Proof that there are no odd perfect numbers

Kouji Takaki

September 13 ${ }^{\text {th }}, 2019$

1. Abstract

If y is an odd perfect number, let p be one of the prime factors of y, the exponent of p be an integer $n(n \geqq 1)$, the prime factors other than p be $p_{1}, p_{2}, p_{3}, \cdots p_{r}$ and the even exponent of p_{k} be q_{k}.

$$
y / p^{n}=\left(1+p+p^{2}+\cdots+p^{n}\right) \prod_{k=1}^{r}\left(1+p_{k}+{p_{k}}^{2}+\cdots+p_{k}{ }^{q_{k}}\right) /\left(2 p^{n}\right)=\prod_{k=1}^{r} p_{k}{ }^{q_{k}}
$$

must be satisfied. Let m be a non negative integer and q be a positive integer,

$$
\begin{aligned}
& n=4 m+1 \\
& p=4 q+1
\end{aligned}
$$

Letting a, b and c be odd integers, satisfying following expressions,

$$
\begin{gathered}
a=\prod_{k=1}^{r}\left(1+p_{k}+p_{k}^{2}+\cdots+p_{k}{ }^{q_{k}}\right) \\
b=\prod_{k=1}^{r} p_{k} q_{k} \\
c=a / p^{n} \\
2 b=c\left(p^{n}+\cdots+1\right)
\end{gathered}
$$

is established. This is a known content. Let v be a rational number,

$$
v=a / b
$$

holds. By the consideration of this research paper, since it turned out that if v is not an integer, by the uniqueness of a / b there is at most one solution that satisfies this equation for arbitrary p. Then since by the uniqueness of $a\left(p^{n}+\cdots+1\right) /\left(b p^{n}\right)$ we proved that there is no solution for $2 b=c\left(p^{n}+\cdots+1\right)$ other than $(a, b, p, n)=$ $(1,1,1,1)$, we have obtained a conclusion that there are no odd perfect numbers.
2. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself, and the smallest perfect number is

$$
1+2+3=6
$$

It is 6 . Whether an odd perfect number exists or not is currently an unsolved problem in mathematics.
3. Proof

Let y be an odd perfect number, one of the prime factors of y be odd prime p and an exponent of p be an integer $n(n \geqq 1)$. Let prime factors $p_{1}, p_{2}, p_{3}, \cdots p_{r}$ be the odd prime numbers of factors other than p, q_{k} be the index of p_{k}, and an integer a be a product of series other than prime p.

$$
a=\prod_{k=1}^{r}\left(1+p_{k}+{p_{k}}^{2}+\cdots+p_{k}^{q_{k}}\right) \ldots \text { (1) }
$$

The number of terms N of variable a is

$$
\begin{equation*}
N=\prod_{k=1}^{r}\left(q_{k}+1\right) \tag{2}
\end{equation*}
$$

When y is a perfect number,

$$
y=a\left(1+p+p^{2}+\cdots+p^{n}\right)-y(n>0)
$$

is established.

$$
\begin{gathered}
a \sum_{k=0}^{n} p^{k} / 2=y \\
a \sum_{k=0}^{n} p^{k} /\left(2 p^{n}\right)=y / p^{n} \ldots
\end{gathered}
$$

3.1. If q_{k} has at least one odd integer

Letting the number of terms where q_{k} is an odd integer be a positive integer u, because $\mathrm{y} / p^{n}=\prod_{k=1}^{r} p_{k} q_{k}$ is an odd integer, the denominator on the left side of the expression (3) has a prime factor 2 , from the expression (2) variable a has more than u prime factor 2 and variable a is an even integer. Therefore, $\sum_{k=0}^{n} p^{k}$ must be an odd integer, n is an even integer and u is 1 .
3.2. When all q_{k} are even integers
y / p^{n} is an odd integer, the denominator on the left side of the expression (3) is an even integer, and since N is an odd integer when q_{k} are all even integers, variable a is an odd integer. Therefore, $\sum_{k=0}^{n} p^{k}$ is necessary to include one prime factor 2 , $\sum_{k=0}^{n} p^{k} \equiv 0(\bmod 2)$ is established, and n must be an odd integer.

From 3.1, 3.2, in order to have an odd perfect number, only one exponent of the prime factor of y must be an odd integer. We consider the case of 3.2 below.

In order for y to be an odd perfect number, the following expression must be established.

$$
y / p^{n}=\left(1+p+p^{2}+\cdots+p^{n}\right) \prod_{k=1}^{r}\left(1+p_{k}+p_{k}{ }^{2}+\cdots+p_{k}{ }^{q_{k}}\right) /\left(2 p^{n}\right)=\prod_{k=1}^{r} p_{k}{ }^{q_{k}}
$$

However, $q_{1}, q_{2}, \ldots, q_{r}$ are all even integers.

Here, let b be an odd integer

$$
\begin{equation*}
b=\prod_{k=1}^{r} p_{k} q_{k} . \tag{4}
\end{equation*}
$$

A following expression is established.
$y / p^{n}=a\left(1+p+p^{2}+\cdots+p^{n}\right) /\left(2 p^{n}\right)=b$
$a\left(p^{n+1}-1\right) /\left(2(p-1) p^{n}\right)=b$
$(a-2 b) p^{n+1}+2 b p^{n}-a=0$
Because it is an $n+1$ order equation of p, the solution of the odd prime p is $n+1$ at most for arbitrary a and b.
$(a p-2 b p+2 b) p^{n}=a$
Since $a p-2 b p+2 b$ is an odd integer, a / p^{n} is an odd integer. Let a / p^{n} be an odd integer c.

$$
\begin{align*}
& a p-2 b p+2 b=c(c>0) \tag{6}\\
& (2 b-a) p=2 b-c
\end{align*}
$$

Since variable a is an odd integer, $2 b-a$ is an odd integer and $2 b-a \neq 0$ $p=(2 b-c) /(2 b-a)$

Since $n \geqq 1$,
$\mathrm{a}-\mathrm{c}=\mathrm{cp}^{\mathrm{n}}-\mathrm{c} \geqq \mathrm{cp}-\mathrm{c}>0$
$a>c$
is.

From the equation (6)
$2 \mathrm{~b}(\mathrm{p}-1)-(\mathrm{ap}-\mathrm{c})=0$
$2 b-c\left(p^{n+1}-1\right) /(p-1)=0$
$\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) / 2$ is an odd integer, $\mathrm{n}=4 \mathrm{~m}+1$ must be hold with m as an integer.
$2 \mathrm{~b}(\mathrm{p}-1)=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}+1}-1\right)$
$2 \mathrm{~b}=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
$2 b=c(p+1)\left(p^{n-1}+p^{n-3}+\cdots+1\right) \ldots(7)$
Since b is an odd integer when $p+1$ is not a multiple of $4, p-1$ must be a multiple of 4. A positive integer is taken as q.
$\mathrm{p}=4 \mathrm{q}+1$
is established.

When $\mathrm{p}>1$
$\mathrm{p}^{\mathrm{n}}-1<\mathrm{p}^{\mathrm{n}}$
$\left(\mathrm{p}^{\mathrm{n}}-1\right) /(\mathrm{p}-1)<\mathrm{p}^{\mathrm{n}} /(\mathrm{p}-1)$
$\mathrm{p}^{\mathrm{n}-1}+\cdots+1<\mathrm{p}^{\mathrm{n}} /(\mathrm{p}-1)$

Since p is an odd prime number satisfying $p=4 q+1$ and $p \geqq 5$,
$\mathrm{p}^{\mathrm{n}-1}+\cdots+1<\mathrm{p}^{\mathrm{n}} / 4$
$2 \mathrm{~b}-\mathrm{a}=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)-\mathrm{cp} \mathrm{p}^{\mathrm{n}}=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}-1}+\cdots+1\right)$
$2 \mathrm{~b}-\mathrm{a}<\mathrm{cp}^{\mathrm{n}} / 4=\mathrm{a} / 4$
$2 \mathrm{~b}<5 \mathrm{a} / 4$
$a>8 b / 5$

Let a_{k} and b_{k} be odd integers and if
$a_{k}=1+p_{k}+p_{k}^{2}+\cdots+p_{k}^{q_{k}}, b_{k}=p_{k}^{q_{k}}$,
$\mathrm{a}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}<\mathrm{b}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$\mathrm{a}_{\mathrm{k}}<\mathrm{b}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$a=\prod_{k=1}^{r} a_{k}<\prod_{k=1}^{r} b_{k} p_{k} /\left(p_{k}-1\right)=b \prod_{k=1}^{r} p_{k} /\left(p_{k}-1\right)$
$\mathrm{a} / \mathrm{b}<\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
When $r=1$, since $a / b<3 / 2$ is established, it becomes inappropriate contrary to inequality (8).

From the expression (7),
$\mathrm{b}=\mathrm{c}(\mathrm{p}+1) / 2 \times\left(\mathrm{p}^{\mathrm{n}-1}+\mathrm{p}^{\mathrm{n}-3}+\cdots+1\right)$
holds. Since $(p+1) / 2$ is the product of only prime numbers of b, let d_{k} be the index,
$(\mathrm{p}+1) / 2=\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} \mathrm{d}_{\mathrm{k}}$
$p=2 \prod_{k=1}^{r} p_{k}{ }^{d_{k}}-1$

From $\mathrm{a}=\mathrm{cp}^{\mathrm{n}}$ and the expression (7),
$2 b^{n}=a\left(p^{n}+\cdots+1\right)$
$a\left(p^{n}+\cdots+1\right) /\left(2 b^{n}\right)=1$
When $\mathrm{r}=1$,
$\mathrm{a}=\left(\mathrm{p}_{1} \mathrm{q}_{1}+1-1\right) /\left(p_{1}-1\right)$
$\mathrm{b}=\mathrm{p}_{1}{ }^{\mathrm{q}_{1}}$
The equation (A) does not hold since there is no odd perfect number when $\mathrm{r}=1$.

Let R be a rational number,
$\mathrm{R}=\mathrm{a}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) /\left(2 \mathrm{bp}^{\mathrm{n}}\right)$
Let b' be a rational number and let A_{k} and B_{k} to be odd integers,
$\mathrm{b}^{\prime}=\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}+1}-1\right) /\left(\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}}\left(\mathrm{p}_{\mathrm{k}}-1\right)\right)>1$
$A_{k}=\left(p_{k}{ }^{\mathrm{q}_{\mathrm{k}}+1}-1\right) /\left(\mathrm{p}_{\mathrm{k}}-1\right)$
$\mathrm{B}_{\mathrm{k}}=\mathrm{p}_{\mathrm{k}}{ }^{\text {qk }}$

Multiplying R by b', there are both cases that p_{k} increases p or does not change. When multiplied by b, the rate of change of R is $A_{r+1} p^{n}\left(p^{\prime n}+\cdots+1\right) /\left(B_{r+1} p^{\prime n}\left(p^{n}+\right.\right.$ $\cdots+1)$), if p after variation is p. If the rate of change of R is 1 ,
$A_{r+1} p^{n}\left(p^{\prime n}+\cdots+1\right) /\left(B_{r+1} p^{\prime n}\left(p^{n}+\cdots+1\right)\right)=1$
$A_{r+1} p^{n}\left(p^{\prime n}+\cdots+1\right)=B_{r+1} p^{\prime n}\left(p^{n}+\cdots+1\right)$
This expression does not hold since the right side is not a multiple of p when $p^{\prime}>p$, and $A_{r+1}>B_{r+1}$ holds when $p^{\prime}=p$. Due to this operation, R may be larger or smaller than the original value since the rate of change of R does not become 1 .

Assuming that $\mathrm{R}=1$ in some r , letting x be an integer and by multiplying fractions $b^{\prime}=A_{r+1} / B_{r+1}, b^{\prime \prime}=A_{r+2} / B_{r+2}, \cdots b^{\prime \prime \cdots \prime}=A_{x} / B_{x}$ to R. Furthermore, assuming that $A_{s+1} A_{s+2} \ldots A_{r}$ is not a multiple of p, R is divided by $A_{s+1} / B_{s+1}, A_{s+2} / B_{s+2}, \cdots A_{r} / B_{r}$ and it is assumed that finally $R=1$. At this time, assuming that n changes to n_{r+1}, the change rate of R by this operation when multiplying by A_{r+1} / B_{r+1} is $A_{r+1} p^{n}\left(p^{n_{r+1}}+\cdots+1\right) /\left(B_{r+1} p^{n_{r+1}}\left(p^{n}+\cdots+1\right)\right)$

$$
\begin{align*}
& 1 \times B_{s+1} p^{n}\left(p^{n_{s+1}}+\cdots+1\right) /\left(A_{s+1} p^{n_{s+1}}\left(p^{n}+\cdots+1\right)\right) \times \ldots \times B_{r} p^{n_{r-1}}\left(p^{n_{r}}+\cdots\right. \\
& +1) /\left(A_{r} p^{n_{r}}\left(p^{n_{r-1}}+\cdots+1\right)\right) \times A_{r+1} p^{n_{r}}\left(p^{n_{r+1}}+\cdots+1\right) /\left(B _ { r + 1 } p ^ { n _ { r + 1 } } \left(p^{n_{r}}\right.\right. \\
& +\cdots+1)) \times A_{r+2} p^{n_{r+1}}\left(p^{n_{r+2}}+\cdots+1\right) /\left(B_{r+2} p^{n_{r+2}}\left(p^{n_{r+1}}+\cdots+1\right)\right) \times \ldots \\
& \times A_{x} p^{n_{x-1}}\left(p^{n_{x}}+\cdots+1\right) /\left(B_{x} p^{n_{x}}\left(p^{n_{x}-1}+\cdots+1\right)\right)=1 \\
& B_{s+1} B_{s+2} \ldots B_{r} A_{r+1} A_{r+2} \ldots A_{x} p^{n-n_{x}}\left(p^{n_{x}}+\cdots+1\right) \\
& =A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x}\left(p^{n}+\cdots+1\right) \tag{B}
\end{align*}
$$

When $n_{x}<n$, it becomes contradiction since the right side of above expression does not include the prime factor p .
When $\mathrm{n}_{\mathrm{x}}=\mathrm{n}$,
$B_{s+1} B_{s+2} \ldots B_{r} A_{r+1} A_{r+2} \ldots A_{x}=A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x}$.

Let v be a rational number. If
$\mathrm{v}=\mathrm{a} / \mathrm{b}$
holds, assume that v is not an integer. \cdots (D)

Let e_{r}, f_{r} be odd integers and g_{r} be a rational number,
$\mathrm{e}_{\mathrm{r}}=\prod_{\mathrm{k}=1}^{\mathrm{r}}\left(\mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}+\cdots+1\right), \mathrm{f}_{\mathrm{r}}=\prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}, \mathrm{g}_{\mathrm{r}}=\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}}$
holds.
$\mathrm{g}_{\mathrm{r}+1}=\mathrm{e}_{\mathrm{r}+1} / \mathrm{f}_{\mathrm{r}+1}=\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}} \times\left(\mathrm{p}_{\mathrm{r}+1} \mathrm{q}_{\mathrm{r}+1}+\cdots+1\right) / \mathrm{p}_{\mathrm{r}+1} \mathrm{q}_{\mathrm{r}+1}>\mathrm{e}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}}=\mathrm{g}_{\mathrm{r}}$
Let $\mathrm{q}_{1}{ }^{\prime}$ be an even integer and $\mathrm{q}_{1}^{\prime}>\mathrm{q}_{1}$ holds. Let g_{r} be $\mathrm{g}_{\mathrm{r}}{ }^{\prime}$ when q_{1} becomes q_{1}^{\prime}, $g_{r}^{\prime}=\left(p_{1}{ }^{q_{1}}\left(p_{1}{ }^{q_{1}}{ }^{\prime}+\cdots+1\right) / p_{1}{ }^{q_{1}}\left(p_{1}{ }^{q_{1}}+\cdots+1\right)\right) g_{r}>g_{r}$
is established.

It is assumed that q_{k} becomes $q_{k}-h_{k}$ by changing q_{k} than before for $g_{r} . h_{k}$ is an even integer. Then assume that r becomes $s(s>r), g_{s}=g_{r}$ and g_{s} is not changed.

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{s}} / \mathrm{g}_{\mathrm{r}}=\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}} /\left(\left(\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\cdots+1\right) \times \ldots \times\left(\mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right)\right) \times \mathrm{p}_{1}{ }^{\mathrm{q}_{1}} \times \ldots \\
& \times p_{r}{ }^{q_{r}}\left(p_{1}{ }^{q_{1}-h_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}-h_{r}}+\cdots+1\right) /\left(p_{1}{ }^{q_{1}-h_{1}} \times \ldots\right. \\
& \left.\times p_{r}{ }^{q_{r}-h_{r}}\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\right)=1 \\
& p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}} /\left(\left(p_{r+1}{ }^{q_{r+1}}+\cdots+1\right) \times \ldots \times\left(p_{s}{ }^{q_{s}}+\cdots+1\right)\right) \times p_{1}{ }^{h_{1}} \times \ldots \\
& \times p_{r}{ }^{\mathrm{h}_{\mathrm{r}}}\left(\mathrm{p}_{1} \mathrm{q}_{1}-\mathrm{h}_{1}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}-\mathrm{h}_{\mathrm{r}}}+\cdots\right. \\
& +1) /\left(\left(p_{1} q_{1}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\right)=1 \\
& \mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}} \times \mathrm{p}_{1}{ }^{\mathrm{h}_{1}} \times \ldots \times \mathrm{pr}^{\mathrm{h}_{\mathrm{r}}}\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}-\mathrm{h}_{1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}-\mathrm{h}_{\mathrm{r}}}+\cdots+1\right) \\
& =\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\left(p_{r+1}{ }^{q_{r+1}}+\cdots+1\right) \ldots\left(p_{s}{ }^{q_{s}}+\cdots+1\right) \\
& p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}\left(p_{1}{ }^{q_{1}}+\cdots+p_{1}{ }^{h_{1}}\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+p_{r}{ }^{h_{r}}\right) \\
& =\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\left(p_{r+1}{ }^{q_{r+1}}+\cdots+1\right) \ldots\left(p_{s}{ }^{q_{s}}+\cdots+1\right)
\end{aligned}
$$

When $h_{k}<0$, multiply both sides by $p_{k}{ }^{-h_{k}}$ so that both sides become integers. When $\left(p_{r+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right) /\left(\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}\right)$ is not an integer, if both sides are divided by the prime numbers from p_{r+1} to p_{s}, at least one prime number among the prime numbers from p_{r+1} to p_{s} are left on the left side. $\mathrm{a}=\left(\mathrm{p}_{1} \mathrm{q}_{1}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}}+\cdots+1\right)=\mathrm{cp}^{\mathrm{n}}$ holds and from the expression (7), c must be a product of primes from p_{1} to p_{r}. Thereby, the above equation does not hold, since it is inappropriate when there is even one prime number other than p_{1} to p_{r} and p. When changing the value of p_{k}, it is equivalent to dividing by $p_{k}{ }^{q_{k}}$ and then multiplying by new $\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{q}_{\mathrm{k}}}$, so it is sufficient to consider only the changes of q_{k} and r . From above, since g_{r} does not chord the original value when q_{k} or r is increased or decreased, it takes unique values for the variables p_{k}, q_{k}, r.

From the above proof,
$g_{r}=A_{1} A_{2} \ldots A_{s} / B_{1} B_{2} \ldots B_{s} \times A_{r+1} A_{r+2} \ldots A_{x} / B_{r+1} B_{r+2} \ldots B_{x}$
g_{r} must be represented uniquely, and the expression (C) does not satisfied. When dividing by the prime number in the expression (9), a contradiction arises since the prime number not included in b is in the expression (9). Therefore, when $\left(p_{r+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\right.$ $\cdots+1) \ldots\left(p_{s}{ }^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right) /\left(\mathrm{p}_{\mathrm{r}+1} \mathrm{q}_{\mathrm{r}+1} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}\right)$ is not an integer and p holds $\mathrm{p} \equiv$ $1(\bmod 4)$ and $p \geqq 5$, the number of the solution (a, b, p, n) satisfying $R=1$ is at most one.

Since $(a, b, p, n)=(1,1,1,1)$ is inappropriate solution for the equation (A). At this time, since $\mathrm{a}=\mathrm{b}=1$ that $\left(\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right) /\left(\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{\mathrm{s}}}\right)$ is not an integer is same that the condition (D) holds, and since the expression (C) becomes contradiction, there is one inappropriate solution when $n_{x}=n=1$. Therefore, if the condition (D) holds, there are no odd perfect numbers when $n=1$.

Define the operation [multiplication] and the operation [division] as follows.
Assuming that p in the equation of R is replaced by p ' by multiplying A_{i} / B_{i}, define operation [multiplication] to R as follows.
$\mathrm{p}^{\prime}=2 \prod_{\mathrm{k}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{k}}{ }^{\mathrm{d}_{\mathrm{k}}} \times \mathrm{p}_{\mathrm{i}}{ }^{\mathrm{d}_{\mathrm{i}}}-1$
$0 \leqq \mathrm{~d}_{\mathrm{i}} \leqq \mathrm{q}_{\mathrm{i}}$
Here, let i be i>r. Suppose operation [division] is division by A_{j} / B_{j} for R, and if p_{j} is included in p in the expression R, p_{j} is deleted as $d_{j}=0$. Here, assuming that j satisfies $1 \leqq \mathrm{j} \leqq \mathrm{r}$.

In the proof of the expression (B), it is assumed that p changes on the way, and finally p becomes p_{x}.
$\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{r}}=\mathrm{cp}^{\mathrm{n}}$
$2 \mathrm{~B}_{1} \ldots \mathrm{~B}_{\mathrm{r}}=\mathrm{c}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$
$\mathrm{A}_{1} \ldots \mathrm{~A}_{\mathrm{x}}=\mathrm{c}^{\prime} \mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}$
$2 \mathrm{~B}_{1} \ldots \mathrm{~B}_{\mathrm{x}}=\mathrm{c}^{\prime}\left(\mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}+\cdots+1\right)$
It is assumed that the above expressions are satisfied.

$$
\begin{aligned}
& B_{s+1} B_{s+2} \ldots B_{r} A_{r+1} A_{r+2} \ldots A_{x} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) \\
& =A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x} p_{x}{ }^{n_{x}}\left(p^{n}+\cdots+1\right) \\
& B_{s+1} B_{s+2} \ldots B_{r} A_{1} \ldots A_{r} A_{r+1} A_{r+2} \ldots A_{x} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) \\
& =A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x} p_{x}{ }^{n_{x}}\left(p^{n}+\cdots+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{s+1} B_{s+2} \ldots B_{r} c^{\prime} p_{x}{ }^{n_{x}} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) \\
& =A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x} p_{x}{ }^{n_{x}}\left(p^{n}+\cdots+1\right) \\
& B_{s+1} B_{s+2} \ldots B_{r} c^{\prime} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right)=A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} B_{r+1} B_{r+2} \ldots B_{x}\left(p^{n}+\cdots+1\right) \\
& B_{1} \ldots B_{r} B_{s+1} B_{s+2} \ldots B_{r} c^{\prime} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) \\
& =A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} B_{1} \ldots B_{r} B_{r+1} B_{r+2} \ldots B_{x}\left(p^{n}+\cdots+1\right) \\
& B_{1} \ldots B_{r} B_{s+1} B_{s+2} \ldots B_{r} c^{\prime} p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) \\
& =A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} c^{\prime}\left(p_{x}{ }^{n_{x}}+\cdots+1\right) / 2 \times\left(p^{n}+\cdots+1\right) \\
& B_{1} \ldots B_{r} B_{s+1} B_{s+2} \ldots B_{r} p^{n}=A_{1} \ldots A_{r} A_{s+1} A_{s+2} \ldots A_{r} / 2 \times\left(p^{n}+\cdots+1\right) \\
& c\left(p^{n}+\cdots+1\right) / 2 \times B_{s+1} B_{s+2} \ldots B_{r} p^{n}=c^{n} A_{s+1} A_{s+2} \ldots A_{r} / 2 \times\left(p^{n}+\cdots+1\right) \\
& B_{s+1} B_{s+2} \ldots B_{r}=A_{s+1} A_{s+2} \ldots A_{r}
\end{aligned}
$$

is established. It becomes contradiction since $A_{k}>B_{k}$ holds when the operations [division] are performed.

Consider a tree whose vertex is $(a, b, p, n)=(1,1,1,1)$, and when the operations [multiplication] are performed, it becomes a child node. For example, consider a child node connected to a vertex as follows.
$(a, b, p, n)=(13,9,5,5)$ as $p_{1}=3, q_{1}=2$ and $d_{1}=1$
$(\mathrm{a}, \mathrm{b}, \mathrm{p}, \mathrm{n})=(13,9,17,9)$ as $\mathrm{p}_{1}=3, \mathrm{q}_{1}=2$ and $\mathrm{d}_{1}=2$
$(a, b, p, n)=(57,49,97,13)$ as $p_{1}=7, q_{1}=2$ and $d_{1}=2$

Suppose that the operations [multiplication] for changing the value of p are performed first, and then the operations [multiplication] for not changing the value of p are performed to create a tree structure. Here, when there is a solution in a certain p and there is a solution even in the other value p ', considering a set of line segments connecting these two points in four-dimensional space (a, b, p, n). If $R=1$ holds again when performing operation [multiplication] from one point where $R=1$,

$$
\begin{gather*}
1 \times A_{r+1} p^{n}\left(p_{r+1} n_{r+1}+\cdots+1\right) /\left(B_{r+1} p_{r+1}{ }^{n_{r+1}}\left(p^{n}+\cdots+1\right)\right) \times A_{r+2} p_{r+1}{ }^{n_{r+1}}\left(p_{r+2}{ }^{n_{r+2}}+\cdots\right. \\
\quad+1) /\left(B_{r+2} p_{r+2} n_{r+2}\left(p_{r+1}{ }^{n_{r+1}}+\cdots+1\right)\right) \times \ldots \times A_{x} p_{x-1} n^{n_{x-1}}\left(p_{x} n_{x}+\cdots\right. \\
\quad+1) /\left(B_{x} p_{x}{ }^{n_{x}}\left(p_{x-1} n_{x-1}+\cdots+1\right)\right)=1
\end{gathered} \quad \begin{gathered}
A_{r+1} A_{r+2} \ldots A_{x} /\left(B_{r+1} B_{r+2} \ldots B_{x}\right)=p_{x}{ }^{n_{x}}\left(p^{n}+\cdots+1\right) /\left(p^{n}\left(p_{x}{ }^{n_{x}}+\cdots+1\right)\right) \\
A_{1} A_{2} \ldots A_{x}\left(p_{x} n_{x}+\cdots+1\right) /\left(B_{1} B_{2} \ldots B_{x} p_{x} n_{x}\right)=A_{1} A_{2} \ldots A_{r}\left(p^{n}+\cdots+1\right) /\left(B_{1} B_{2} \ldots B_{r} p^{n}\right) \ldots()
\end{gather*}
$$

Assume that $G_{r}=A_{1} A_{2} \ldots A_{r}\left(p^{n}+\cdots+1\right) /\left(B_{1} B_{2} \ldots B_{x} p^{n}\right)$ holds. Here, it is assumed that q_{k} becomes $q_{k}-h_{k}$ by changing q_{k} than before and n becomes $n-h(n-h>$ 0) for G_{r}. h_{k} is an even integer and h is a non-negative integer that is a multiple of 4. Then assuming that r becomes $s(s>r), G_{s}=G_{r}$ and G_{s} is not changed, by the same calculation as the proof on page 7,

$$
\begin{aligned}
& G_{s} / G_{r}=p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}} /\left(\left(p_{r+1}{ }^{q_{r+1}}+\cdots+1\right) \times \ldots \times\left(p_{s}{ }^{q_{s}}+\cdots+1\right)\right) \times p_{1}{ }^{q_{1}} \times p_{2}{ }^{q_{2}} \times \ldots \\
& \times p_{r}{ }^{\mathrm{q}_{r}} p^{\mathrm{n}}\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}-\mathrm{h}_{1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}-\mathrm{h}_{\mathrm{r}}}+\cdots+1\right)\left(\mathrm{p}^{\mathrm{n}-\mathrm{h}}+\cdots+1\right) /\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}-\mathrm{h}_{1}}\right. \\
& \left.\times \ldots \times p_{r}{ }^{q_{r}-h_{r}} p^{\mathrm{n}-\mathrm{h}}\left(\mathrm{p}_{1} \mathrm{q}_{1}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}}+\cdots+1\right)\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)\right)=1 \\
& p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}\left(p_{1}{ }^{q_{1}}+\cdots+p_{1}{ }^{h_{1}}\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+p_{r}{ }^{h_{r}}\right)\left(p^{n}+\cdots+p^{h}\right) \\
& =\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)\left(p^{n}+\cdots+1\right)\left(p_{r+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\cdots+1\right) \ldots\left(p_{s}{ }^{\mathrm{q}_{\mathrm{s}}}\right. \\
& +\cdots+1)
\end{aligned}
$$

Since $\left(p_{1}{ }^{q_{1}}+\cdots+1\right) \ldots\left(p_{r}{ }^{q_{r}}+\cdots+1\right)=c p^{n}$ holds,

$$
\begin{array}{r}
\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}} \times \ldots \times \mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{s}}\left(\mathrm{p}{ }^{q_{1}}+\cdots+\mathrm{p}_{1}{ }^{\mathrm{h}_{1}}\right) \ldots\left(\mathrm{p}{ }^{\mathrm{q}_{\mathrm{r}}}+\cdots+\mathrm{p}_{\mathrm{r}}{ }^{\mathrm{h}_{\mathrm{r}}}\right)\left(\mathrm{p}^{\mathrm{n}-\mathrm{h}}+\cdots+1\right) \\
=\mathrm{cp}^{\mathrm{n}-\mathrm{h}}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)\left(\mathrm{p}_{\mathrm{r}+1}{ }^{\mathrm{q}_{\mathrm{r}+1}}+\cdots+1\right) \ldots\left(p_{s}{ }^{q_{s}}+\cdots+1\right)
\end{array}
$$

When $h_{k}<0$, multiply both sides by $p_{k}{ }^{-h_{k}}$ so that both sides become integers. When $\left(p_{r+1}{ }^{q_{r+1}}+\cdots+1\right) \ldots\left(p_{s}{ }^{q_{s}}+\cdots+1\right) /\left(p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}\right)$ is not an integer, if both sides are divided by the prime numbers from p_{r+1} to p_{s}, at least one prime number among the prime numbers from $\mathrm{p}_{\mathrm{r}+1}$ to p_{s} are left on the left side. Because c and $\mathrm{p}^{\mathrm{n}}+\cdots+1$ are products of prime numbers from p_{1} to p_{r} and in the case of $s>r+1$, the left side has prime numbers that is not on the right side as a factor, this expression does not hold. In the case of $s=r+1$, when $p \neq p_{s}$, this expression does not hold in the same way. When $p=p_{s}$ and $q_{s}>n-h$, since there is a prime factor p only on the left side, this expression does not hold. Therefore, since except for the case of $s=r+1, p=p_{s}$ and $q_{s}<n-h G_{r}$ must be uniquely expressed, the expression (E) does not hold. When $s=r+1, p=p_{s}$ and $q_{s}<n-h$, substituting $B_{x}=p^{q_{s}}$ into the expression (E) as $x=r+1$,

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{r}}\left(\mathrm{p}^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right)\left(\mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}+\cdots+1\right) /\left(\mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{r}} \mathrm{p}^{\mathrm{q}_{\mathrm{s}}} \mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}\right) \\
& =A_{1} A_{2} \ldots A_{r}\left(p^{n}+\cdots+1\right) /\left(B_{1} B_{2} \ldots B_{r} p^{n}\right) \\
& \left(\mathrm{p}^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right)\left(\mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}+\cdots+1\right) /\left(\mathrm{p}^{\mathrm{q}_{\mathrm{s}}} \mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}\right)=\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) / \mathrm{p}^{\mathrm{n}} \\
& \left(\mathrm{p}^{\mathrm{q}_{\mathrm{s}}}+\cdots+1\right)\left(\mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}+\cdots+1\right) \mathrm{p}^{\mathrm{n}-\mathrm{q}_{\mathrm{s}}}=\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right) \mathrm{p}_{\mathrm{x}}{ }^{\mathrm{n}_{\mathrm{x}}}
\end{aligned}
$$

Since the right side does not have a prime number p as a factor, this expression does not hold.

When one point is $(a, b, p, n)=(1,1,1,1)$, that $\left(p_{r+1}{ }^{\mathrm{q}_{r+1}}+\cdots+1\right) \ldots\left(\mathrm{p}_{\mathrm{s}}{ }^{\mathrm{q}_{s}}+\cdots+\right.$ 1) $/\left(p_{r+1}{ }^{q_{r+1}} \times \ldots \times p_{s}{ }^{q_{s}}\right)$ is not an integer is same that the condition (D) holds. If the condition (D) holds, when $s>r+1$ or $p \neq p_{s}, g_{s} \neq g_{r}$ holds similarly and when $\mathrm{s}=\mathrm{r}+1$ and $\mathrm{p}=\mathrm{p}_{\mathrm{s}}$ it becomes inappropriate, since prime number p_{s} is 1 .

If the condition (D) does not hold, because the equation (A) must be satisfied at a point other than the point $(\mathrm{a}, \mathrm{b}, \mathrm{p}, \mathrm{n})=(1,1,1,1)$, let v be an integer,
$\mathrm{a} / \mathrm{b}=2 \mathrm{p}^{\mathrm{n}} /\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)=\mathrm{v}$
$2 \mathrm{p}^{\mathrm{n}}=\mathrm{v}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$

Let w be an integer and if $v=w p^{n}$ holds,
$2=\mathrm{w}\left(\mathrm{p}^{\mathrm{n}}+\cdots+1\right)$

When $\mathrm{p} \equiv 1(\bmod 4), \mathrm{p} \geqq 5$ and $\mathrm{n} \equiv 1(\bmod 4), \mathrm{n} \geqq 1$, $\mathrm{p}^{\mathrm{n}}+\cdots+1 \geqq 6$
At this time, it becomes inappropriate, since w is not an integer. Therefore, except for $(a, b, p, n)=(1,1,1,1)$, there is no solution satisfying the equation (A). From the above, there are no odd perfect numbers.
4. Complement

From the equation (5),
$2 b p^{n}(p-1)=a\left(p^{n+1}-1\right)$
$2=a\left(p^{n+1}-1\right) /\left(b p^{n}(p-1)\right)$
$2=\left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right) \ldots\left(p_{r}{ }^{q_{r}+1}-1\right)\left(p^{n+1}-1\right)$

$$
/\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}} \mathrm{p}_{2}{ }^{\mathrm{q}_{2}} \ldots \mathrm{p}_{\mathrm{r}}{ }^{\mathrm{q}_{\mathrm{r}}} \mathrm{n}^{\mathrm{n}}\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right) \ldots\left(\mathrm{p}_{\mathrm{r}}-1\right)(\mathrm{p}-1)\right)
$$

$2\left(p_{1}{ }^{q_{1}+1}-p_{1}{ }^{q_{1}}\right)\left(p_{2}{ }^{q_{2}+1}-p_{2}{ }^{q_{2}}\right) \ldots\left(p_{r}{ }^{q_{r}+1}-p_{r}{ }^{q_{r}}\right)\left(p^{n+1}-p^{n}\right)$ $=\left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right) \ldots\left(p_{r}{ }^{q_{r}+1}-1\right)\left(p^{n+1}-1\right)$

We consider when $r=2$.
$\left(p_{1} q_{1}+1-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right)\left(p^{n+1}-1\right)=2\left(p_{1}^{q_{1}+1}-p_{1} q_{1}\right)\left(p_{2}^{q_{2}+1}-p_{2}^{q_{2}}\right)\left(p^{n+1}-p^{n}\right)$
Let $\mathrm{s}, \mathrm{t}, \mathrm{u}$ be integers,
$\mathrm{s}=\mathrm{p}_{1} \mathrm{q}_{1}+1-1$
$\mathrm{t}=\mathrm{p}_{2} \mathrm{q}_{2}+1$
$\mathrm{u}=\mathrm{p}^{\mathrm{n}+1}-1$
are.

```
stu \(=2\left(p_{1}{ }^{q_{1}+1}-1-\left(p_{1} q_{1}-1\right)\right)\left(p_{2}{ }^{q_{2}+1}-1-\left(p_{2}{ }^{q_{2}}-1\right)\right)\left(p^{n+1}-1-\left(p^{n}-1\right)\right)\)
stu \(=2\left(\mathrm{~s}-(\mathrm{s}+1) / \mathrm{p}_{1}+1\right)\left(\mathrm{t}-(\mathrm{t}+1) / \mathrm{p}_{2}+1\right)(\mathrm{u}-(\mathrm{u}+1) / \mathrm{p}+1)\)
\(\mathrm{pp}_{1} \mathrm{p}_{2} \mathrm{stu}=2\left((\mathrm{~s}+1) \mathrm{p}_{1}-(\mathrm{s}+1)\right)\left((\mathrm{t}+1) \mathrm{p}_{2}+(\mathrm{t}+1)\right)((\mathrm{u}+1) \mathrm{p}+(\mathrm{u}+1))\)
\(\mathrm{pp}_{1} \mathrm{p}_{2} \mathrm{stu}=2(\mathrm{~s}+1)\left(\mathrm{p}_{1}-1\right)(\mathrm{t}+1)\left(\mathrm{p}_{2}-1\right)(\mathrm{u}+1)(\mathrm{p}-1)\)
stu \(/((s+1)(t+1)(u+1))=2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)\)
```

Since stu/ $((s+1)(t+1)(u+1))$ is a monotonically increasing function for variables s, t and u, if
$\mathrm{s} \geqq 3^{2+1}-1=26, \mathrm{p}_{1}=3, \mathrm{q}_{1}=2$
$\mathrm{t} \geqq 7^{2+1}-1=342, \mathrm{p}_{2}=7, \mathrm{q}_{2}=2$
$\mathrm{u} \geqq 5^{2}-1=24, \mathrm{p}=5, \mathrm{n}=1$
holds,
stu/ $((\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1)) \geqq 26 \times 342 \times 24 /(27 \times 343 \times 25)=7904 / 8575$
$2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)=2 \times 2 \times 6 \times 4 /(3 \times 7 \times 5)=32 / 35$

Since stu/($s+1)(t+1)(u+1))$ is limited to 1 when s, t and u are infinite,
stu/ $((\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1))<1$

If $f\left(p_{1}, p_{2}, p\right)=2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)$ holds, it is sufficient to consider a combination where $f\left(p_{1}, p_{2}, p\right)<1$.

$$
\begin{aligned}
& \mathrm{f}(3,7,5)=2 \times 2 \times 6 \times 4 /(3 \times 7 \times 5)=32 / 35 \\
& \mathrm{f}(3,11,5)=2 \times 2 \times 10 \times 4 /(3 \times 11 \times 5)=32 / 33 \\
& \mathrm{f}(3,13,5)=2 \times 2 \times 12 \times 4 /(3 \times 13 \times 5)=64 / 65 \\
& \mathrm{f}(3,17,5)=2 \times 2 \times 16 \times 4 /(3 \times 17 \times 5)=256 / 255 \\
& \mathrm{f}(3,7,13)=2 \times 2 \times 6 \times 12 /(3 \times 7 \times 13)=96 / 91 \\
& \mathrm{f}(3,5,17)=2 \times 2 \times 4 \times 16 /(3 \times 5 \times 17)=256 / 255
\end{aligned}
$$

From the above, when $r=2$, a combination $\left(p_{1}, p_{2}, p\right)=(3,7,5),(3,11,5),(3,13,5)$ can be considered.

Let q_{k} be 2 and $n=1$, if $g\left(p_{1}, p_{2}, p\right)=\left(p_{1}{ }^{3}-1\right)\left(p_{2}{ }^{3}-1\right)\left(p^{2}-1\right) /\left(p_{1}{ }^{3} p_{2}{ }^{3} p^{2}\right)$,
$\mathrm{g}(3,7,5)=26 \times 342 \times 24 /\left(3^{3} 7^{3} 5^{2}\right)=7904 / 8575>32 / 35$
$\mathrm{g}(3,11,5)=26 \times 1330 \times 24 /\left(3^{3} 11^{3} 5^{2}\right)=55328 / 59895$
$\mathrm{g}(3,13,5)=26 \times 2196 \times 24 /\left(3^{3} 13^{3} 5^{2}\right)=3904 / 4225$
Since the function g is the minimum in the case of $q_{k}=2$ and $n=1$, there is no solution q_{k} and n when $g>f$, so the case of $\left(p_{1}, p_{2}, p\right)=(3,7,5)$ becomes unsuitable.

$$
\begin{aligned}
& \text { stu/(}(\mathrm{s}+1)(\mathrm{t}+1)(\mathrm{u}+1))=2\left(\mathrm{p}_{1}-1\right)\left(\mathrm{p}_{2}-1\right)(\mathrm{p}-1) /\left(\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}\right) \\
& \left(p_{1}{ }^{q_{1}+1}-1\right)\left(p_{2}{ }^{q_{2}+1}-1\right)\left(p^{n+1}-1\right) /\left(p_{1}{ }^{q_{1}+1} p_{2}{ }^{q_{2}+1} p^{n+1}\right) \\
& =2\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)
\end{aligned}
$$

If $F\left(p_{1}, p_{2}, p\right)=\left(p_{1}-1\right)\left(p_{2}-1\right)(p-1) /\left(p_{1} p_{2} p\right)$, $\mathrm{F}\left(\mathrm{p}_{1}{ }^{\mathrm{q}_{1}+1}, \mathrm{p}_{2}{ }^{\mathrm{q}_{2}+1}, \mathrm{p}^{\mathrm{n}+1}\right)=2 \mathrm{~F}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}\right)$
5. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.
6. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017 Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015

