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A. Introduction

Holography is a subject, in development, for long, almost
silently, through works of ’t hooft, Susskind, Bekenstein
[1] and many others. It came to the limelight after Mal-
dacena’s conjecture [2–4] giving one concrete example of
holography. The statement was that a CFT on boundary
of AdS space-time completely represents gravity in the
bulk. In cosmology, soon the search for holographic be-
haviour started through the work of Fischler-Susskind[5].
They tried to put a bound on the entropy of the closed
Universe. But the entropy of the Universe was bounded
from above by some undetermined constant. As it is,
this was the first of the three major stages of devel-
opment, holography in cosmology, has passed through
uptill now. Related to the work of Fischler-Susskind,
grew out a large number of works[6]. Major concep-
tual developments are the Hubble horizon bound and
screen surface[7]. With those followed the second stage of
development[8]. Consequences of Hubble bound/screen
surface were explored. Parallely, was developing, vigor-
ously, the subject of AdS/CFT. It included non-rotating
AdS spaces[9] as well as rotating AdS-Kerr spaces [10].
The third stage[18] of development along the line was
initiated by E. Verlinde [14]. He found a signature of
1 + 1-dimensional conformal field theory in cosmology in
n+ 1-dimensional spaces. The particular relationship in
context, is Cardy’s formula [15]. Soon thereafter, ap-
peared his work with Savonije[16]. There, they found
out that underlying FRW cosmology on moving brane of
Randall-Sundrum kind [17] of dimension n + 1, in the
background of AdSn+2-Schwarzscild spaces, is a formula
that resembles Cardy’s formula. Interestingly, entropy of
the cosmology is completely known here. Considerable
amount of works have been done in the recent past to
get Cardy-Verlinde like formula in various cosmologies
on bulk and on branes. But uptill now, in the literature,
is missing a Verlinde type approach to obtain one formula
for cosmology on brane, in the background of Kerr-AdS
spaces. In this paper, we present a Verlinde type analy-
sis in the simplest setup. We study a 1 + 1-dimensional
moving brane in AdS1+2-Kerr black-hole space-time.

In the next section, we write down the orthonormal frame

attached with the brane. Then we obtain the induced
metric, the Hubble equation, on it in the fourth section.
In between, in the third section, we discuss the metric of
AdS2+1- Kerr space-time. In the fifth one, we start with
the energy density on the brane, obtain entropy, temper-
ature, casimir energy, Cardy-Verlinde formula associated
with the induced cosmology and draw some conclusions.
We end up with a discussion in the last section.

B. Orthonormal frame

Let us describe, in this section, the orthonormal frame
attached with the moving brane. This, we will see, will
be required to obtain the induced metric on the brane.
This orthonormal frame in conjuction with the induced
metric, will determine the Hubble equation also.
The orthonormal frame, attached with the rotating as
well as radially moving brane, in the AdS1+2-Kerr space-
time is

sµ = (−√gφφw, 0,
√
gφφ) (1)

vµ = (vt, vr, 0) (2)

nµ = (nt, nr, 0) (3)

nµ∂µ is a space-like unit vector normal to the brane. vµ∂µ
is a time-like unit vector on the world-sheet. The unit
vector along the brane is sµ∂µ.
Here we note that

nr = −

√
− g

tt

grr
vt (4)

nt =

√
−g

rr

gtt
vr (5)

(6)

The negative sign in nr corresponds to our choice of the
normal pointing inward.
Again, the Israel Junction condition yields

nr = −k−[∂r ln sφ]−1 (7)

where,

sφ =
1
√
gφφ

(8)
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As a result, the frame is fully determined by the embed-
ding metric.
In the appendix, we will deal with the frame again.

C. Bulk space-time

For completeness, let us write down the AdS1+2-kerr
space-time metric below. This is the metric in the
ref.[11, 13], written in the canonical form[19]. The met-
ric in the ref[11, 13] can be obtained also from BTZ
metric[20] by coordinate transformation.

ds2
1+2 = −N2dt2 +

r2dr2

∆r
+ gφφ(dφ− wdt)2 (9)

where, the angular velocity, w, of the space-time is,

w =
gφt

gtt
= − gφt

gφφ
(10)

Moreover, the metric components are

N2 =
r2∆r

Σ2
(11)

w =
aΞ

Σ2
[r2 + a2 −∆r] (12)

gφφ =
Σ2

r2Ξ2
(13)

gφt =
a

r2Ξ
[∆r − (r2 + a2)] (14)

gtt = −∆r − a2

r2
(15)

gtt = − 1

N2
(16)

with,

Σ2 = (r2 + a2)2 − a2∆r (17)

∆r = (r2 + a2)(1 +
r2

L2
)− 2G3Mr2 (18)

Ξ = 1− a2

L2
(19)

and

gttgφφ − g2
φt = −∆r

Ξ2

Now, given all that, we observe,

n2 − v2 = −N2dt2 +
r2dr2

∆r
(20)

where, n and v are the one form fields, normal and tan-
gential to the brane respectively. These are given as

n = nµdx
µ, v = vµdx

µ (21)

This enables us to write the AdS1+2 metric as

ds2
1+2 = n2 − v2 + gφφ(dφ− wdt)2 (22)

D. space-time on the brane

It turns out that,

v = −dτ (23)

Therefore, the induced metric on the brane is,

ds2
1+1 = −dτ2 + gφφ(dφ− wdt)2 (24)

where, φ is the angular position of a point measured w.r.t
the embedding space-time rest frame. w is the angular
velocity of a point on the brane. At this point, let us
intoduce a coordinate φ

′
on the brane, such that, dφ′ =

dφ− wdt. Now, we recall that

dφ′

dτ
= vφ − wvt = 0 (25)

Hence, φ
′

is a comoving coordinate on the brane.
Consequently, the induced metric on the brane turns out
as,

ds2
1+1 = −dτ2 + a2

scd(φ′)2 (26)

This is the metric of a 1 + 1-dimensional homogeneous
cosmology, with the scale-factor, asc, given by

a2
sc = gφφ(r(τ)) (27)

1 + 1-dimensional cosmologies were studied previously in
different context[21]. In those works, 1 + 1-dimensional
cosmologies provided a laboratory for toying with issues
like duality, inflation, graceful exit etc. Here, we will
be concerned with holographic aspect. Moreover, there
is one interesting thing. We will soon see that our 1 +
1-dimensional cosmology has a matter with equation of
state p = 3ρ. ρ is also negative. This matter becomes
important when the Universe is of very small size.

1. Hubble equation

Let us recall that vµv
µ = −1. This yields the following

relation

dr

dτ
= −∆r

r2
+ (nr)2 (28)

Now, the Hubble parameter is defined as follows,

H =
d ln
√
gφφ

dτ
(29)

As a result, after setting k− to 1
L to tune the cosmological

constant on the brane to zero, we get from the above two
equations,

H2 =
1

L2
[1− ∆r

r2

1

(nr)2
] (30)
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Let us notice that at the horizon, H = 1
L , as in the AdS-

Schwarzschild case[16].
Moreover,

nr =
Ξ

Lr
a2
sc (31)

Consequently, the Hubble parameter on the moving 1+1-
dimensional brane, satisfies the equation,

H2 = − 1

a2
sc

+
1

a2
sc

2G3M

Ξ2
(2− Ξ)− 1

a4
sc

(
2G3Ma

Ξ2
)2 (32)

The Ḣ equation is

Ḣ =
1

a2
sc

− 1

a2
sc

2G3M

Ξ2
(2− Ξ) +

2

a4
sc

(
2G3Ma

Ξ2
)2 (33)

Ḣ is related to the decceleration parameter. Again, it
is interesting to find that in the presence of angular mo-
mentum, the Universe can contract upto a minimum scale
factor

asc =
2G3Ma

Ξ2

1

[ 2G3M
Ξ2 (2− Ξ)− 1]

1
2

(34)

This corresponds to a minimum radial distance, rmin,
within the black-hole, the brane can enter

r2
min = a2 ( 2G3M

Ξ2 )2Ξ(Ξ− 1)− 2 2G3M
Ξ2 + 1

2G3M
Ξ2 (2− Ξ)− 1

(35)

E. Cardy-Verlinde formula

Let us now study the Cardy-Verlinde formula for the full
range of Ξ. The range extends from zero to one.

1. energy density

Let us note that H2 is of the form

H2 = − 1

a2
sc

+
16πG3

L
ρ (36)

where,

ρ =
L

16πG3
[

2G3M
Ξ2 (2− Ξ)

a2
sc

−
( 2G3Ma

Ξ2 )2

a4
sc

] (37)

As a result,

p =
L

16πG3
[

2G3M
Ξ2 (2− Ξ)

a2
sc

− 3
( 2G3Ma

Ξ2 )2

a4
sc

] (38)

Again in coming from equation (37) to equation (38)
we have used the following,

ρ = ρ1 + ρ2 (39)

with the equation of states obeyed respectively as,

p1 = ρ1 (40)

p2 = 3ρ2 (41)

We recall that in 1+1-dimension, the stiff-matter has the
same equation of state, as that of the conformal matter.
Before going to the next subsection, let us note some per-
tinent points:
(i) RS prescription of using relation[16] between G1+2

and G1+1 does not work here. So we keep 16πG3

L in H2

equation, in the spirit of higher dimensional case. There,
16πGn+2

nL does give Gn+1 on the brane. Then ρ turns out
to be n+ 1-dimensional energy density. In the same way,
we consider our H2 equation as giving the Hubble equa-
tion on the (1 + 1)-dimensional brane. ρ is the energy
density on the brane.
(ii) ρ is non-zero due to the brane’s presence in AdS1+2.

(iii) Ala Verlinde, if we do analysis, keeping 16πG1+2

L for
G1+1, the Cardy-Verlinde formula does come for a (1+1)-
dimensional brane in the AdS1+2-Schwarzschild black-
hole.
(iv) Our analysis has the same status as that mentioned
in (iii), but in the AdS1+2-kerr black-hole background.
(v)H2-equation, in the a→ 0 limit, goes over to the H2-
equation in the AdS-Schwarzschild background.
(vi)Now, let us notice the second equation of state (41).
Individually, it violates positive energy condition and
leads to velocity of sound more than the velocity of light.
But here the previous equation (39) tells that it is part of
the total energy density. Moreover, for asc > aminsc , ρ > p.
This ensures that velocity of sound in the medium, in
the full phase of life of the brane-universe, is less than
the velocity of light[22]. There is no violation of en-
ergy condition[22] too. Note that we have assumed as
in ref.[22] that the Ricci scalar on the brane, R1+1, sat-
isfies the ansatz

R1+1 = 8πG1+1T
a
a (42)

We are yet to get to a concrete justification for the ansatz
in the moving brane context.

2. entropy on the brane

Now, the entropy[11, 13] of AdS1+2-kerr black-hole
space-time is

S =
A+

4G3
=

2πa+
sc

4G3
(43)

Following GPKW prescription[3] for the AdS/CFT cor-
respondence, the total entropy on the (1+1)-dimensional
brane is also S. Again, the perimeter of the brane is

P =

∫ 2π

0

√
gφφdφ

′ (44)

= 2π
√
gφφ (45)
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Hence, the entropy per unit length, s, of the brane is

s =
S

P
(46)

=
1

4G3

a+
sc

asc
(47)

where, a+
sc is the scale factor at the horizon.

3. temperature on the brane

Hawking temperature, TH , of AdS1+2-kerr black-hole
space-time [11, 13] is

TH =
1

2π

r4+
L2 − a2

r+(r2
+ + a2)

(48)

This is the temperature of the brane too. But the Hawk-
ing temperature is measured w.r.t the bulk metric.
Hence we consider now the scaling[3] following[16]. Here
we note that,

Limgφφ→∞
L2

gφφ
ds2

1+2 = −dt2 + L2(dφ− w∞dt)2 (49)

But, we are considering the thermodynamics in (1 + 1)-
dimensional brane metric

ds2 = −dτ2 + gφφ(dφ− wdt)2

We also note,

w − w∞ =
2G3Ma

Ξ2

1

a2
sc

(50)

As a result,

wH − w∞ =
a

L2
(51)

for astrophysical black-hole. Since, we are considering
classical black-hole, L is also very large. Consequently,
we can put in the equation (49), w∞ = w reliably. Then,
we see that the brane time, τ , is related to the bulk time,
t, by,

τ =
asc
L
t (52)

Again, GPKW[3] prescribes that the temperature on the
brane, Tb, is related to the Hawking temperature, TH , by
conformal scaling.
As the temperature is inverse in dimension to time,

Tb = TH
L

asc
(53)

=
L

2πa+
sc

r4+
L2 − a2

Ξr2
+

1

asc
(54)

where, a+
sc is the scale factor at the horizon. So, the

thermal energy density on the brane is,

Tbs =
L

8πG3

1

Ξ(r+)2
(
(r+)4

L2
− a2)

1

a2
sc

(55)

4. angular energy on the brane

Angular velocity of the space-time, w, [11, 13]is

w = aΞ
(r2 + a2)−∆r

(r2 + a2)2 − a2∆r
(56)

whereas, quantity which enters in thermodynamics is w−
w∞, multiplied by angular momentum, J, after scaling
incorporated.
Now, angular momentum, at r+

L >> 1, of the brane is

J = 1
2
Ma
Ξ2 if we assume, AdS/CFT correpondence to work

as in Kerr-AdS5[10]. Then the angular energy density,
WJ , on the brane, as seen from the asymptotic, comes
as,

WJ =
J(w − w∞)

2πasc

L

asc
(57)

=
L

16πG3
2(

2G3Ma

Ξ2
)2 1

a4
sc

(58)

Moreover,

WJ = −2ρ2 (59)

5. towards Casimir energy

We define a quantity, γJ , on the rotating brane as

γJ =
1

2
(ρ+ p− Tbs+ 2WJ)a2

sc (60)

=
L

16πG3
[
a2

L2
+ 2

a2

r2
+

+ 1 + 2G3M
2a2

L2

Ξ
] (61)

We also define another quantity, ρJ , as

ρJ = ρ− γJ
a2
sc

+
WJ

2
(62)

=
L

16πG3

1

Ξ(r+)2
(
(r+)4

L2
− a2)

1

a2
sc

(63)

Therefore,

ρJ +
γJ
a2
sc

= ρ+
WJ

2
> ρ (64)

We also notice, that as a2 → 0, γJ → L
16πG3

which is the
casimir energy on the brane in the AdS-Schwarzschild
case[16]. Whereas, for a2 not sufficiently close to zero,
there are two extremes. One is the limit of astrophysical
black-holes. Then,

G3M >> 1 (65)

Consequently, γJ takes the form,

γJ =
L

16πG3

2(1− Ξ)

Ξ
2G3M (66)
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6. around Cardy-Verlinde formula

As a result, it turns out that the entropy and energy
densities obey the following relation,

s2 = (4π)2f2γJρJ (67)

where,

f−2 =

r4+
L4 − a2

L2

(
r2+
L2 + a2

L2 )2
[
a2

L2
+ 2

a2

r2
+

+ 1 + 2G3M
2a2

L2

Ξ
] (68)

For a2 = 0, the above relation reduces to the Cardy-
Verlinde formula in the AdS-Schwarzschild case[16],

s2 = (4π)2γ(ρ− γ

r2
) (69)

Again, a2 varies over a huge range from zero to L2. Let
us consider that a2 is not sufficiently close to zero. Then,
the relation (67) reduces to, for astrophysical black-holes,

s2 = (4π)2f2
asγJ(ρ− γ

a2
sc

+
WJ

2
) (70)

where,

f2
as =

Ξ

2(1− Ξ)

L2

r2
+

(71)

Notice, f2 << 1.

7. large distance limit

When the scale factor is large, ρ2 and WJ becomes neg-
ligible. Consequently, definition of γJ reduces to the
familiar[16] form of Casimir energy

γ

a2
sc

=
1

2
(ρ+ p− Tbs) (72)

Simultaneously, the relation (67) between the entropy
and energy densities reduce to the familiar relationship
[16] going by the name of Cardy-Verlinde formula

s2 = (4π)2f2γ(ρ− γ

a2
sc

) (73)

Note the presence of the prefactor f2 in the relation (67)
as well as in the formula (73).

8. correspondence to Cardy’s formula

Equation (73) is analogous to the Cardy’s formula [15]
for entropy in 1 + 1-dimensional CFTs,

S2 = (4π)2 c

24
(L0 −

c

24
) (74)

where,
c

24
↔ fγ (75)

L0 ↔ fρ (76)

9. more conclusions

(i) When a2 is not sufficiently close to zero, there is an-
other extreme for black-hole’s mass. This is the limit
when black-hole’s mass is such that

2G3M = (1 +
a

L
)2 (77)

This leads to

r+

L

2
=
a

L
(78)

TH = 0 (79)

In this case, our analysis will go through provided we are
at very large asc. Then from equation (73), it follows
that Cardy-Verlinde type relationship does not exist in
the bps limit.

(ii) It is also obvious, that in the limit when a2

L2 goes to
one, Cardy-Verlinde relationship breaks down. In that
limit, the brane rotates with the velocity of light.

F. Discussions

(i)We have retrieved standard form of Cardy-Verlinde
formula, only when the Universe reaches the “steady
state”[22].
(ii)In the AdSn+2-Schwarzschild black-holes[16], gamma
depends on r+ and r both, at generic position, when n is
not equal to one. For n = 1, gamma is constant, does not
depend on either r+ or, r. But, in this case of AdS1+2-
Kerr black-holes, gamma depends on r+ for all r. Hence,
it has no ’universal’ limit where, like at the horizon in
the Schwarzschild case[16], it goes to a constant.
(iii)There are two characteristics of the cosmology, one
is the Casimir energy and another analogue of central
charge. Both are large. First one is present, even if
a2 = 0, the second one appaears only at a2 not suffi-
ciently equal to zero. In other words, this is due to the
presence of the cosmology in the background of Kerr-
AdS space-time. The bulk space-time has two conserved
quantities, which can be defined only globally.
(iv)It will be interesting to study the cosmology on the
brane from the cosmological perspective.
(v)The immediate generalisation of our analysis to the
AdSn+2-kerr space-time, where n > 1, is equally inter-
esting to be done.
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H. Appendix

The relevent part of the minimal action[12, 13, 16] is

Ib =
1

8πG1+2
[

∫ √
hKd1+1x+ kb

∫ √
hd1+1x] (80)

The Israel Junction condition[25], for a brane, is

[KMN −KhMN ]+− = 8πG1+2tMN (81)

(+) corresponds to the side of the brane towards the es-
sential singularity of the black-hole.
Stress-energy tensor on the brane tMN is as follows,

tMN = − 2√
h

δIb
δhMN

(82)

=
kb

8πG1+2
hMN (83)

Again if the tension of the brane kb is small, it does not
disturb the space-time on both sides much [? ]. In that
case, the Israel Junction condition reduces to

KMN = −k−hMN (84)

where,

k− =
kb
2

(85)

On the otherhand, if the brane is the end of the black-
hole space-time or, the socalled cut-off brane, then the
Israel Junction condition involves only the (+) side. As
a result, the final relation is [26]

KMN = −k−hMN (86)

with

k− = kb (87)

1. extrinsic curvature

Let us assume that eM is one of the nonholonomic or-
thonormal vectors on the brane. n→ is an unit nonholo-
nomic vector orthonormal to the brane. The extrinsic

curvature [24] of the brane, is defined through

LeM n
→ = −KM

N eN (88)
Again, by definition, [? ]

LeM n
→ = −[n→, eM ] (89)

As a result,

[n→, eM ] = KM
N eN (90)

So, the diagonal components are given by

KM
M =< eM , [n→, eM ] > (91)

Hence,

Ks
s =< s→, [n→, s→] > (92)

This combined with the Israel Jn condition yields nr

equation (7) in the first section.

2. Time-like vector of a point on the brane

A point, xµ, on the brane follows a non-geodesic path in
the embedding space-time as it’s under the brane tension
also, beside gravity pull of the black-hole. vµ = dxµ

dτ [23],
is tangent to the path. It satisfies,

vµ∇µvλ 6= 0 (93)

The orthonormal frame attached with it also, in general,
does not propagate parallely. In this case,

vµ∇µnλ 6= 0 (94)

vµ∇µsλ = 0 (95)

In the cosmology on the brane, the same trajectory of
the same point on the brane is a geodesic path

va∇avb = 0 (96)

Azimuthal vector, sa, is also parallely propagated along
the time-like trajectory,

va∇asb = 0 (97)
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