322308744 \mathrm{eV}$	with $n=4, k=4, j=3, s=3 / 2$	$Z=4$
$E_{444}=-13.6321911747 \mathrm{eV}$	with $n=4, k=4, j=4, s=2$	$Z=4$
$E_{4+5}=-13.6322308744 \mathrm{eV}$	with $n=4, k=4, j=-1, s=1 / 2$	$Z=4$
$E_{466}=-13.6320777468 \mathrm{eV}$	with $n=4, k=4, j=-2, s=1$	$Z=4$

23. Energy levels of atomic electrons of praseodymium atom $\operatorname{Pr}(Z=59)$

Sub-level 4f

$E_{4 f 1}=-143.9903455012 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=13$
$E_{4+2}=-143.9884466803 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=13$

$E_{4 f 3}=-21.3003158798 \mathrm{eV} \quad$ with $n=4, k=4, j=3, s=3 / 2 \quad Z=5$
$E_{4 f 4}=-21.3002189567 \mathrm{eV} \quad$ with $n=4, k=4, j=4, s=2 \quad Z=5$
$E_{455}=-21.3003158798 \mathrm{eV} \quad$ with $n=4, k=4, j=-1, s=1 / 2 \quad Z=5$
$E_{4 f 6}=-21.2999420335 \mathrm{eV} \quad$ with $n=4, k=4, j=-2, s=1 \quad Z=5$
$E_{4 i 7}=-21.2993189564 \mathrm{eV}$
with $n=4, k=4, j=-3, s=3 / 2$
$Z=5$
24. Energy levels of atomic electrons of neodymium atom $\mathrm{Nd}(\mathrm{Z}=60)$

Sub-level 4f

$E_{4 f 1}=-166.99460242 \mathrm{eV}$	with $n=4, k=4, j=1, s=1 / 2$	$Z=14$
$E_{442}=-166.992049233 \mathrm{eV}$	with $n=4, k=4, j=2, s=1$	$Z=14$
$E_{443}=-30.6723759107 \mathrm{eV}$	with $n=4, k=4, j=3, s=3 / 2$	$Z=6$
$E_{444}=-30.6721749308 \mathrm{eV}$	with $n=4, k=4, j=4, s=2$	$Z=6$
$E_{4 f 5}=-30.6723759107 \mathrm{eV}$	with $n=4, k=4, j=-1, s=1 / 2$	$Z=6$

$E_{466}=-30.6716007031 \mathrm{eV}$	with $n=4, k=4, j=-2, s=1$	$Z=6$
$E_{4 \uparrow 7}=-30.6703086905 \mathrm{eV}$	with $n=4, k=4, j=-3, s=3 / 2$	$Z=6$
$E_{448}=-30.6684998726 \mathrm{eV}$	with $n=4, k=4, j=-4, s=2$	$Z=6$

Neodymium atom isn't an atom with particular properties of inertia and in fact in the scientific literature it isn't considered an inert element, nevertheless we can observe in neodymium atom the level $n=4$ is full of electrons in all its sub-levels $4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}$ and therefore for subsequent atoms with $Z>60$, the shielding of external electrons in the level $\mathrm{n}=5$ is performed by preceding 60 electrons.

25. Energy levels of atomic electrons of promethium atom Pm (Z=61)

For promethium atom we calculate still energies of the sub-level 4 . For subsequent atoms we will calculate only energies of electrons in the sub-level $n=5$.

Sub-level 4f

$E_{4 f 1}=-191.702842919 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=15$
$\mathrm{E}_{4 \mathrm{f} 2}=-191.699478302 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=15$

$E_{4 \uparrow 3}=-41.7483846479 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=7$
$\mathrm{E}_{444}=-41.7480123081 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=7$
$\mathrm{E}_{445}=-41.7483846479 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$\mathrm{E}_{446}=-41.7469484802 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=-2, \mathrm{~s}=1$	$\mathrm{Z}=7$
$\mathrm{E}_{4 \uparrow 7}=-41.7445548672 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=-3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=7$
$\mathrm{E}_{4 \uparrow 8}=-41.7412038091 \mathrm{eV}$	with $\mathrm{n}=4, \mathrm{k}=4, \mathrm{j}=-4, \mathrm{~s}=2$	$\mathrm{Z}=7$

Sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 1}=-1.06877089083 \mathrm{eV}$
with $n=5, k=1, j=1, s=1 / 2$
$Z=1$
26. Energy levels of atomic electrons of samarium atom Sm (Z=62)

Sub-level 5s, k=1

$E_{5 s 1}=-4.27508342702 \mathrm{eV}$	with $n=5, k=1, j=1, s=1 / 2$	$Z=2$
$E_{5 s 2}=-4.27508288064 \mathrm{eV}$	with $n=5, k=1, j=2, s=1$	$Z=2$

27. Energy levels of atomic electrons of europium atom Eu (Z=63)

Sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 1}=-9.61893719851 \mathrm{eV} \quad$ with $n=5, k=1, j=1, s=1 / 2 \quad Z=3$
$E_{5 s 2}=-9.61893443252 \mathrm{eV} \quad$ with $n=5, k=1, j=2, s=1 \quad Z=3$
$E_{5 s 3}=-9.61892982235 \mathrm{eV} \quad$ with $n=5, k=1, j=3, s=3 / 2 \quad Z=3$
28. Energy levels of atomic electrons of gadolinium atom $\mathrm{Gd}(\mathrm{Z}=64)$

Sub-level 5s, k=1
$E_{5 s 1}=-17.1003315225 \mathrm{eV} \quad$ with $n=5, k=1, j=1, s=1 / 2 \quad Z=4$
$E_{5 s 2}=-17.1003227807 \mathrm{eV} \quad$ with $n=5, k=1, j=2, s=1 \quad Z=4$
$E_{5 s 3}=-17.1003082108 \mathrm{eV}$
with $n=5, k=1, j=3, s=3 / 2$
$Z=4$
$E_{5 s 4}=-17.1002878131 \mathrm{eV}$
with $n=5, k=1, j=4, s=2$
$Z=4$
29. Energy levels of atomic electrons of terbium atom $\mathrm{Tb}(Z=65)$

Sub-level $5 \mathrm{~s}, \mathrm{k}=1$

$E_{5 s 1}=-26.719265443 \mathrm{eV}$	with $n=5, k=1, j=1, s=1 / 2$	$Z=5$
$E_{5 s 2}=-26.7192441006 \mathrm{eV}$	with $n=5, k=1, j=2, s=1$	$Z=5$
$E_{5 s 3}=-26.7192085293 \mathrm{eV}$	with $n=5, k=1, j=3, s=3 / 2$	$Z=5$
$E_{5 s 4}=-26.7191587303 \mathrm{eV}$	with $n=5, k=1, j=4, s=2$	$Z=5$

30. Energy levels of atomic electrons of dysprosium atom $D y(Z=66)$

Sub-level 5s , k=1

$E_{5 s 1}=-38.4757377306 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=6$
$\mathrm{E}_{5 \mathrm{~s} 2}=-38.4756934745 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=6$
$\mathrm{E}_{5 \mathrm{~s} 3}=-38.4756197146 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=6$
$\mathrm{E}_{5 \mathrm{~s} 4}=-38.4755164508 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=6$
$E_{5 s 5}=-38.4753836828 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=5, \mathrm{~s}=5 / 2$	$\mathrm{Z}=6$
$E_{5 s 6}=-38.4756197146 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=6$

31. Energy levels of atomic electrons of holmium atom $\mathrm{Ho}(\mathrm{Z}=67)$

Sub-level 5s , k=1

$E_{5 s 1}=-52.3697468821 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$E_{5 s 2}=-52.3696648927 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=7$
$E_{5 s 3}=-52.3695282435 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=7$
$E_{5 s 4}=-52.3693369343 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=7$
$E_{5 s 5}=-52.3690909654 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, j=5, \mathrm{~s}=5 / 2$	$\mathrm{Z}=7$
$E_{5 s 6}=-52.3695282435 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, j=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$E_{5 s 7}=-52.3687903373 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, j=-2, \mathrm{~s}=1$	$\mathrm{Z}=7$

32. Energy levels of atomic electrons of erbium atom $\operatorname{Er}(Z=68)$

Sub-level 5s , k=1
$E_{5 s 1}=-68.4012911229 \mathrm{eV}$
with $n=5, k=1, j=1, s=1 / 2$

$E_{5 s 2}=-68.4011512525 \mathrm{eV}$	with $n=5, k=1, j=2, s=1$	$Z=8$
$E_{5 s 3}=-68.4009181344 \mathrm{eV}$	with $n=5, k=1, j=3, s=3 / 2$	$Z=8$
$E_{5 s 4}=-68.40059177 \mathrm{eV}$	with $n=5, k=1, j=4, s=2$	$Z=8$
$E_{5 s 5}=-68.4001721563 \mathrm{eV}$	with $n=5, k=1, j=5, s=5 / 2$	$Z=8$
$E_{5 s 6}=-68.4009181344 \mathrm{eV}$	with $n=5, k=1, j=-1, s=1 / 2$	$Z=8$
$E_{5 s 7}=-68.399659299 \mathrm{eV}$	with $n=5, k=1, j=-2, s=1$	$Z=8$
$E_{5 s 8}=-68.3975612401 \mathrm{eV}$	with $n=5, k=1, j=-3, s=3 / 2$	$Z=8$

The sub-level 5 s with 8 electrons, even if non completely full, presents a configuration that gives particular properties to erbium atom, even if it isn't present among inert elements. It involves consequences for the consideration of shielding of subsequent elements.
33. Energy levels of atomic electrons of thulium atom $\operatorname{Tm} \quad(Z=69)$

Sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 1}=-86.5703684033 \mathrm{eV} \quad$ with $n=5, k=1, j=1, s=1 / 2 \quad Z=9$
$E_{5 s 2}=-86.5701443584 \mathrm{eV} \quad$ with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=2, \mathrm{~s}=1 \quad \mathrm{Z}=9$
$E_{5 s 3}=-86.5697709484 \mathrm{eV} \quad$ with $n=5, k=1, j=3, s=3 / 2 \quad Z=9$
$E_{5 s 4}=-86.5692481755 \mathrm{eV} \quad$ with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=4, \mathrm{~s}=2 \quad \mathrm{Z}=9$
$E_{5 s 5}=-86.5685760386 \mathrm{eV} \quad$ with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=5, \mathrm{~s}=5 / 2 \quad \mathrm{Z}=9$
$E_{556}=-86.5697709484 \mathrm{eV}$
with $n=5, k=1, j=-1, s=1 / 2 \quad Z=9$
$E_{5 s 7}=-86.5677545376 \mathrm{eV} \quad$ with $n=5, k=1, j=-2, s=1 \quad Z=9$
$E_{5 s 8}=-86.5643938524 \mathrm{eV} \quad$ with $n=5, k=1, j=-3, s=3 / 2 \quad Z=9$

The first 8 electrons of the sub-level 5 s produce a characteristic configuration that allows to consider the ninth electron of the sub-level 5 s is shielded by preceding 68 electrons. Hence energy of the electron 5 s 9 is
34. Energy levels of atomic electrons of ytterbium atom $\mathrm{Yb}(\mathrm{Z}=70)$

Sub-level 5s, k=1

$E_{5 s 1}=-106.876976402 \mathrm{eV}$	with $n=5, k=1, j=1, s=1 / 2$	$Z=10$
$E_{5 s 2}=-106.876634921 \mathrm{eV}$	with $n=5, k=1, j=2, s=1$	$Z=10$
$E_{5 s 3}=-106.876065785 \mathrm{eV}$	with $n=5, k=1, j=3, s=3 / 2$	$Z=10$
$E_{5 s 4}=-106.875268996 \mathrm{eV}$	with $n=5, k=1, j=4, s=2$	$Z=10$
$E_{5 s 5}=-106.874244554 \mathrm{eV}$	with $n=5, k=1, j=5, s=5 / 2$	$Z=10$
$E_{5 s 6}=-106.876065785 \mathrm{eV}$	with $n=5, k=1, j=-1, s=1 / 2$	$Z=10$
$E_{5 s 7}=-106.872992457 \mathrm{eV}$	with $n=5, k=1, j=-2, s=1$	$Z=10$
$E_{5 s 8}=-106.867870243 \mathrm{eV}$	with $n=5, k=1, j=-3, s=3 / 2$	$Z=10$
$E_{5 s 9}=-4.27505738337 \mathrm{eV}$	with $n=5, k=1, j=-4, s=2$	$Z=2$
$E_{5 s 10}=-4.27504263133 \mathrm{eV}$	with $n=5, k=1, j=-5, s=5 / 2$	$Z=2$

35. Energy levels of atomic electrons of lutetium atom $\mathrm{Lu}(\mathrm{Z}=71)$

With ytterbium atom the sub-level $5 s$ is full and the filling of the sub-level $5 p$ begins with lutetium atom. For lutetium we calculate still energies of the sub-level 5 s and of the electron of the sub-level 5 p :

Sub-level 5s, k=1

$E_{5 s 1}=-129.321112522 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=11$
$E_{5 s 2}=-129.32061256 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=11$
$E_{5 s 3}=-129.31977929 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=11$
$E_{5 s 4}=-129.31861271 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=11$
$E_{5 s 5}=-129.317112824 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=1, j=5, s=5 / 2$	$\mathrm{Z}=11$

$E_{5 s 6}=-129.31977929 \mathrm{eV} \quad$ with $n=5, k=1, j=-1, s=1 / 2 \quad Z=11$
$E_{5 s 7}=-129.31527963 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=-2, \mathrm{~s}=1$
$Z=11$
$E_{5 s 8}=-129.307780194 \mathrm{eV}$
with $n=5, k=1, j=-3, s=3 / 2 \quad Z=11$
$E_{5 s 9}=-9.6188053528 \mathrm{eV}$
$E_{5 s 10}=-9.6187306708 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=-4, \mathrm{~s}=2$
$Z=3$
with $n=5, k=1, j=-5, s=5 / 2$
Z=3
sub-level $5 p, k=2$
$E_{5 p 1}=-9.03002267613 \mathrm{eV}$
with $n=5, k=2, j=1, s=1 / 2$
$Z=3$

36. Energy levels of atomic electrons of hafnium atom $\mathbf{H f}(Z=72)$

For hafnium atom we calculate energies only of the last 2 electrons of the sub-level 5 s and energies of the first 2 electrons of the sub-level $5 p$, that are similarly shielded by preceding 68 electrons. Hence
sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$\begin{array}{lll}E_{5 s 9}=-17.0999148246 \mathrm{eV} & \text { with } n=5, k=1, j=-4, s=2 & Z=4 \\ E_{5 s 10}=-17.0996787931 \mathrm{eV} & \text { with } n=5, k=1, j=-5, s=5 / 2 & Z=4\end{array}$
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-16.0533724496 \mathrm{eV}$
with $n=5, k=2, j=1, s=1 / 2 \quad Z=4$
$E_{5 p 2}=-16.053364243 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
$Z=4$

37. Energy levels of atomic electrons of tantalum atom $\mathrm{Ta}(\mathrm{Z}=73)$

Also for tantalum atom and for subsequent atoms we calculate energies of the last 2 electrons of the sub-level 5 s and energies of the sub-level 5 p .
sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 9}=-26.7182481141 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=-4, \mathrm{~s}=2$
Z=5
sub-level $5 p, k=2$
$E_{5 p 1}=-25.0833920487 \mathrm{eV}$
with $n=5, k=2, j=1, s=1 / 2$
$E_{5 p 2}=-25.0833720128 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
Z=5
$E_{5 p 3}=-25.0833386194 \mathrm{eV}$
with $n=5, k=2, j=3, s=3 / 2$
Z=5
38. Energy levels of atomic electrons of tungsten atom $W(Z=74)$
sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 9}=-38.4736281977 \mathrm{eV}$
with $n=5, k=1, j=-4, s=2$
Z=6
$E_{5 s 10}=-38.4624757028 \mathrm{eV}$
with $n=5, k=1, j=-5, s=5 / 2$
$Z=6$
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-36.1200803183 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2$
Z=6
$E_{5 p 2}=-36.1200387721 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
$E_{5 p 3}=-36.119969528 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=3, \mathrm{~s}=3 / 2$
Z=6
$E_{5 p 4}=-36.1198725864 \mathrm{eV}$
with $n=5, k=2, j=4, s=2$
$Z=6$

39. Energy levels of atomic electrons of rhenium atom $\operatorname{Re}(Z=75)$

sub-level 5 s , k=1
$E_{5 s 9}=-52.3658387125 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=1, \mathrm{j}=-4, \mathrm{~s}=2$
$\mathrm{Z}=7$
$E_{5 s 10}=-52.363624994 \mathrm{eV}$
with $n=5, k=1, j=-5, s=5 / 2$
$\mathrm{Z}=7$
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-49.1634358485 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2$
$Z=7$
$E_{5 p 2}=-49.1633588787 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
$Z=7$
$E_{5 p 3}=-49.1632305962 \mathrm{eV}$
with $n=5, k=2, j=3, s=3 / 2$
$\mathrm{Z}=7$
$E_{5 p 4}=-49.1630509993 \mathrm{eV}$
$E_{5 p 5}=-49.16282009 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=4, \mathrm{~s}=2$
Z=7
with $n=5, k=2, j=5, s=5 / 2$
40. Energy levels of atomic electrons of osmium atom $\mathrm{Os}(\mathrm{Z}=76)$ sub-level $5 \mathrm{~s}, \mathrm{k}=1$

$E_{5 s 9}=-68.3946238577 \mathrm{eV}$	with $n=5, k=1, j=-4, s=2$	$Z=8$
$E_{5 s 10}=-68.3908474514 \mathrm{eV}$	with $n=5, k=1, j=-5, s=5 / 2$	$Z=8$

sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-64.2134569727 \mathrm{eV}$
with $n=5, k=2, j=1, s=1 / 2$
Z=8
$E_{5 p 2}=-64.2133256654 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
Z=8
$E_{5 p 3}=-64.2131068204 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=3, \mathrm{~s}=3 / 2$
Z=8
$E_{5 p 4}=-64.2128004371 \mathrm{eV}$
with $n=5, k=2, j=4, s=2$
Z=8
$E_{5 p 5}=-64.2124065154 \mathrm{eV}$
with $n=5, k=2, j=5, s=5 / 2$
Z=8
$E_{5 p 6}=-64.2131068204 \mathrm{eV}$
with $n=5, k=2, j=-1, s=1 / 2$
Z=8

41. Energy levels of atomic electrons of iridium atom $\operatorname{Ir}(Z=77)$

sub-level $5 \mathrm{~s}, \mathrm{k}=1$
$E_{5 s 9}=-86.5596888944 \mathrm{eV}$
with $n=5, k=1, j=-4, s=2$
Z=9
$E_{5 s 10}=-86.5536396609 \mathrm{eV}$
with $n=5, k=1, j=-5, s=5 / 2$
$Z=9$
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-81.2701417663 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2$
$Z=9$
$E_{5 p 2}=-81.2699314382 \mathrm{eV}$
$E_{5 p 3}=-81.2695808906 \mathrm{eV}$
with $n=5, k=2, j=3, s=3 / 2$
$E_{5 p 4}=-81.2701980273 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=4, \mathrm{~s}=2$
Z=9
$E_{5 p 5}=-81.2684591381 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=5, \mathrm{~s}=5 / 2$
$E_{5 p 6}=-81.2695808906 \mathrm{eV}$
with $n=5, k=2, j=-1, s=1 / 2$
$Z=9$
$E_{5 p 7}=-81.2676879332 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=-2, \mathrm{~s}=1$
$Z=9$

42. Energy levels of atomic electrons of platinum atom $\mathrm{Pt}(\mathrm{Z}=78)$

sub-level 5 s , k=1

$E_{5 s 9}=-106.860699143 \mathrm{eV}$	with $n=5, k=1, j=-4, s=2$	$Z=10$
$E_{5 s 10}=-106.851479157 \mathrm{eV}$	with $n=5, k=1, j=-5, s=5 / 2$	$Z=10$

sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-100.333488051 \mathrm{eV}$
$E_{5 p 2}=-100.333167477 \mathrm{eV}$
$E_{5 p 3}=-100.332633186 \mathrm{eV}$
$E_{5 p 4}=-100.33188518 \mathrm{eV}$
$E_{5 p 5}=-100.330923459 \mathrm{eV}$
$E_{5 p 6}=-100.332633186 \mathrm{eV}$
$E_{5 p 7}=-100.329748021 \mathrm{eV}$
$E_{5 p 8}=-100.324939411 \mathrm{eV}$

with $n=5, k=2, j=1, s=1 / 2$	$Z=10$
with $n=5, k=2, j=2, s=1$	$Z=10$
with $n=5, k=2, j=3, s=3 / 2$	$Z=10$
with $n=5, k=2, j=4, s=2$	$Z=10$
with $n=5, k=2, j=5, s=5 / 2$	$Z=10$
with $n=5, k=2, j=-1, s=1 / 2$	
with $n=5, k=2, j=-2, s=1$	$Z=10$
with $n=5, k=2, j=-3, s=3 / 2$	$Z=10$

43. Energy levels of atomic electrons of gold atom $\mathrm{Au}(\mathrm{Z}=79)$

In platinum atom external electrons, that are responsible for chemical bonds, are 10: 2 electrons belonging to the sub-level 5 s and 8 belonging to the sub-level 5 p. Hence because of the particular configuration of the sub-level 5 p, that presents in platinum atom 8 electrons, the subsequent electron 5 p9 of gold atom is shielded by preceding 78 electrons. We calculate now only energies of the sub-level $p(k=2)$.
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-121.403493387 \mathrm{eV}$
with $n=5, k=2, j=1, s=1 / 2$
$Z=11$
$E_{5 p 2}=-121.403024036 \mathrm{eV}$
$E_{5 p 3}=-121.402241782 \mathrm{eV}$
$E_{5 p 4}=-121.401146627 \mathrm{eV}$
$E_{5 p 5}=-121.39973857 \mathrm{eV}$
$E_{5 p 6}=-121.402241782 \mathrm{eV}$
$E_{5 p 7}=-121.398017611 \mathrm{eV}$
$E_{5 p 8}=-121.390977327 \mathrm{eV}$
$E_{5 p 9}=-1.00333441027 \mathrm{eV}$
with $n=5, k=2, j=2, s=1$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=3, \mathrm{~s}=3 / 2 \quad \mathrm{Z}=11$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=4, \mathrm{~s}=2$
$Z=11$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=5, \mathrm{~s}=5 / 2$
$Z=11$
with $n=5, k=2, j=-1, s=1 / 2 \quad Z=11$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=-2, \mathrm{~s}=1$
$Z=11$
with $n=5, k=2, j=-3, s=3 / 2 \quad Z=11$
with $n=5, k=2, j=-4, s=2$
$\mathrm{Z}=1$

44. Energy levels of atomic electrons of mercury atom $\mathrm{Hg}(\mathrm{Z}=80)$

In mercury atom the tenth electron $5 p 10$ completes the sub-level $5 p$.
sub-level $5 \mathrm{p}, \mathrm{k}=2$
$E_{5 p 1}=-144.480155088 \mathrm{eV}$
$E_{5 p 2}=-144.479490346 \mathrm{eV}$
$E_{5 p 3}=-144.478382442 \mathrm{eV}$
$E_{5 p 4}=-144.476831376 \mathrm{eV}$
$E_{5 p 5}=-144.47483715 \mathrm{eV}$
$E_{5 p 6}=-144.478382442 \mathrm{eV}$
$E_{5 p 7}=-144.472399763 \mathrm{eV}$
$E_{5 p 8}=-144.46242863 \mathrm{eV}$
$E_{5 p 9}=-4.01331917617 \mathrm{eV}$
$E_{5 p 10}=-4.01330532741 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=1, \mathrm{~s}=1 / 2$
$Z=12$
with $n=5, k=2, j=2, s=1 \quad Z=12$
with $n=5, k=2, j=3, s=3 / 2 \quad Z=12$
with $n=5, k=2, j=4, s=2 \quad Z=12$
with $n=5, k=2, j=5, s=5 / 2 \quad Z=12$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=-1, \mathrm{~s}=1 / 2 \quad \mathrm{Z}=12$
with $n=5, k=2, j=-2, s=1 \quad Z=12$
with $n=5, k=2, j=-3, s=3 / 2 \quad Z=12$

45. Energy levels of atomic electrons of thallium atom $\mathrm{TI}(\mathrm{Z}=81)$

We calculate for thallium atom only energies of the last two electrons of the sub-level 5 p .
Sub-level $5 p$
$\mathrm{E}_{5 \mathrm{p} 9}=-9.02989890265 \mathrm{eV} \quad$ with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=-4, \mathrm{~s}=2 \quad \mathrm{Z}=3$
$E_{5 p 10}=-9.02982879291 \mathrm{eV}$
with $n=5, k=2, j=-5, s=5 / 2$
Z=3
The sub-level $5 p$ is complete for which the last electron occupies the first quantum state of the sub-level 5d.

Sub-level 5d (k=3)
$E_{5 d 1}=-8.04849847218 \mathrm{eV} \quad$ with $n=5, k=3, j=1, s=1 / 2 \quad Z=3$
46. Energy levels of atomic electrons of lead atom $\mathrm{Pb} \quad(\mathrm{Z}=82)$

Sub-level 5p
$E_{5 p 9}=-16.0529812639 \mathrm{eV}$
with $n=5, k=2, j=-4, s=2 \quad Z=4$
$E_{5 p 10}=-16.0527596832 \mathrm{eV}$
with $n=5, k=2, j=-5, s=5 / 2$
$Z=4$

The subsequent 2 electrons occupy the first 2 quantum states of the sub-level 5 d .
Sub-level 5d (k=3)
$E_{5 d 1}=-14.3084406617 \mathrm{eV}$
with $n=5, k=3, j=1, s=1 / 2$
$Z=4$
$E_{5 d 2}=-14.3084333469 \mathrm{eV}$
with $n=5, k=3, j=2, s=1$
$Z=4$

47. Energy levels of atomic electrons of bismuth atom $\mathrm{Bi}(\mathrm{Z}=83)$

Sub-level $5 p$

$E_{5 p 9}=-25.0824370051 \mathrm{eV}$	with $n=5, k=2, j=-4, s=2$	$Z=5$
$E_{5 p 10}=-25.0818960369 \mathrm{eV}$	with $n=5, k=2, j=-5, s=5 / 2$	$Z=5$

The subsequent 3 electrons occupy the first 3 quantum states of the sub-level 5 d .

Sub-level 5d (k=3)

$E_{5 d 1}=-22.3569363912 \mathrm{eV}$	with $n=5, k=3, j=1, s=1 / 2$	$Z=5$
$E_{5 d 2}=-22.3569185331 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=5$
$E_{5 d 3}=-22.3568887694 \mathrm{eV}$	with $n=5, k=3, j=3, s=3 / 2$	$Z=5$

48. Energy levels of atomic electrons of polonium atom Po ($Z=84$)

Sub-level 5p

$E_{5 p 9}=-36.1180999407 \mathrm{eV}$	with $n=5, k=2, j=-4, s=2$	$Z=6$
$E_{5 p 10}=-36.1169781882 \mathrm{eV}$	with $n=5, k=2, j=-5, s=5 / 2$	$Z=6$

Sub-level 5d (k=3)
$E_{5 d 1}=-32.1939846318 \mathrm{eV} \quad$ with $n=5, k=3, j=1, s=1 / 2 \quad Z=6$
$E_{5 d 2}=-32.1939956033 \mathrm{eV}$
with $n=5, k=3, j=2, s=1$
Z=6
$E_{5 d 3}=-32.1938858836 \mathrm{eV}$
with $n=5, k=3, j=3, s=3 / 2$
$\mathrm{Z}=6$
$E_{5 d 4}=-32.1937994792 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=3, \mathrm{j}=4, \mathrm{~s}=2$
Z=6
49. Energy levels of atomic electrons of astatine atom At ($Z=85$)

Sub-level 5p

$E_{5 p 9}=-49.1597669545 \mathrm{eV}$	with $n=5, k=2, j=-4, s=2$	$Z=7$
$E_{5 p 10}=-49.1576887696 \mathrm{eV}$	with $n=5, k=2, j=-5, s=5 / 2$	$Z=7$

Sub-level 5d (k=3)

$E_{5 d 1}=-43.8195841259 \mathrm{eV}$	with $n=5, k=3, j=1, s=1 / 2$	$Z=7$
$E_{5 d 2}=-43.8195155223 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=7$
$E_{5 d 3}=-43.8194011834 \mathrm{eV}$	with $n=5, k=3, j=3, s=3 / 2$	$Z=7$
$E_{5 d 4}=-43.819241108 \mathrm{eV}$	with $n=5, k=3, j=4, s=2$	$Z=7$

50. Energy levels of atomic electrons of radon atom $\mathrm{Rn}(\mathrm{Z}=86)$

Sub-level $5 p$

$E_{5 p 9}=-64.2071980011 \mathrm{eV}$	with $n=5, k=2, j=-4, s=2$	$Z=8$
$E_{5 p 10}=-64.2036527097 \mathrm{eV}$	with $n=5, k=2, j=-5, s=5 / 2$	$Z=8$

Sub-level 5d (k=3)
$E_{5 d 1}=-57.2337333883 \mathrm{eV} \quad$ with $n=5, k=3, j=1, s=1 / 2 \quad Z=8$
$E_{5 d 2}=-57.2336163541 \mathrm{eV} \quad$ with $n=5, k=3, j=2, s=1 \quad Z=8$
$E_{5 d 3}=-57.2334212963 \mathrm{eV}$
with $n=5, k=3, j=3, s=3 / 2$
Z=8
$E_{5 d 4}=-57.2331482155 \mathrm{eV}$
with $n=5, k=3, j=4, s=2$
Z=8
$E_{5 d 5}=-57.2327971117 \mathrm{eV}$
with $n=5, k=3, j=5, s=5 / 2$
Z=8
$E_{5 d 6}=-57.2334212963 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=3, \mathrm{j}=-1, \mathrm{~s}=1 / 2$
Z=8

Radon has in the two sublevels $5 p$ and $5 d$ an electronic configuration $8,2+6$ that gives to atom a high degree of stability that explains its classification inside the group 0 of inert elements.

51. Energy levels of atomic electrons of francium atom Fr $(Z=87)$

The peculiarity of radon, characterized by stability and chemical inertia due to the existence of the two configurations $8,2+6$ in the two external sub-levels involves the last electron of francium is shielded by preceding 86 electrons. It is valid also for subsequent chemical elements.

Sub-level 5p
$E_{5 p 9}=-81.2601161047 \mathrm{eV}$
with $n=5, k=2, j=-4, s=2$
$E_{5 p 10}=-81.2544372325 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=2, \mathrm{j}=-5, \mathrm{~s}=5 / 2$
Sub-level 5d (k=3)
$E_{5 d 1}=-72.4364307046 \mathrm{eV}$
with $n=5, k=3, j=1, s=1 / 2$
Z=9

$E_{5 d 2}=-72.4362432383 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=9$
$E_{5 d 3}=-72.4359307935 \mathrm{eV}$	with $n=5, k=3, j=3, s=3 / 2$	$Z=9$
$E_{5 d 4}=-72.4354933712 \mathrm{eV}$	with $n=5, k=3, j=4, s=2$	$Z=9$
$E_{5 d 5}=-72.4349309709 \mathrm{eV}$	with $n=5, k=3, j=5, s=5 / 2$	$Z=9$
$E_{5 d 6}=-72.4359307935 \mathrm{eV}$	with $n=5, k=3, j=-1, s=1 / 2$	$Z=9$
$E_{5 d 7}=-0.89427735076 \mathrm{eV}$	with $n=5, k=3, j=-2, s=1$	$Z=1$

52. Energy levels of atomic electrons of radium atom $\mathrm{Ra}(\mathrm{Z}=88)$

For radium atom we calculate only energies of the sub-level 5d.
Sub-level 5d (k=3)

$E_{5 d 1}=-89.4276741324 \mathrm{eV}$	with $n=5, k=3, j=1, s=1 / 2$	$Z=10$
$E_{5 d 2}=-89.4273884036 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=10$
$E_{5 d 3}=-89.4269121882 \mathrm{eV}$	with $n=5, k=3, j=3, s=3 / 2$	$Z=10$
$E_{5 d 4}=-89.4262454872 \mathrm{eV}$	with $n=5, k=3, j=4, s=2$	$Z=10$
$E_{5 d 5}=-89.4253883008 \mathrm{eV}$	with $n=5, k=3, j=5, s=5 / 2$	$Z=10$
$E_{5 d 6}=-89.4269121882 \mathrm{eV}$	with $n=5, k=3, j=-1, s=1 / 2$	$Z=10$

The subsequent two electrons are shielded by preceding 86 electrons:

$E_{5 d 7}=-3.57710528883 \mathrm{eV}$	with $n=5, k=3, j=-2, s=1$	$Z=2$
$E_{5 d 8}=-3.57709843152 \mathrm{eV}$	with $n=5, k=3, j=-3, s=3 / 2$	$Z=2$

53. Energy levels of atomic electrons of actinium atom $A c(Z=89)$

Sub-level 5d (k=3)

$E_{5 d 1}=-108.207461498 \mathrm{eV}$	with $n=5, k=3, j=1, s=1 / 2$	$Z=11$
$E_{5 d 2}=-108.207043162 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=11$

$E_{5 d 3}=-108.206345936 \mathrm{eV}$
$E_{5 d 4}=-108.205369819 \mathrm{eV}$
$\mathrm{E}_{5 \mathrm{~d} 5}=-108.204114812 \mathrm{eV}$
$E_{5 d 6}=-108.206345936 \mathrm{eV}$
$\mathrm{E}_{5 \mathrm{~d} 7}=-8.04847147071 \mathrm{eV}$
$\mathrm{E}_{5 \mathrm{~d} 8}=-8.04843675475 \mathrm{eV}$
$E_{5 d 9}=-8.04838815239 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=3, \mathrm{j}=3, \mathrm{~s}=3 / 2$
with $n=5, k=3, j=4, s=2$ Z=11
with $\mathrm{n}=5, \mathrm{k}=3, \mathrm{j}=5, \mathrm{~s}=5 / 2$ Z=11
with $n=5, k=3, j=-1, s=1 / 2 \quad Z=11$
with $\mathrm{n}=5, \mathrm{k}=3, \mathrm{j}=-2, \mathrm{~s}=1$
with $n=5, k=3, j=-3, s=3 / 2 \quad Z=3$
with $n=5, k=3, j=-4, s=2$
Z=3

54. Energy levels of atomic electrons of thorium atom $\mathbf{T h}(\mathbf{Z}=90)$

Sub-level 5d (k=3)

$E_{5 d 1}=-128.775790405 \mathrm{eV}$	with $n=5, k=3, j=1, s=1 / 2$	$Z=12$
$E_{5 d 2}=-128.775197917 \mathrm{eV}$	with $n=5, k=3, j=2, s=1$	$Z=12$
$E_{5 d 3}=-128.774210438 \mathrm{eV}$	with $n=5, k=3, j=3, s=3 / 2$	$Z=12$
$E_{5 d 4}=-128.772827966 \mathrm{eV}$	with $n=5, k=3, j=4, s=2$	$Z=12$
$E_{5 d 5}=-128.771050503 \mathrm{eV}$	with $n=5, k=3, j=5, s=5 / 2$	$Z=12$
$E_{5 d 6}=-128.774210438 \mathrm{eV}$	with $n=5, k=3, j=-1, s=1 / 2$	$Z=12$
$E_{5 d 7}=-14.3083553239 \mathrm{eV}$	with $n=5, k=3, j=-2, s=1$	$Z=4$
$E_{5 d 8}=-14.3082456042 \mathrm{eV}$	with $n=5, k=3, j=-3, s=3 / 2$	$Z=4$
$E_{5 d 9}=-14.3080919959 \mathrm{eV}$	with $n=5, k=3, j=-4, s=2$	$Z=4$
$E_{5 d 10}=-14.3078945001 \mathrm{eV}$	with $n=5, k=3, j=-5, s=5 / 2$	$Z=4$

55. Energy levels of atomic electrons of protactinium atom $\mathrm{Pa}(\mathrm{Z}=91)$

In thorium atom the sub-level 5 d is full and consequently the electron 5 f 1 of protactinium is shielded by preceding 90 electrons. For protactium we will calculate only energies of the last 4 electrons of the sublevel 5 d and energy of the electron of the sub-level 5 f.

Sub-level 5d

$E_{5 d 7}=-22.356728047 \mathrm{eV}$	with $n=5, k=3, j=-2, s=1$	$Z=5$
$E_{5 d 8}=-22.3568887694 \mathrm{eV}$	with $n=5, k=3, j=-3, s=3 / 2$	$Z=5$
$E_{5 d 9}=-22.3560851568 \mathrm{eV}$	with $n=5, k=3, j=-4, s=2$	$Z=5$
$E_{5 d 10}=-22.3556029892 \mathrm{eV}$	with $n=5, k=3, j=-5, s=5 / 2$	$Z=5$

Sub-level 5f (k=3)
$E_{5 f 1}=-0.74159612837 \mathrm{eV}$
with $n=5, k=4, j=1, s=1 / 2$
$Z=1$

56. Energy levels of atomic electrons of uranium atom $U(Z=92)$

For uranium atom and for subsequent atoms we will calculate only energies of the sublevel 5 f.

Sub-level $5 \mathrm{f}(\mathrm{k}=3)$
$E_{5 f 1}=-2.96638441862 \mathrm{eV}$
with $n=5, k=4, j=1, \quad s=1 / 2$
Z=2
$E_{5+2}=-2.96638403964 \mathrm{eV}$
with $n=5, k=4, j=2, s=1$
Z=2

57. Energy levels of atomic electrons of neptunium atom $\mathrm{Np}(\mathrm{Z}=93)$

Sub-level $5 \mathrm{f}(\mathrm{k}=3)$

$E_{5 f 1}=-6.67436458663 \mathrm{eV}$	with $n=5, k=4, j=1, s=1 / 2$	$Z=3$
$E_{5 f 2}=-6.67436266748 \mathrm{eV}$	with $n=5, k=4, j=2, s=1$	$Z=3$
$E_{5 f 3}=-6.67435946853 \mathrm{eV}$	with $n=5, k=4, j=3, s=3 / 2$	$Z=3$

58. Energy levels of atomic electrons of plutonium atom $\mathrm{Pu}(\mathrm{Z}=94)$

Sub-level $5 \mathrm{f}(\mathrm{k}=3)$

$E_{5 f 1}=-11.8655361585 \mathrm{eV}$	with $n=5, k=4, j=1, s=1 / 2$	$Z=4$
$E_{5 f 2}=-11.8655300927 \mathrm{eV}$	with $n=5, k=4, j=2, s=1$	$Z=4$
$E_{5 f 3}=-11.865519983 \mathrm{eV}$	with $n=5, k=4, j=3, s=3 / 2$	$Z=4$
$E_{5 f 4}=-11.8655058294 \mathrm{eV}$	with $n=5, k=4, j=4, s=2$	$Z=4$

59. Energy levels of atomic electrons of americium atom $\operatorname{Am}(Z=95)$

Sub-level 5f (k=3)

$E_{5 f 1}=-18.5398984705 \mathrm{eV}$	with $n=5, k=4, j=1, s=1 / 2$	$Z=5$
$E_{5 f 2}=-18.5398836615 \mathrm{eV}$	with $n=5, k=4, j=2, s=1$	$Z=5$
$E_{5 f 3}=-18.5398589794 \mathrm{eV}$	with $n=5, k=4, j=3, s=3 / 2$	$Z=5$
$E_{5 f 4}=-18.5398244251 \mathrm{eV}$	with $n=5, k=4, j=4, s=2$	$Z=5$
$E_{5 f 5}=-18.5397799978 \mathrm{eV}$	with $n=5, k=4, j=5, s=5 / 2$	$Z=5$

60. Energy levels of atomic electrons of curium atom $\mathrm{Cm}(\mathrm{Z}=96)$

Sub-level $5 \mathrm{f}(\mathrm{k}=3)$
$E_{5 f 1}=-26.6974506699 \mathrm{eV} \quad$ with $n=5, k=4, j=1, s=1 / 2 \quad Z=6$
$E_{5 \uparrow 2}=-26.6974199618 \mathrm{eV} \quad$ with $n=5, k=4, j=2, s=1 \quad Z=6$
$E_{5 f 3}=-26.6973687813 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=3, \mathrm{~s}=3 / 2 \quad \mathrm{Z}=6$
$E_{5 f 4}=-26.697297129 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=4, \mathrm{~s}=2 \quad \mathrm{Z}=6$
$E_{5 f 5}=-26.6972050042 \mathrm{eV}$
with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=5, \mathrm{~s}=5 / 2 \quad \mathrm{Z}=6$
$E_{5 f 6}=-26.6973687813 \mathrm{eV}$

61. Energy levels of atomic electrons of berkelium atom $B k(Z=97)$

Sub-level 5f (k=3)

$E_{5 f 1}=-36.3381917139 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$E_{5 t 2}=-36.3381348234 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=2, \mathrm{~s}=1$	$\mathrm{Z}=7$
$E_{5 f 3}=-36.3380400057 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=3, \mathrm{~s}=3 / 2$	$\mathrm{Z}=7$
$E_{554}=-36.3379072603 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=4, \mathrm{~s}=2$	$\mathrm{Z}=7$
$E_{5 f 5}=-36.3377365882 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=5, \mathrm{~s}=5 / 2$	$\mathrm{Z}=7$
$E_{5 f 6}=-36.3380400057 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=-1, \mathrm{~s}=1 / 2$	$\mathrm{Z}=7$
$E_{5 f 7}=-36.3375279889 \mathrm{eV}$	with $\mathrm{n}=5, \mathrm{k}=4, \mathrm{j}=-2, \mathrm{~s}=1$	$\mathrm{Z}=7$

62. Energy levels of atomic electrons of californium atom $\mathrm{Cf}(\mathrm{Z}=98)$

Sub-level $5 \mathrm{f}(\mathrm{k}=3)$
$E_{5 f 1}=-47.462120371 \mathrm{eV}$
$E_{5 t 2}=-47.4620233178 \mathrm{eV}$
$E_{5 ł 3}=-47.4618615626 \mathrm{eV}$
$E_{5 f 4}=-47.4616351056 \mathrm{eV}$
$E_{5 f 5}=-47.4613439463 \mathrm{eV}$
$E_{5+6}=-47.4618615626 \mathrm{eV}$
$E_{577}=-47.4609880851 \mathrm{eV}$
$E_{5 f 8}=-47.4595322893 \mathrm{eV}$
with $n=5, k=4, j=1, s=1 / 2 \quad Z=8$
with $n=5, k=4, j=2, s=1 \quad Z=8$
with $n=5, k=4, j=3, s=3 / 2 \quad Z=8$
with $n=5, k=4, j=4, s=2 \quad Z=8$
with $n=5, k=4, j=5, s=5 / 2 \quad Z=8$
with $n=5, k=4, j=-1, s=1 / 2 \quad Z=8$
with $n=5, k=4, j=-2, s=1 \quad Z=8$
with $n=5, k=4, j=-3, s=3 / 2 \quad Z=8$
63. Energy levels of atomic electrons of einstenium atom Es (Z=99)

Sub-level 5f (k=3)
$E_{5 f 1}=-60.0692352187 \mathrm{eV}$
with $n=5, k=4, j=1, s=1 / 2$
$Z=9$

$E_{5 f 2}=-60.0690797583 \mathrm{eV}$	with $n=5, k=4, j=2, s=1$	$Z=9$
$E_{5 f 3}=-60.0688206583 \mathrm{eV}$	with $n=5, k=4, j=3, s=3 / 2$	$Z=9$
$E_{5 f 4}=-60.068457918 \mathrm{eV}$	with $n=5, k=4, j=4, s=2$	$Z=9$
$E_{5 f 5}=-60.0679915369 \mathrm{eV}$	with $n=5, k=4, j=5, s=5 / 2$	$Z=9$
$E_{5 f 6}=-60.0688206583 \mathrm{eV}$	with $n=5, k=4, j=-1, s=1 / 2$	$Z=9$
$E_{5 f 7}=-60.0674215155 \mathrm{eV}$	with $n=5, k=4, j=-2, s=1$	$Z=9$
$E_{5 f 8}=-60.0650896118 \mathrm{eV}$	with $n=5, k=4, j=-3, s=3 / 2$	$Z=9$
$E_{5 f 9}=-60.0618249469 \mathrm{eV}$	with $n=5, k=4, j=-4, s=2$	$Z=9$

64. Energy levels of atomic electrons of fermium atom $\mathrm{Fm}(\mathrm{Z}=100)$

Sub-level 5f (k=3)
$E_{5 f 1}=-74.1595346465 \mathrm{eV}$
$E_{5 f 2}=-74.1592977006 \mathrm{eV}$
$E_{5 f 3}=-74.1589027903 \mathrm{eV}$
$E_{5 f 4}=-74.1583499162 \mathrm{eV}$
$E_{5 f 5}=-74.1576390783 \mathrm{eV}$
$E_{566}=-74.1589027903 \mathrm{eV}$
$E_{5 f 7}=-74.1567702766 \mathrm{eV}$
$E_{5 \uparrow 8}=-74.1532160871 \mathrm{eV}$
$E_{5 f 9}=-74.1482402219 \mathrm{eV}$
$E_{5 f 10}=-74.1418426803 \mathrm{eV}$
In fermium atom the sub-level $5 f$ of the level $n=5$ is full. Starting from the subsequent atom with $Z=101$, mendelevium Md, the sub-level $q(k=5)$ of the level $n=5$ will begin to be filled.

65. Conclusions

The calculation of actual energies of electrons inside atoms of different chemical elements allows to do some considerations:

- Firstly the reversal of potential levels of energy that happens in hydrogen atom (for instance the reversal of the sub-level 4 s with the sub-level 3d and the reversal of sub-levels $5 \mathrm{~s}, 5$ p, 5 d with the sub-level 4 f) doesn't happen for actual levels of energy of electrons inside of other atoms;
- this reversal instead has been wrongly assumed in electronic configurations that are normally accepted at present;
- this wrong hypothesis involves the best part of weaknesses that are into current periodic tables of chemical elements;
- these waknesses then emerge from the existence of wide regroupments of chemical elements that are really out of a periodic classification and consequently out of the table itself;
- It is valid for transition elements that includes 10 sub-groups, rare earths and actinides.

Calculations in the order of the Deterministic Quantum Model of atom allow to understand these transition elements are the effect of a wrong hypothesis and hence a periodic table that includes really all chemical elements is possible.
The subsequent step consists in the identification of physico-chemical properties of elements in order to understand the availability of single atoms to make complex molecules and chemical compounds.

References

[1] D. Sasso, Atomic Energies from Hydrogen to Krypton, viXra.org, 2019, id: 1903.0366
[2] D. Sasso, Quantum States and Energy Levels in Hidrogen Atom, viXra.org, 2019, id: 1902.0387
[3] D. Sasso, Deterministic Quantum Model of Atom, viXra.org, 2019, id: 1902.0001
[4] D. Sasso, Basic Principles of Deterministic Quantum Physics, viXra.org, 2011, id: 1104.0014

