Proof that there are no odd perfect numbers

Kouji Takaki

August 05th, 2019

1. Abstract

For y to be a perfect number, if one of the prime factors is p, the exponent of p is an integer $n(n \ge 1)$, the prime factors other than p are $p_1, p_2, p_3, \dots p_r$ and the even exponent of p_k is q_k ,

$$y/p^n = (1+p+p^2+\cdots+p^n) \prod_{k=1}^r (1+p_k+p_k^2+\cdots+p_k^{q_k})/(2p^n) = \prod_{k=1}^r p_k^{q_k}$$

must be satisfied. Let *m* be non negative integer and *q* be positive integer,

$$n = 4m + 1$$
$$p = 4q + 1$$

Letting *b* and *c* be odd integers, satisfying following expressions,

$$b = \prod_{k=1}^{r} p_k^{q_k}$$

$$c = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k})/p^n$$

$$2b = c(p^n + \dots + 1)$$

is established. This is a known content. By the consideration of this research paper, since it turned out that the number of odd perfect numbers is one at most when $n \ge 5$ since there is at most one solution that satisfies this equation for p and p is unique in the range of $n \ge 5$. Then since it becomes contradiction because two or more solutions are satisfied when p is fixed and p is changed, we have obtained a conclusion that there are no odd perfect numbers.

2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$1 + 2 + 3 = 6$$

It is 6. Whether an odd perfect number exists or not is currently an unsolved problem.

3. Proof

An odd perfect number is y, one of them is an odd prime number p, an exponent of p is an integer n ($n \ge 1$). Let $p_1, p_2, p_3, \dots p_r$ be the odd prime numbers of factors other than p, q_k the index of p_k , and variable a be the sum of product combinations other than prime p.

$$a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \dots + p_k^{q_k}) \dots \textcircled{1}$$

The number of terms N of variable a is

$$N = \prod_{k=1}^{r} (q_k + 1) \dots ②$$

When y is a perfect number,

$$y = a(1 + p + p^2 + \dots + p^n) - y (n > 0)$$

is established.

$$a \sum_{k=0}^{n} p^{k} / 2 = y$$
$$a \sum_{k=0}^{n} p^{k} / (2p^{n}) = y/p^{n} \dots 3$$

3.1. If q_k has at least one odd integer

Letting the number of terms where q_k is an odd integer be a positive integer u, because $y/p^n = \prod_{k=1}^r p_k^{q_k}$ is an odd integer, the denominator on the left side of the expression ③ has a prime factor 2, from the expression ② variable a has more than u prime factor 2 and variable a is an even integer. Therefore, $\sum_{k=0}^n p^k$ must be an odd integer, n is an even integer and u is 1.

3.2. When all q_k are even integers

 y/p^n is an odd integer, the denominator on the left side of the expression ③ is an even integer, and since N is and odd integer when q_k are all even integers, variable a is and odd integer. Therefore, $\sum_{k=0}^{n} p^k$ is necessary to include one prime factor 2, $\sum_{k=0}^{n} p^k \equiv 0 \pmod{2}$ is established, and n must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of y must be an odd integer and variable a must be an odd integer. We consider the case of 3.2 below.

In order for y to be a perfect number, the following expression must be established.

$$y/p^n = (1+p+p^2+\cdots+p^n) \prod_{k=1}^r (1+p_k+{p_k}^2+\cdots+{p_k}^{q_k})/(2p^n) = \prod_{k=1}^r p_k^{q_k}$$

However, $q_1, q_2, ..., q_r$ are all even integers.

Here, let b be an integer

$$b = \prod_{k=1}^{r} p_k^{q_k} \dots \textcircled{4}$$

A following expression is established.

$$y/p^n = a(1 + p + p^2 + \dots + p^n)/(2p^n) = b$$

$$a(p^{n+1}-1)/(2(p-1)p^n) = b$$

$$(a-2b)p^{n+1} + 2bp^n - a = 0 \dots 5$$

Because it is an n+1 order equation of p, the solution of the odd prime p is n+1 at most.

$$(ap - 2bp + 2b)p^n = a$$

Since ap - 2bp + 2b is an odd integer, a/p^n is an odd integer, which is c.

$$ap - 2bp + 2b = c (c > 0) \dots$$

$$(2b - a)p = 2b - c$$

Since variable a is an odd integer, 2b-a is an odd integer and $2b-a \neq 0$ p = (2b-c)/(2b-a)

Since $n \ge 1$

$$a - c = cp^n - c \ge cp - c > 0$$

a > c

is.

From the equation 6

$$2b(p-1) - (ap - c) = 0$$

$$2b - c(p^{n+1} - 1)/(p - 1) = 0$$

 $(p^n + \cdots + 1)/2$ is an odd integer, n = 4m + 1 is required with m as an integer.

$$2b(p-1) = c(p^{n+1}-1)$$

$$2b = c(p^n + \dots + 1)$$

$$2b = c(p+1)(p^{n-1} + p^{n-3} + \dots + 1) \dots$$

b is an odd integer when p + 1 is not a multiple of 4. It is necessary that p - 1 be a multiple of 4. A positive integer is taken as q.

$$p = 4q + 1$$

is established.

When p > 1

$$p^n - 1 < p^n$$

$$(p^n - 1)/(p - 1) < p^n/(p - 1)$$

$$p^{n-1} + \dots + 1 < p^n/(p-1) \dots \otimes$$

Since p is an odd prime number satisfying p = 4q + 1 and $p \ge 5$

$$p^{n-1} + \cdots + 1 < p^n/4$$

$$2b - a = c(p^n + \dots + 1) - cp^n = c(p^{n-1} + \dots + 1)$$

$$2b - a < cp^{n}/4 = a/4$$

Let a_k and b_k be integers and if

$$a_k = 1 + p_k + p_k^2 + \dots + p_k^{q_k}, \ b_k = p_k^{q_k},$$

$$a_k - b_k < b_k/(p_k - 1)$$

$$a_k < b_k p_k / (p_k - 1)$$

$$a = \prod_{k=1}^{r} a_k < \prod_{k=1}^{r} b_k p_k / (p_k - 1) = b \prod_{k=1}^{r} p_k / (p_k - 1)$$
$$a/b < \prod_{k=1}^{r} p_k / (p_k - 1)$$

When r = 1, since a/b < 3/2 is established, it becomes inappropriate contrary to inequality ©.

From the expression \bigcirc ,

$$b = c(p+1)/2 \times (p^{n-1} + p^{n-3} + \dots + 1)$$

holds. Since (p+1)/2 is the product of only prime numbers of b, let d_k be the index,

$$(p+1)/2 = \prod_{k=1}^{r} p_k^{d_k}$$

$$p = 2 \prod\nolimits_{k=1}^{r} p_k^{\ d_k} - 1$$

From $a = cp^n$ and the expression \bigcirc ,

$$2bp^n = a(p^n + \dots + 1)$$

$$a(p^{n} + \dots + 1)/(2bp^{n}) = 1 \dots (A)$$

When r = 1,

$$a = (p_1^{q_1+1} - 1)/(p_1 - 1)$$

$$b = p_1^{q_1}$$

The equation (A) does not hold since there is no odd perfect number when r = 1.

Let R be a rational number,

$$R = a(p^n + \dots + 1)/(2bp^n)$$

Let b' be a rational number and let A and B to be an integer,

$$b' = (p_k^{q_k+1} - 1)/(p_k^{q_k}(p_k - 1)) > 1$$

$$A_k = (p_k^{q_k+1} - 1)/(p_k - 1)$$

$$B_k = p_k^{q_k}$$

Multiplying R by b', there are both cases that p_k increases p or does not change. When multiplied by b', the rate of change of R is $A_{r+1}p^n(p'^n + \dots + 1)/(B_{r+1}p'^n(p^n + \dots + 1))$, if p after variation is p'. If the rate of change of R is 1,

$$A_{r+1}p^{n}(p'^{n}+\cdots+1)/(B_{r+1}p'^{n}(p^{n}+\cdots+1))=1$$

$$A_{r+1}p^{n}(p'^{n}+\cdots+1)=B_{r+1}p'^{n}(p^{n}+\cdots+1)$$

This expression does not hold since the right side is not a multiple of p when p' > p, and $A_{r+1} > B_{r+1}$ holds when p' = p. Due to this operation, R may be larger or smaller than the original value since the rate of change of R does not become 1.

Assuming that R=1 in some r, letting x be an integer and by multiplying fractions $b'=A_{r+1}/B_{r+1},\ b''=A_{r+2}/B_{r+2},\ \cdots b''\cdots'=A_x/B_x$ to R. Furthermore, assuming that $A_{s+1}A_{s+2}\dots A_r$ is not a multiple of p, R is divided by $A_{s+1}/B_{s+1},\ A_{s+2}/B_{s+2},\cdots A_r/B_r$ and it is assumed that finally R=1. At this time, assuming that n changes, the change rate of R by this operation when multiplying by A_{r+1}/B_{r+1} is

$$A_{r+1}p^{n}(p^{n_{r+1}}+\cdots+1)/(B_{r+1}p^{n_{r+1}}(p^{n}+\cdots+1))$$

$$\begin{split} 1\times B_{s+1}p^n(p^{n_{s+1}}+\cdots+1)/(A_{s+1}p^{n_{s+1}}(p^n+\cdots+1))\times...\times B_rp^{n_{r-1}}(p^{n_r}+\cdots\\ &+1)/(A_rp^{n_r}(p^{n_{r-1}}+\cdots+1))\times A_{r+1}p^{n_r}(p^{n_{r+1}}+\cdots+1)/(B_{r+1}p^{n_{r+1}}(p^{n_r}+\cdots+1))\times A_{r+2}p^{n_{r+1}}(p^{n_{r+2}}+\cdots+1)/(B_{r+2}p^{n_{r+2}}(p^{n_{r+1}}+\cdots+1))\times...\\ &\times A_xp^{n_{x-1}}(p^{n_x}+\cdots+1)/(B_xp^{n_x}(p^{n_{x-1}}+\cdots+1))=1 \end{split}$$

$$\begin{split} B_{s+1}B_{s+2} & \dots B_r A_{r+1}A_{r+2} \dots A_x p^{n-n_x} (p^{n_x} + \dots + 1) \\ & = A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x (p^n + \dots + 1) \dots (B) \end{split}$$

When $n_x < n$, it becomes contradiction since the right side of above expression does not include factor p.

When $n_x = n$,

$$B_{s+1}B_{s+2} \dots B_r A_{r+1}A_{r+2} \dots A_x = A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x \dots (C)$$

Let e_r , f_r be odd integers and g_r be a rational number,

$$e_r = \prod\nolimits_{k=1}^r (p_k{}^{q_k} + \cdots + 1)$$

$$f_r = \prod\nolimits_{k=1}^r p_k^{q_k}$$

$$g_r = e_r/f_r$$

holds.

$$g_{r+1} = e_{r+1}/f_{r+1} = e_r/f_r \times (p_{r+1}^{q_{r+1}} + \dots + 1)/p_{r+1}^{q_{r+1}} > e_r/f_r = g_r$$

Let q_1' be even integer and $q_1' > q_1$ holds. Let g_r be g_r' when q_1 becomes q_1' ,

$$g_r' = (p_1^{\ q_1}(p_1^{\ q_1'} + \dots + 1)/p_1^{\ q_1'}(p_1^{\ q_1} + \dots + 1))g_r > g_r$$

is established.

Here, it is assumed that q_k becomes $q_k - h_k$ by making q_k smaller than before for g_r . h_k is an even non-negative integer. Then it is assume that r becomes s(s > r), $g_s = g_r$ and g_s is not changed.

$$\begin{split} g_s/g_r &= p_1^{\ q_1} \times ... \times p_r^{\ q_r} \Big(p_1^{\ q_1-h_1} + \cdots + 1 \Big) ... \big(p_r^{\ q_r-h_r} + \cdots + 1 \big) / \big(p_1^{\ q_1-h_1} \times ... \\ & \times p_r^{\ q_r-h_r} \big(p_1^{\ q_1} + \cdots + 1 \big) ... \big(p_r^{\ q_r} + \cdots + 1 \big) \big) = 1 \\ p_1^{\ h_1} \times ... \times p_r^{\ h_r} \Big(p_1^{\ q_1-h_1} + \cdots + 1 \Big) ... \big(p_r^{\ q_r-h_r} + \cdots + 1 \big) / \big(\big(p_1^{\ q_1} + \cdots + 1 \big) ... \big(p_r^{\ q_r} + \cdots + 1 \big) \\ & \times p_{r+1}^{\ q_{r+1}} \times ... \times p_s^{\ q_s} = 1 \\ p_{r+1}^{\ q_{r+1}} \times ... \times p_s^{\ q_s} \times p_1^{\ h_1} \times ... \times p_r^{\ h_r} \Big(p_1^{\ q_1-h_1} + \cdots + 1 \Big) ... \Big(p_r^{\ q_r-h_r} + \cdots + 1 \Big) \\ & = \big(p_1^{\ q_1} + \cdots + 1 \big) ... \big(p_r^{\ q_r} + \cdots + p_r^{\ h_r} \big) \\ & = \big(p_1^{\ q_1} + \cdots + 1 \big) ... \big(p_r^{\ q_r} + \cdots + p_r^{\ h_r} \big) \\ & = \big(p_1^{\ q_1} + \cdots + 1 \big) ... \big(p_r^{\ q_r} + \cdots + 1 \big) \end{split}$$

 $a=(p_1^{q_1}+\cdots+1)\dots(p_r^{q_r}+\cdots+1)=cp^n$ holds and from the expression 7, c must be a product of primes from p_1 to p_r . Thereby, the above equation does not hold since it is inappropriate when there is even one prime number other than p_1 to p_r . When changing the value of p_k , it is equivalent to dividing by $p_k^{q_k}$ and then multiplying by new $p_k^{q_k}$, so it is sufficient to consider only the changes of q_k and r. From above, since g_r does not chord the original value when q_k or r is increased or decreased, it takes unique values for the variables p_k , q_k , r.

From the above proof,

$$g_r = A_1 A_2 ... A_s / B_1 B_2 ... B_s \times A_{r+1} A_{r+2} ... A_x / B_{r+1} B_{r+2} ... B_x$$

 g_r must be represented uniquely, and the expression (C) does not satisfied. When dividing by the prime number in the expression of p, a contradiction arises since the prime number not included in b is in the expression of p. Therefore, when p holds $p \equiv 1 \pmod{4}$ and $p \geq 5$, the number of the solution (a,b,p,n) satisfying R=1 is at most one.

Since (a, b, p, n) = (1,1,1,1) is inappropriate solution and the expression (C) becomes contradiction, there is one solution when $n_x = n = 1$. Therefore, there are no odd perfect numbers when n = 1.

Define the operation [multiplication] and the operation [division] as follows.

Assuming that p in the equation of R is replaced by p' by multiplying A_i/B_i , define operation [multiplication] to R as follows.

$$p' = 2 \prod_{k=1}^{r} p_k^{d_k} \times p_i^{d_i} - 1$$

$$0 \leqq d_i \leqq q_i$$

Here, let i be i > r. Suppose operation [division] is division by A_j/B_j for R, and if p_j is included in p in the expression R, p_j is deleted as $d_j = 0$. Here, assuming that j satisfies $1 \le j \le r$.

In the proof of the expression (B), it is assumed that p changes on the way, and finally p becomes p_x .

$$A_1 ... A_r = cp^n$$

 $2B_1 ... B_r = c(p^n + \cdots + 1)$
 $A_1 ... A_x = c'p_x^{n_x}$
 $2B_1 ... B_x = c'(p_x^{n_x} + \cdots + 1)$

It is assumed that the above expressions are satisfied.

$$\begin{split} B_{s+1}B_{s+2} & \dots B_r A_{r+1}A_{r+2} \dots A_x p^n (p_x{}^{n_x} + \dots + 1) \\ & = A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x p_x{}^{n_x} (p^n + \dots + 1) \\ B_{s+1}B_{s+2} \dots B_r A_1 \dots A_r A_{r+1}A_{r+2} \dots A_x p^n (p_x{}^{n_x} + \dots + 1) \\ & = A_1 \dots A_r A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x p_x{}^{n_x} (p^n + \dots + 1) \\ B_{s+1}B_{s+2} \dots B_r c' p_x{}^{n_x} p^n (p_x{}^{n_x} + \dots + 1) \\ & = A_1 \dots A_r A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x p_x{}^{n_x} (p^n + \dots + 1) \\ B_{s+1}B_{s+2} \dots B_r c' p^n (p_x{}^{n_x} + \dots + 1) = A_1 \dots A_r A_{s+1}A_{s+2} \dots A_r B_{r+1}B_{r+2} \dots B_x (p^n + \dots + 1) \end{split}$$

$$\begin{split} B_1 & \dots B_r B_{s+1} B_{s+2} \dots B_r c' p^n (p_x^{n_x} + \dots + 1) \\ & = A_1 \dots A_r A_{s+1} A_{s+2} \dots A_r B_1 \dots B_r B_{r+1} B_{r+2} \dots B_x (p^n + \dots + 1) \\ B_1 & \dots B_r B_{s+1} B_{s+2} \dots B_r c' p^n (p_x^{n_x} + \dots + 1) \\ & = A_1 \dots A_r A_{s+1} A_{s+2} \dots A_r c' (p_x^{n_x} + \dots + 1) / 2 \times (p^n + \dots + 1) \\ B_1 & \dots B_r B_{s+1} B_{s+2} \dots B_r p^n = A_1 \dots A_r A_{s+1} A_{s+2} \dots A_r / 2 \times (p^n + \dots + 1) \end{split}$$

$$\begin{split} c(p^n + \dots + 1)/2 \times B_{s+1} B_{s+2} \dots B_r p^n &= cp^n A_{s+1} A_{s+2} \dots A_r / 2 \times (p^n + \dots + 1) \\ B_{s+1} B_{s+2} \dots B_r &= A_{s+1} A_{s+2} \dots A_r \end{split}$$

is established. It becomes contradiction since $A_k > B_k$ holds when the operations [division] are performed.

The following lemma holds as a corollary of Zsigmondy's theorem.

[lemma Z]

For odd prime p and odd $n \ge 5$, where $p \equiv 1, n \equiv 1 \pmod{4}$, $p^{n+1} - 1$ has at least one prime factor different from any prime factor of $p^2 - 1$.

By using this lemma Z, the following theorem can be proved.

[theorem]

For odd prime p and odd $n \ge 5$, where $p \equiv 1$, $n \equiv 1 \pmod{4}$, $p^{n-1} + p^{n-3} + \dots + p^2 + 1$ has a prime factor different from at least one prime factor of (p+1)/2.

[proof]

From lemma Z, $p^{n+1}-1$ has at least one prime factor different from any prime factor of p^2-1 . Let this be q.

 $p^{n+1} - 1 = (p^{n-1} + p^{n-3} + \dots + p^2 + 1) \times (p^2 - 1)$ and since q is not a prime factor of $p^2 - 1$, $p^{n-1} + p^{n-3} + \dots + p^2 + 1$ always has q as a prime factor.

Since $p^2 - 1$ is a multiple of (p + 1)/2, this q is different from any prime factor of (p + 1)/2. \square

From the above, for odd prime number p and odd number $n \ge 5$ where $p \equiv 1, n \equiv 1 \pmod{4}$ $p^{n-1} + p^{n-3} + \dots + p^2 + 1$ can not be the product of only (p+1)/2 prime factors.

We quoted the above lemma Z, theorem and proof from as below.

Proof for the existence of an odd complete number 3

https://rio2016.5ch.net/test/read.cgi/math/1544361065/498

From the above theorem, when $n \ge 5$, if b is only a prime number of (p+1)/2, it does not become an odd perfect number. ...(D)

We consider in the case of $n \ge 5$ as follows. Consider a tree whose vertex is (a,b,p,n) = (1,1,1,1), and when the operations [multiplication] are performed, it becomes a child node. For example, consider a child node connected to a vertex as follows.

$$(a, b, p, n) = (13,9,5,5)$$
 as $p_1 = 3$, $q_1 = 2$ and $d_1 = 1$
 $(a, b, p, n) = (13,9,17,9)$ as $p_1 = 3$, $q_1 = 2$ and $d_1 = 2$
 $(a, b, p, n) = (57,49,97,13)$ as $p_1 = 7$, $q_1 = 2$ and $d_1 = 2$

Suppose that the operations [multiplication] for changing the value of p are performed first, and then the operations [multiplication] for not changing the value of p are performed to create a tree structure. Here, when there is a solution in a certain p, if there is a solution even in the other value p', considering a set of line segments connecting these two points, by the proposition that there is at most one solution for an arbitrary p and the proposition (D), the operations [division] must be performed to return to the bifurcation where the value of p changes. At this time, since it becomes inconsistent when the operations [division] are performed according to the above proof, p must be unique. Therefore, since there is at most one solution with R = 1 for p satisfying $p \ge 5$, the number of odd perfect number is one at most where $n \ge 5$.

Assuming that R=1 holds in some r when $n \ge 5$ and by fixing n and performing operations [multiplication], finally p becomes p_x and R=1 holds again.

$$A_{1} ... A_{r} = cp^{n}$$

$$2B_{1} ... B_{r} = c(p^{n} + \cdots + 1)$$

$$A_{1} ... A_{x} = c'p_{x}^{n}$$

$$2B_{1} ... B_{x} = c'(p_{x}^{n} + \cdots + 1)$$

$$2B_{1} ... B_{r}p^{n} = A_{1} ... A_{r}(p^{n} + \cdots + 1)$$

$$2B_{1} ... B_{x}p_{x}^{n} = A_{1} ... A_{x}(p_{x}^{n} + \cdots + 1)$$

$$B_{r+1} ... B_{x} \times p_{x}^{n}/p^{n} = A_{r+1} ... A_{x} \times (p_{x}^{n} + \cdots + 1)/(p^{n} + \cdots + 1)$$

$$B_{r+1} ... B_{x}p_{x}^{n}(p^{n} + \cdots + 1) = A_{r+1} ... A_{x}p^{n}(p_{x}^{n} + \cdots + 1)$$

Let t be an odd integer,

$$A_{r+1} \dots A_x = tp_x^n \dots (E)$$

$$\begin{split} B_{r+1} & ... B_x(p^n + \dots + 1) = tp^n(p_x{}^n + \dots + 1) \\ & \text{If } B_x = p^{q_x}, \\ B_{r+1} & ... B_{x-1} p^{q_x-n}(p^n + \dots + 1) = t(p_x{}^n + \dots + 1) \end{split}$$

From the expression (E),

$$A_1 \dots A_x = \operatorname{ctp}^n p_x^{\ n} = c' p_x^{\ n}$$
$$c' = \operatorname{ctp}^n$$

$$\begin{split} B_{r+1} & \dots B_{x-1} p^{q_x-n} (p^n + \dots + 1) = c'/(cp^n) \times (p_x{}^n + \dots + 1) \\ cB_{r+1} & \dots B_{x-1} p^{q_x} (p^n + \dots + 1) = c'(p_x{}^n + \dots + 1) \\ B_1 & \dots B_r B_{r+1} \dots B_{x-1} p^{q_x} = B_1 \dots B_x \end{split}$$

When $B_x = p^{q_x}$, above expression holds. Therefore, when there is one odd perfect number, there are always odd perfect numbers of different value. This contradicts the proposition that the number of odd perfect numbers is at most one when $n \ge 5$. From the above, there are no odd perfect numbers.

4. Complement

$$2bp^{n}(p-1) = a(p^{n+1}-1)$$

$$2 = a(p^{n+1} - 1)/(bp^n(p-1))$$

$$2 = (p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1) \dots (p_r^{q_r+1} - 1)(p^{r_r+1} - 1)$$

$$/(p_1^{q_1}p_2^{q_2}...p_r^{q_r}p^n(p_1-1)(p_2-1)...(p_r-1)(p-1))$$

$$\begin{split} 2(p_1^{q_1+1}-p_1^{q_1})(p_2^{q_2+1}-p_2^{q_2}) &... (p_r^{q_r+1}-p_r^{q_r})(p^{n+1}-p^n) \\ &= (p_1^{q_1+1}-1)(p_2^{q_2+1}-1) ... (p_r^{q_r+1}-1)(p^{n+1}-1) \end{split}$$

We consider when r = 2.

$$({p_1}^{q_1+1}-1)({p_2}^{q_2+1}-1)({p^{n+1}}-1)=2({p_1}^{q_1+1}-{p_1}^{q_1})({p_2}^{q_2+1}-{p_2}^{q_2})({p^{n+1}}-{p^n})$$

Let s, t, u be integers,

$$s = p_1^{q_1 + 1} - 1$$

$$t = p_2^{q_2 + 1} - 1$$

$$u = p^{n+1} - 1$$

are.

$$stu = 2(p_1^{q_1+1} - 1 - (p_1^{q_1} - 1))(p_2^{q_2+1} - 1 - (p_2^{q_2} - 1))(p^{n+1} - 1 - (p^n - 1))$$

$$stu = 2(s - (s + 1)/p_1 + 1)(t - (t + 1)/p_2 + 1)(u - (u + 1)/p + 1)$$

$$pp_1p_2stu = 2((s+1)p_1 - (s+1))((t+1)p_2 + (t+1))((u+1)p + (u+1))$$

$$pp_1p_2stu = 2(s+1)(p_1-1)(t+1)(p_2-1)(u+1)(p-1)$$

$$stu/((s+1)(t+1)(u+1)) = 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p)$$

Since stu/((s+1)(t+1)(u+1)) is a monotonically increasing function for variables

s, t and u, if

$$s \ge 3^{2+1} - 1 = 26$$
, $p_1 = 3$, $q_1 = 2$

$$t \ge 7^{2+1} - 1 = 342$$
, $p_2 = 7$, $q_2 = 2$

$$u \ge 5^2 - 1 = 24$$
, $p = 5$, $n = 1$

holds,

$$stu/((s+1)(t+1)(u+1)) \ge 26 \times 342 \times 24/(27 \times 343 \times 25) = 7904/8575$$

$$2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35$$

Since stu/((s+1)(t+1)(u+1)) is limited to 1 when s, t and u are infinite, stu/((s+1)(t+1)(u+1)) < 1

If $f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$ holds, it is sufficient to consider a combination where $f(p_1, p_2, p) < 1$.

$$f(3,7,5) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35$$

$$f(3,11,5) = 2 \times 2 \times 10 \times 4/(3 \times 11 \times 5) = 32/33$$

$$f(3,13,5) = 2 \times 2 \times 12 \times 4/(3 \times 13 \times 5) = 64/65$$

$$f(3,17,5) = 2 \times 2 \times 16 \times 4/(3 \times 17 \times 5) = 256/255$$

$$f(3,7,13) = 2 \times 2 \times 6 \times 12/(3 \times 7 \times 13) = 96/91$$

$$f(3,5,17) = 2 \times 2 \times 4 \times 16/(3 \times 5 \times 17) = 256/255$$

From the above, when r = 2, a combination $(p_1, p_2, p) = (3,7,5), (3,11,5), (3,13,5)$ can be considered.

Let
$$q_k$$
 be 2 and $n = 1$, if $g(p_1, p_2, p) = (p_1^3 - 1)(p_2^3 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2)$, $g(3,7,5) = 26 \times 342 \times 24/(3^3 7^3 5^2) = 7904/8575 > 32/35$ $g(3,11,5) = 26 \times 1330 \times 24/(3^3 11^3 5^2) = 55328/59895$ $g(3,13,5) = 26 \times 2196 \times 24/(3^3 13^3 5^2) = 3904/4225$

Since the function g is the minimum in the case of $q_k = 2$ and n = 1, there is no solution q_k and n when g > f, so the case of $(p_1, p_2, p) = (3,7,5)$ becomes unsuitable.

$$\begin{split} \text{stu}/((s+1)(t+1)(u+1)) &= 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p) \\ (p_1^{q_1+1}-1)(p_2^{q_2+1}-1)(p^{n+1}-1)/(p_1^{q_1+1}p_2^{q_2+1}p^{n+1}) \\ &= 2(p_1-1)(p_2-1)(p-1)/(p_1p_2p) \end{split}$$

If
$$F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p)$$
,
 $F(p_1^{q_1+1}, p_2^{q_2+1}, p^{n+1}) = 2F(p_1, p_2, p)$

5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017 Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015