Proof that there are no odd perfect numbers

Kouji Takaki

July 05 th, 2019

1. Abstract

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an integer $n(n \geqq 1)$, the prime factors other than p are $p_{1}, p_{2}, p_{3}, \cdots p_{r}$ and the even exponent of p_{k} is q_{k},

$$
y / p^{n}=\left(1+p+p^{2}+\cdots+p^{n}\right) \prod_{k=1}^{r}\left(1+p_{k}+p_{k}{ }^{2}+\cdots+p_{k}{ }^{q_{k}}\right) /\left(2 p^{n}\right)=\prod_{k=1}^{r} p_{k}{ }^{q_{k}}
$$

must be satisfied. Let m be non negative integer and q be positive integer,

$$
\begin{aligned}
& n=4 m+1 \\
& p=4 q+1
\end{aligned}
$$

Letting b and c be odd integers, satisfying following expressions,

$$
\begin{gathered}
b=\prod_{k=1}^{r} p_{k} q_{k} \\
c=\prod_{k=1}^{r}\left(1+p_{k}+p_{k}^{2}+\cdots+p_{k} q_{k}\right) / p^{n} \\
2 b=c\left(p^{n}+\cdots+1\right)
\end{gathered}
$$

is established. This is a known content. By the consideration of this research paper, since it turns out that there is a solution at most one when a is a multiple of p^{n} and at this time the value of b diverges to infinity, we have obtained the conclusion that there are no odd perfect numbers.

2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$
1+2+3=6
$$

It is 6 . Whether an odd perfect number exists or not is currently an unsolved problem.
3. Proof

An odd perfect number is y, one of them is an odd prime number p, an exponent of p is an integer $\mathrm{n}(\mathrm{n} \geqq 1)$. Let $p_{1}, p_{2}, p_{3}, \cdots p_{r}$ be the odd prime numbers of factors other than p, q_{k} the index of p_{k}, and variable a be the sum of product combinations other than prime p .

$$
a=\prod_{k=1}^{r}\left(1+p_{k}+{p_{k}}^{2}+\cdots+p_{k}{ }^{q_{k}}\right) \ldots \text { (1) }
$$

The number of terms N of variable a is

$$
\begin{equation*}
N=\prod_{k=1}^{r}\left(q_{k}+1\right) \tag{2}
\end{equation*}
$$

When y is a perfect number,

$$
y=a\left(1+p+p^{2}+\cdots+p^{n}\right)-y(n>0)
$$

is established.

$$
\begin{gathered}
a \sum_{k=0}^{n} p^{k} / 2=y \\
a \sum_{k=0}^{n} p^{k} /\left(2 p^{n}\right)=y / p^{n} \ldots
\end{gathered}
$$

3.1. If q_{k} has at least one odd integer

Letting the number of terms where q_{k} is an odd integer be a positive integer u, because $\mathrm{y} / p^{n}=\prod_{k=1}^{r} p_{k} q_{k}$ is an odd integer, the denominator on the left side of expression (3) has a prime factor 2 , from expression (2) variable a has more than u prime factor 2 and variable a is an even integer. Therefore $\sum_{k=0}^{n} p^{k}$ must be an odd integer, n is an even integer and u is 1 .
3.2. When all q_{k} are even integers
y / p^{n} is an odd integer, the denominator on the left side of expression (3) is an even integer, and since N is and odd integer when q_{k} are all even integers, variable a is and odd integer. Therefore $\sum_{k=0}^{n} p^{k}$ is necessary to include one prime factor 2 , $\sum_{k=0}^{n} p^{k} \equiv 0(\bmod 2)$ is established, and n must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of y must be an odd integer and variable a must be an odd integer. We consider the case of 3.2 below.

In order for y to be a perfect number, the following expression must be established.

$$
y / p^{n}=\left(1+p+p^{2}+\cdots+p^{n}\right) \prod_{k=1}^{r}\left(1+p_{k}+{p_{k}}^{2}+\cdots+p_{k}{ }^{q_{k}}\right) /\left(2 p^{n}\right)=\prod_{k=1}^{r} p_{k}{ }^{q_{k}}
$$

However, $q_{1}, q_{2}, \ldots, q_{r}$ are all even integers.

Here, let b be an integer

$$
\begin{equation*}
b=\prod_{k=1}^{r} p_{k}{ }^{q_{k}} \tag{4}
\end{equation*}
$$

A following expression is established.
$y / p^{n}=a\left(1+p+p^{2}+\cdots+p^{n}\right) /\left(2 p^{n}\right)=b$
$a\left(p^{n+1}-1\right) /\left(2(p-1) p^{n}\right)=b$
$(a-2 b) p^{n+1}+2 b p^{n}-a=0$
Because it is an $n+1$ order equation of p, the solution of the odd prime p is $n+1$ at most.
$(a p-2 b p+2 b) p^{n}=a$
Since $a p-2 b p+2 b$ is an odd integer, a/p p^{n} is an odd integer, which is c.

$$
a p-2 b p+2 b=c(c>0) \ldots \text { (6) }
$$

$$
(2 b-a) p=2 b-c
$$

Since variable a is an odd integer, $2 b-a$ is an odd integer and $2 b-a \neq 0$ $p=(2 b-c) /(2 b-a)$

Since $n \geqq 1$
$\mathrm{a}-\mathrm{c}=\mathrm{cp}^{\mathrm{n}}-\mathrm{c} \geqq \mathrm{cp}-\mathrm{c}>0$
$a>c$
is.

From equation (6)
$2 b(p-1)-(a p-c)=0$
$2 b-c\left(p^{n+1}-1\right) /(p-1)=0$
$\left(p^{n}+\cdots+1\right) / 2$ is an odd integer, $n=4 m+1$ is required with m as an integer.
$2 b(p-1)=c\left(p^{n+1}-1\right)$
$2 \mathrm{~b}=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
$2 \mathrm{~b}=\mathrm{c}(\mathrm{p}+1)\left(\mathrm{p}^{\mathrm{n}-1}+\mathrm{p}^{\mathrm{n}-3}+\cdots+1\right) \ldots(7)$
b is an odd integer when $p+1$ is not a multiple of 4 . It is necessary that $p-1$ be a multiple of 4 . A positive integer is taken as q.
$p=4 q+1$
is established.

When $\mathrm{p}>1$
$\mathrm{p}^{\mathrm{n}}-1<\mathrm{p}^{\mathrm{n}}$
$\left(p^{n}-1\right) /(p-1)<p^{n} /(p-1)$
$\mathrm{p}^{\mathrm{n}-1}+\cdots+1<\mathrm{p}^{\mathrm{n}} /(\mathrm{p}-1) \ldots 8$

Since p is an odd prime number satisfying $p=4 q+1$ and $p \geqq 5$
$\mathrm{p}^{\mathrm{n}-1}+\cdots+1<\mathrm{p}^{\mathrm{n}} / 4$
$2 b-a=c\left(p^{n}+\cdots+1\right)-c p^{n}=c\left(p^{n-1}+\cdots+1\right)$
$2 \mathrm{~b}-\mathrm{a}<\mathrm{cp}^{\mathrm{n}} / 4=\mathrm{a} / 4$
$2 \mathrm{~b}<5 \mathrm{a} / 4$
$a>8 b / 5$

Let a_{k} and b_{k} be integers and if
$\mathrm{a}_{\mathrm{k}}=1+\mathrm{p}_{\mathrm{k}}+\mathrm{p}_{\mathrm{k}}^{2}+\cdots+\mathrm{p}_{\mathrm{k}}^{\mathrm{q}_{\mathrm{k}}}, \mathrm{b}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}^{\mathrm{q}_{\mathrm{k}}}$,
$\mathrm{a}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}<\mathrm{b}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$\mathrm{a}_{\mathrm{k}}<\mathrm{b}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$\mathrm{a}=\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{a}_{\mathrm{k}}<\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{b}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)=\mathrm{b} \prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$\mathrm{a} / \mathrm{b}<\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
When $r=1$, since $a / b<3 / 2$ is established, it becomes inappropriate contrary to inequality (9).

From expression (7),
$\mathrm{b}=\mathrm{c}(\mathrm{p}+1) / 2 \times\left(\mathrm{p}^{\mathrm{n}-1}+\mathrm{p}^{\mathrm{n}-3}+\cdots+1\right)$
holds. Since $(p+1) / 2$ is the product of only prime numbers of b, let d_{k} be the index,
$(\mathrm{p}+1) / 2=\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}$
$p=2 \prod_{k=1}^{r} p_{k} d_{k}-1$

From $\mathrm{a}=\mathrm{cp}^{\mathrm{n}}$ and expression (7),
$2 \mathrm{bp}^{\mathrm{n}}=\mathrm{a}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
$\mathrm{a}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) /\left(2 \mathrm{bp} \mathrm{n}^{\mathrm{n}}\right)=1 \ldots$ (A)
When $r=1$,
$a=\left(p_{1}{ }^{q_{1}+1}-1\right) /\left(p_{1}-1\right)$
$\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{q}_{1}}$
Equation (A) does not hold since there is no odd perfect number when $r=1$.

Let R be a rational number,
$\mathrm{R}=\mathrm{a}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) /\left(2 \mathrm{bp}^{\mathrm{n}}\right)$
Let b' be a rational number and let A and B to be an integer,
$\mathrm{b}^{\prime}=\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}+1}-1\right) /\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}}\left(\mathrm{p}_{\mathrm{k}}-1\right)\right)>1$
$A=\left(p_{k}{ }^{q_{k}+1}-1\right) /\left(p_{k}-1\right)$
$B=p_{k}{ }^{q_{k}}$

Multiplying R by b^{\prime}, there are both cases that p_{k} increases p or does not change. When multiplied by b^{\prime}, the rate of change of R is $\operatorname{Ap}^{n}\left(p^{\prime n}+\cdots+1\right) /\left(B p^{\prime n}\left(p^{n}+\cdots+\right.\right.$ 1)), if p after variation is p. If the rate of change of R is 1 ,
$\operatorname{Ap}^{\mathrm{n}}\left(\mathrm{p}^{\prime \mathrm{n}}+\cdots+1\right) /\left(\mathrm{Bp}^{\prime \mathrm{n}}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)\right)=1$
$\mathrm{Ap}^{\mathrm{n}}\left(\mathrm{p}^{\prime \mathrm{n}}+\cdots+1\right)=\mathrm{Bp}^{\prime \mathrm{n}}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
This expression does not hold, since the right side is not a multiple of p when $\mathrm{p}^{\prime}>\mathrm{p}$, and $\mathrm{A}>\mathrm{B}$ holds when $\mathrm{p}^{\prime}=\mathrm{p}$. Due to this operation, R may be larger or smaller than the original value, since the rate of change of R does not become 1 .

Assuming that $\mathrm{R}=1$ in some r , letting x be an integer and by multiplying fractions $b^{\prime}=A_{r+1} / B_{r+1}, b^{\prime \prime}=A_{r+2} / B_{r+2}, \cdots b^{\prime \prime \cdots}=A_{x} / B_{x}$ to R, if $R=1$ holds finally. At this time, assuming that n changes, the change rate of R by this operation when multiplying by A_{r+1} / B_{r+1} is
$A_{r+1} p^{n}\left(p^{n_{r+1}}+\cdots+1\right) /\left(B_{r+1} p^{n_{r+1}}\left(p^{n}+\cdots+1\right)\right)$
$1 \times A_{r+1} p^{n}\left(p^{n_{r+1}}+\cdots+1\right) /\left(B_{r+1} p^{n_{r+1}}\left(p^{n}+\cdots+1\right)\right) \times A_{r+2} p^{n_{r+1}}\left(p^{n_{r+2}}+\cdots\right.$

$$
+1) /\left(B_{r+2} p^{n_{r+2}}\left(p^{n_{r+1}}+\cdots+1\right)\right) \times \ldots \times A_{x} p^{n_{x-1}}\left(p^{n_{x}}+\cdots\right.
$$

$$
+1) /\left(\mathrm{B}_{\mathrm{x}} \mathrm{p}^{\mathrm{n}_{\mathrm{x}}}\left(\mathrm{p}^{\mathrm{n}_{\mathrm{x}-1}}+\cdots+1\right)\right)=1
$$

$A_{r+1} A_{r+2} \ldots A_{x} p^{n}\left(p^{n_{x}}+\cdots+1\right)=B_{r+1} B_{r+2} \ldots B_{x} p^{n_{x}}\left(p^{n}+\cdots+1\right) \ldots$ (B)
When $\mathrm{n}=\mathrm{n}_{\mathrm{x}}$
$A_{r+1} A_{r+2} \ldots A_{x}=B_{r+1} B_{r+2} \ldots B_{x}$
holds. It becomes contradiction. Therefore, there is one solution when p and n are fixed.

Let e_{r}, f_{r} be odd integers and g_{r} be a rational number,
$\mathrm{e}_{\mathrm{r}}=\prod_{\mathrm{k}=1}^{\mathrm{r}}\left(\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}+\cdots+1\right)$
$\mathrm{f}_{\mathrm{r}}=\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}$
$\mathrm{g}_{\mathrm{r}}=\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}}$
holds.
$\mathrm{g}_{\mathrm{r}+1}=\mathrm{e}_{\mathrm{r}+1} / \mathrm{f}_{\mathrm{r}+1}=\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}} \times\left(\mathrm{p}_{\mathrm{r}+1} \mathrm{q}_{\mathrm{r}+1}+\cdots+1\right) / \mathrm{p}_{\mathrm{r}+1} \mathrm{q}_{\mathrm{r}+1}>\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}}=\mathrm{g}_{\mathrm{r}}$
Let $\mathrm{q}_{1}{ }^{\prime}$ be even integer and $\mathrm{q}_{1}^{\prime}>\mathrm{q}_{1}$ holds. Let g_{r} be gr^{\prime} when q_{1} becomes q_{1}^{\prime}, $g_{r}^{\prime}=\left(p_{1}{ }^{q_{1}}\left(p_{1}{ }^{q_{1}{ }^{\prime}}+\cdots+1\right) / p_{1}{ }^{q_{1}}\left(p_{1}{ }^{q_{1}}+\cdots+1\right)\right) g_{r}>g_{r}$
is established.

Here, it is assumed that q_{k} becomes $q_{k}-h_{k}$ by making q_{k} smaller than before for $g_{r} . h_{k}$ is an even non-negative integer. Then it is assume that r becomes $s(s>r)$, $g_{s}=g_{r}$ and g_{s} is not changed.

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{s}} / \mathrm{g}_{\mathrm{r}}=\mathrm{p}_{1}{ }^{\mathrm{q}_{1}} \times \ldots \times \mathrm{p}_{\mathrm{r}} \mathrm{q}_{\mathrm{r}}\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}-\mathrm{h}_{1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}-\mathrm{h}_{\mathrm{r}}}+\cdots+1\right) /\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}-\mathrm{h}_{1}} \times \ldots\right. \\
& \left.\times p_{r}{ }^{q_{r}-h_{r}}\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\right)=1 \\
& p_{1}{ }^{h_{1}} \times \ldots \times p_{r}{ }^{h_{r}}\left(p_{1}{ }^{q_{1}-h_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}-h_{r}}+\cdots+1\right) /\left(\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\right) \\
& \times p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}=1 \\
& p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}} \times p_{1}{ }^{h_{1}} \times \ldots \times p_{r}{ }^{h_{r}}\left(p_{1}{ }^{q_{1}-h_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}-h_{r}}+\cdots+1\right) \\
& =\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right) \\
& p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}\left(p_{1}{ }^{q_{1}}+\cdots+p_{1}{ }^{h_{1}}\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+p_{r}{ }^{h_{r}}\right) \\
& =\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)
\end{aligned}
$$

$\mathrm{a}=\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}}+\cdots+1\right)=\mathrm{cp}^{\mathrm{n}}$ holds and from expression (7), c must be a product of primes from p_{1} to p_{r}. Thereby, the above equation does not hold since it is inappropriate when there is even one prime number other than p_{1} to p_{r}. When changing the value of p_{k}, it is equivalent to dividing by $\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}$ and then multiplying by new $\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}}$, so it is sufficient to consider only the changes of q_{k} and r . From above, since g_{r} does not chord the original value when q_{k} or r is increased or decreased, it takes unique values for the variables p_{k}, q_{k}, r.

When $\mathrm{R}=1$,
$\mathrm{g}_{\mathrm{r}}=\mathrm{a} / \mathrm{b}=\mathrm{cp}^{\mathrm{n}} / \mathrm{c}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) / 2=2 \mathrm{p}^{\mathrm{n}} /\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
holds. The solutions (a, b) have at most one solution when p and n have arbitrary values satisfying $n \equiv p \equiv 1(\bmod 4)$ and $p \geqq 5$.

When A_{1} is divided by p, let t be an odd integer,
$\mathrm{p}_{1}{ }^{q_{1}}+\cdots+1=\mathrm{tp}$
$p_{1}{ }^{q_{1}+1}-1=t\left(p_{1}-1\right) p$
$\mathrm{p}_{1}{ }^{\mathrm{q}_{1}+1} \equiv 1(\bmod \mathrm{p})$
Let u be a rational number. From Fermat's little theorem,
$\left(\mathrm{q}_{1}+1\right) \mathrm{u}=\mathrm{p}-1$
is established. Thereby, q_{1} can be raised without limit.

Let $A_{1} A_{2} \ldots A_{s}$ be a value obtained by dividing a by the product of a_{k} represented by prime numbers not included in p.
$A_{1} A_{2} \ldots A_{S}=a / \prod_{d_{k}=0}\left(p_{k}{ }^{d_{k}}+\cdots+1\right)$
When $A_{1} A_{2} \ldots A_{s}$ is a multiple of p^{n}, the value of $A_{1} A_{2} \ldots A_{s}$ can be increased without limit by raising q_{k}. When $A_{1} A_{2} \ldots A_{s}$ is not a multiple of p^{n}, among A_{s+1} to A_{r}, A_{k} which is a multiples of p can be replaced with larger A_{k} which is a multiples of p.

When $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{s}}$ can be divided by p^{n}, the combinations of primes are infinite, and there is at most one solution for one of the combinations. Let a set having infinite number of elements which are odd prime multiples of the values of $B_{1} B_{2} \ldots B_{r}$ be a set P , and consider a set Q having as an element the value of b when a is an odd multiple of p^{n} and is not divided by p^{n+1}. When b is included in the set P or Q, the number of solutions is one for each set. Since set Q is a proper subset of the sum of all the sets considered as set P , there is at most one solution for all product sets of the set P. Therefore, even if an odd perfect number exists, since its value diverges to infinity, there are no odd perfect numbers.
4. Complement

From equation (5),
$2 b p^{n}(p-1)=a\left(p^{n+1}-1\right)$
$2=a\left(p^{n+1}-1\right) /\left(b p^{n}(p-1)\right)$
$2=\left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right) \ldots\left(p_{r}{ }^{q_{r}+1}-1\right)\left(p^{n+1}-1\right)$

$$
/\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}} \mathrm{p}_{2}{ }^{\mathrm{q}_{2}} \ldots \mathrm{p}_{\mathrm{r}}{ }^{\left.\mathrm{q}_{\mathrm{r}}{ }^{\mathrm{n}}\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}-1\right)(\mathrm{p}-1)\right), ~\left(p^{2}\right)}\right.
$$

$2\left(p_{1}{ }^{q_{1}+1}-p_{1}{ }^{q_{1}}\right)\left(p_{2}{ }^{q_{2}+1}-p_{2}{ }^{q_{2}}\right) \ldots\left(p_{r}{ }^{q_{r}+1}-p_{r}{ }^{q_{r}}\right)\left(p^{n+1}-p^{n}\right)$

$$
=\left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right) \ldots\left(p_{r}{ }^{q_{r}+1}-1\right)\left(p^{n+1}-1\right)
$$

We consider when $r=2$.
$\left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right)\left(p^{n+1}-1\right)=2\left(p_{1} q_{1}+1-p_{1} q_{1}\right)\left(p_{2}{ }^{q_{2}+1}-p_{2}{ }^{q_{2}}\right)\left(p^{n+1}-p^{n}\right)$
Let $\mathrm{s}, \mathrm{t}, \mathrm{u}$ be integers,
$\mathrm{s}=\mathrm{p}_{1}{ }^{\mathrm{q}_{1}+1}-1$
$\mathrm{t}=\mathrm{p}_{2} \mathrm{q}_{2}+1$
$\mathrm{u}=\mathrm{p}^{\mathrm{n}+1}-1$
are.

```
stu \(=2\left(p_{1}{ }^{q_{1}+1}-1-\left(p_{1} q_{1}-1\right)\right)\left(p_{2}{ }^{q_{2}+1}-1-\left(p_{2}{ }^{q_{2}}-1\right)\right)\left(p^{n+1}-1-\left(p^{n}-1\right)\right)\)
stu \(=2\left(\mathrm{~s}-(\mathrm{s}+1) / \mathrm{p}_{1}+1\right)\left(\mathrm{t}-(\mathrm{t}+1) / \mathrm{p}_{2}+1\right)(\mathrm{u}-(\mathrm{u}+1) / \mathrm{p}+1)\)
\(\mathrm{pp}_{1} \mathrm{p}_{2} \mathrm{stu}=2\left((\mathrm{~s}+1) \mathrm{p}_{1}-(\mathrm{s}+1)\right)\left((\mathrm{t}+1) \mathrm{p}_{2}+(\mathrm{t}+1)\right)((\mathrm{u}+1) \mathrm{p}+(\mathrm{u}+1))\)
\(\mathrm{pp}_{1} \mathrm{p}_{2} \mathrm{stu}=2(\mathrm{~s}+1)\left(\mathrm{p}_{1}-1\right)(\mathrm{t}+1)\left(\mathrm{p}_{2}-1\right)(\mathrm{u}+1)(\mathrm{p}-1)\)
\(\mathrm{stu} /((\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1))=2\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right)(\mathrm{p}-1) /\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}\right)\)
```

Since $\operatorname{stu} /((s+1)(t+1)(u+1))$ is a monotonically increasing function for variables s , t and u , if
$s \geqq 3^{2+1}-1=26, p_{1}=3, q_{1}=2$
$\mathrm{t} \geqq 7^{2+1}-1=342, \mathrm{p}_{2}=7, \mathrm{q}_{2}=2$
$\mathrm{u} \geqq 5^{2}-1=24, \mathrm{p}=5, \mathrm{n}=1$
holds,
$\mathrm{stu} /((\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1)) \geqq 26 \times 342 \times 24 /(27 \times 343 \times 25)=7904 / 8575$
$2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)=2 \times 2 \times 6 \times 4 /(3 \times 7 \times 5)=32 / 35$

Since $\operatorname{stu} /((s+1)(t+1)(u+1))$ is limited to 1 when s, t and u are infinite, $\mathrm{stu} /((\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1))<1$

If $\mathrm{f}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}\right)=2\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right)(\mathrm{p}-1) /\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}\right)$ holds, it is sufficient to consider a combination where $f\left(p_{1}, p_{2}, p\right)<1$.

$$
\begin{aligned}
& \mathrm{f}(3,7,5)=2 \times 2 \times 6 \times 4 /(3 \times 7 \times 5)=32 / 35 \\
& \mathrm{f}(3,11,5)=2 \times 2 \times 10 \times 4 /(3 \times 11 \times 5)=32 / 33 \\
& \mathrm{f}(3,13,5)=2 \times 2 \times 12 \times 4 /(3 \times 13 \times 5)=64 / 65 \\
& \mathrm{f}(3,17,5)=2 \times 2 \times 16 \times 4 /(3 \times 17 \times 5)=256 / 255 \\
& \mathrm{f}(3,7,13)=2 \times 2 \times 6 \times 12 /(3 \times 7 \times 13)=96 / 91 \\
& \mathrm{f}(3,5,17)=2 \times 2 \times 4 \times 16 /(3 \times 5 \times 17)=256 / 255
\end{aligned}
$$

From the above, when $r=2$, a combination $\left(p_{1}, p_{2}, p\right)=(3,7,5),(3,11,5),(3,13,5)$ can be considered.

Let q_{k} be 2 and $n=1$, if $g\left(p_{1}, p_{2}, p\right)=\left(p_{1}{ }^{3}-1\right)\left(p_{2}{ }^{3}-1\right)\left(p^{2}-1\right) /\left(p_{1}{ }^{3} p_{2}{ }^{3} p^{2}\right)$,
$\mathrm{g}(3,7,5)=26 \times 342 \times 24 /\left(3^{3} 7^{3} 5^{2}\right)=7904 / 8575>32 / 35$
$\mathrm{g}(3,11,5)=26 \times 1330 \times 24 /\left(3^{3} 11^{3} 5^{2}\right)=55328 / 59895$
$\mathrm{g}(3,13,5)=26 \times 2196 \times 24 /\left(3^{3} 13^{3} 5^{2}\right)=3904 / 4225$
Since the function g is the minimum in the case of $q_{k}=2$ and $n=1$, there is no solution q_{k} and n when $g>f$, so the case of ($\left.p_{1}, p_{2}, p\right)=(3,7,5)$ becomes unsuitable.

$$
\begin{aligned}
& \operatorname{stu} /((s+1)(t+1)(u+1))=2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right) \\
& \left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right)\left(p^{n+1}-1\right) /\left(p_{1}{ }^{q_{1}+1} p_{2}{ }_{2} q_{2}+1\right. \\
& \left.p^{n+1}\right) \\
& =2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)
\end{aligned}
$$

If $F\left(p_{1}, p_{2}, p\right)=\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)$,
$\mathrm{F}\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}+1}, \mathrm{p}_{2}{ }^{\mathrm{q}_{2}+1}, \mathrm{p}^{\mathrm{n}+1}\right)=2 \mathrm{~F}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}\right)$
5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.
6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017 Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015

