The universal profinitization of a topological space

Pierre-Yves Gaillard

To a topological space X we attach in two equivalent ways a profinite space X' and a continuous map $\phi: X \to X'$ such that, for any continuous map $f: X \to Y$, where Y is a profinite space, there is a unique continuous map $f': X' \to Y$ such that $f' \circ \phi = f$.

Let X be a topological space.

Let X' be a profinite space. Say that a map $\phi : X \to X'$ is a *universal profinitization* of X, or, more concisely, that $\phi : X \to X'$ has *Property (P)*, if ϕ is continuous and if for any continuous map $f : X \to Y$, where Y is a profinite space, there is a unique continuous map $f' : X' \to Y$ such that $f' \circ \phi = f$:

Such a pair (X', ϕ) , if it exists, is unique in an obvious sense. More precisely, a simple and standard argument shows that, if $\phi' : X \to X''$ also has Property (P), then

• there is a unique continuous map $u: X' \to X''$ such that $u \circ \phi = \phi'$:

• there is a unique continuous map $v : X'' \to X'$ such that $v \circ \phi' = \phi$:

• *u* and *v* are inverse homeomorphisms.

The purpose of this text is to prove that such a pair *does* exist, and to define it in two (necessarily equivalent) ways.

The first method is to use the Stone-Čech compactification $\beta(X)$ of X, and to set $X' := \beta(X)/\sim$ where $x_1 \sim x_2$ if and only if x_1 and x_2 are in the same connected component. The only thing to verify is that $\beta(X)/\sim$ is a profinite space. To prove this, the only slightly delicate point is to check that $\beta(X)/\sim$ is Hausdorff, but this follows from Corollary 5.7.11 in [1].

The sequel is dedicated to the second method, which can be described as follows:

Let A(X) be the boolean algebra formed by the clopen subsets of X, let X' be the set of all boolean algebra morphisms from A(X) to $\mathbf{2} := \{0, 1\}$, and define $\phi: X \to X'$ by

$$(\phi(x))(U) = 1 \iff x \in U$$

for all point x of X and all clopen subset U of X. By Proposition 4.1.3 and Lemma 4.1.8 in [1], there is unique topology τ on X' such that the subsets

$$O_U := \{ x' \in X' \mid x'(U) = 0 \}$$

with U clopen in X, form a basis for τ . We equip X' with this topology τ . By Proposition 4.1.11 in [1] the space X' is profinite. Our main result is that this works, that is

Theorem. The map $\phi : X \to X'$ defined above has Property (P).

To prove the theorem we first claim

(a) ϕ is continuous.

Proof. We easily check that $\phi^{-1}(O_U) = X \setminus U$ for all clopen subset U of X. \Box

We claim

(b) $\phi(X)$ is dense in X'.

Proof. Using Lemma 4.1.8 in [1] again we see that any nonempty open subset of X' contains some O_U with $U \neq X$ (U clopen). As noted above, if x is in $X \setminus U$, then $\phi(x)$ is in O_U . \Box

Say that a topological space Y has *Property (Q)* if Y is profinite and if, for any continuous map $f : X \to Y$, there is a unique continuous map $f' : X' \to Y$ such that $f' \circ \phi = f$. Our task is to show that all profinite spaces have Property (Q).

We claim

(c) If $Y = \lim_{i} Y_i$ with Y_i profinite for all *i* and if Y_i has Property (Q) for all *i*, then *Y* has Property (Q).

Proof. This is clear. \Box

In view of (c), it suffices to verify that all *finite* discrete topological spaces have Property (Q).

Say that a topological space Y has *Property (Q')* if Y is profinite and if, for any continuous map $f : X \to Y$, there is *at least one* continuous map $f' : X' \to Y$ such that $f' \circ \phi = f$.

In view of (b),

(d) Properties (Q) and (Q') are equivalent.

Above we denoted by **2** the set $\{0, 1\}$ viewed a boolean algebra. We also denote by **2** the set $\{0, 1\}$ when it is viewed a discrete topological space.

We claim

(e) 2 has Property (Q').

Proof. Given a continuous map $f : X \to 2$ we define $f' : X' \to 2$ by $f'(x') = x'(f^{-1}(1))$. This implies $f'^{-1}(0) = O_{f^{-1}(1)}$. By Lemma 4.1.8 in [1], this is a clopen subset of X'. This shows that f' is continuous. Finally we have

$$f'(\phi(x)) = (\phi(x))(f^{-1}(1)) = f(x). \square$$

We claim

(f) $\mathbf{2}^n$ has Property (Q) for all $n \in \mathbb{N}$.

Proof. This follows from (c), (d) and (e). \Box

We claim

(g) If Y has Property (Q') and Y_0 is a closed subspace of Y, then Y_0 has Property (Q').

Proof. Let $i: Y_0 \hookrightarrow Y$ be the inclusion, let $f: X \to Y_0$ be continuous, set $g := i \circ f$ and let $g': X' \to Y$ be a continuous map satisfying $g' \circ \phi = g$. We must show that

g induces a map $f': X' \to Y_0$:

In other words we must show $g'(X') \subset Y_0$, that is $g'^{-1}(Y_0) = X'$. But this follows from the facts that $g'^{-1}(Y_0)$ is a closed subspace of X' containing $\phi(X)$, and that $\phi(X)$ is dense in X' by (b). \Box

We claim

(h) All finite discrete topological spaces have Property (Q).

Proof. This follows from (d), (f) and (g). \Box

As already indicated, the Theorem follows from (c) and (h). \Box

Reference.

[1] Borceux, F., & Janelidze, G. (2001). **Galois Theories** (Cambridge Studies in Advanced Mathematics). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511619939

Tex file available at

https://tinyurl.com/y5ef4y73 and https://tinyurl.com/yynts2eg

May 3, 2019