The Burnside Q-algebras of a monoid

Pierre-Yves Gaillard

To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q} -algebras, and ask: Is B flat over A? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

In this text "Q-algebra" means "associative commutative Q-algebra with one".

To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q} -algebras, and ask: Is B flat over A? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

Let us define A.

Say that an *M*-set *X* is *indecomposable* if $X \neq \emptyset$ and if *X* is not a disjoint union of two nonempty sub-*M*-sets.

Let Ξ be a set of finite indecomposable *M*-sets such that any finite indecomposable *M*-set is isomorphic to a unique $X \in \Xi$.

If X, Y are in Ξ , then their product $X \times Y$ is a disjoint union $Z_1 \sqcup \cdots \sqcup Z_n$ of finite indecomposable *M*-sets. Moreover, if $Z \in \Xi$, then the number of *i* such that $Z_i \simeq Z$ is a nonnegative integer m(X, Y, Z) which depends only on the isomorphism classes of *X*, *Y* and *Z*.

We define *A* as the \mathbb{Q} -vector space with basis Ξ and multiplication given by

$$XY := \sum_{Z \in \Xi} m(X, Y, Z) \ Z.$$

In particular A is a \mathbb{Q} -algebra.

We temporarily denote A by A(M) and Ξ by $\Xi(M)$ to emphasize the dependence on M.

Theorem 1. The \mathbb{Q} -algebra A(G) of a group G is von Neumann regular.

Proof. If *b* is in A(G), then there is a largest finite index normal subgroup *N* of *G* such that $b \in A(G/N)$. Let $\phi_{G/N} : A(G/N) \to \mathbb{Q}^{\Xi(G/N)}$ be the \mathbb{Q} -algebra isomorphism defined in Section 3.3 of [1], and define $b' \in A(G/N) \subset A(G)$ by

$$b' = (\phi_{G/N})^{-1} \Big(w \circ (\phi_{G/N}(b) \Big),$$

where $w : \mathbb{Q} \to \mathbb{Q}$ is defined by $w(\lambda) = \frac{1}{\lambda}$ if $\lambda \neq 0$ and w(0) = 0 (that is, w is a witness to the von Neumann regularity of \mathbb{Q}), so that we have $b^2b' = b$ in A(G), which shows that A(G) is von Neumann regular. (Here $X \subset Y$ means "X is a (not necessarily proper) subset of Y".)

We denote again by Ξ and A (instead of $\Xi(M)$ and A(M)) the set and the \mathbb{Q} -algebra defined above.

Let us define B.

Proposition 2. For any $Z \in \Xi$ there are only finitely $(X, Y) \in \Xi^2$ such that m(X, Y, Z) is nonzero.

Proof. It suffices to show that, for $X, Y \in \Xi$ and Z an indecomposable component of $X \times Y$, the projection $p: X \times Y \to X$ maps Z onto X. (Indeed, up to isomorphism, there are only finitely many quotients of Z.)

Let us fix an element a of M. Say that a point of an M-set is *periodic* if it is a fixed point of a^n for some $n \ge 1$.

The following facts are clear:

(a) If v is a periodic point of an M-set U and n is a nonnegative integer, then $v = a^n u$ for some $u \in U$.

(b) If u is a point of a finite *M*-set, then $a^n u$ is periodic for *n* large enough.

Let $p: X \times Y \to X$ be the projection, and assume by contradiction that p(Z) is a *proper* subset of X. Then there is a tuple (a, x_1, x_2, y_2) with

$$a \in M; x_1, x_2 \in X; x_1 \notin p(Z); ax_1 = x_2; y_2 \in Y; (x_2, y_2) \in Z.$$

It suffices to show $x_1 \in p(Z)$. By (b) we can pick an $n \in \mathbb{N}$ such that $a^n(x_2, y_2) \in Z$ is periodic. Set

$$x_3 := a^n x_2 = a^{n+1} x_1, \ y_3 := a^n y_2.$$

By (a) there is a $y_1 \in Y$ such that $a^{n+1}y_1 = y_3$, and we get

$$a^{n+1}(x_1, y_1) = (x_3, y_3) \in Z_2$$

which implies $(x_1, y_1) \in Z$ and thus $x_1 \in p(Z)$, contradiction. This completes the proof.

Proposition 2 implies that the multiplication we defined above on A extends to the \mathbb{Q} -vector space of **all** expressions of the form

$$\sum_{X\in\Xi}a_X\ X$$

with $a_X \in \mathbb{Q}$. We denote by *B* the \mathbb{Q} -algebra obtained by this process.

Question 3. Is B flat over A?

Beside the case of groups, there is only one case where I know that the answer is Yes. It is the case of the monoid $M := \{0, 1\}$ with the obvious multiplication. In the post

https://math.stackexchange.com/a/3154240/660

Eric Wofsey shows the isomorphism $A \simeq \mathbb{Q}[x_1, x_2, ...]$, where the x_i are indeterminates, and it is clear that we have $B \simeq \mathbb{Q}[[x_1, x_2, ...]]$.

Proposition 4. The ring $\mathbb{Q}[[x_1, x_2, \dots]]$ is flat over $\mathbb{Q}[x_1, x_2, \dots]$.

The poof of Proposition 4 will use two lemmas:

Lemma 5. If A is a commutative ring with one, if $(M_i)_{i \in I}$ is a filtered inductive system of A-modules, and if $N \to P$ is a morphism of A-modules, then the natural morphisms

 $\operatorname{colim} \operatorname{Ker}(M_i \otimes_A N \to M_i \otimes_A P)$

 $\rightarrow \operatorname{Ker} \left(\operatorname{colim}(M_i \otimes_A N) \rightarrow \operatorname{colim}(M_i \otimes_A N) \right)$ $\rightarrow \operatorname{Ker} \left(\left(\operatorname{colim} M_i \right) \otimes_A N \rightarrow \left(\operatorname{colim} M_i \right) \otimes_A N \right)$

are bijective.

Proof. This follows respectively from Lemmas 4.19.2

https://stacks.math.columbia.edu/tag/002W

and 10.11.9

https://stacks.math.columbia.edu/tag/ooDD

of [2].

Lemma 6. Filtered colimits preserve flatness. More precisely, if A and $(M_i)_{i \in I}$ are as above, and if in addition M_i is flat for all i, then colim M_i is flat.

Proof. This follows immediately from Lemma 5.

Proof of Proposition 4. We claim:

(a) $\mathbb{Q}[[x_1, x_2, ...]]$ is flat over $\mathbb{Q}[x_1, ..., x_n]$.

(b) Claim (a) implies the proposition.

Proof of (b). Set

 $A_n := \mathbb{Q}[[x_1, x_2, \dots]] \otimes_{\mathbb{Q}[x_1, \dots, x_n]} \mathbb{Q}[x_1, x_2, \dots].$

The ring A_n being flat over $\mathbb{Q}[x_1, x_2, ...]$ and $\mathbb{Q}[[x_1, x_2, ...]]$ being the colimit of the A_n , Claim (b) follows from Lemma 6.

Proof of (a). The ring $\mathbb{Q}[[x_1, \ldots, x_n]]$ being noetherian by Lemma 10.30.2

https://stacks.math.columbia.edu/tag/0306

of [2], and flat over $\mathbb{Q}[x_1, \ldots, x_n]$ by Lemma 10.96.2(1)

https://stacks.math.columbia.edu/tag/ooMB

of [2], it is enough to verify that $\mathbb{Q}[[x_1, x_2, \dots]]$ is flat over $\mathbb{Q}[[x_1, \dots, x_n]]$.

But, since $\mathbb{Q}[[x_1, x_2, \dots]]$, viewed as an $\mathbb{Q}[[x_1, \dots, x_n]]$ -module, is just a product of copies of $\mathbb{Q}[[x_1, \dots, x_n]]$, it is flat over $\mathbb{Q}[[x_1, \dots, x_n]]$ by Lemma 10.89.5

https://stacks.math.columbia.edu/tag/05CY

and Proposition 10.89.6

https://stacks.math.columbia.edu/tag/o5CZ

of [2], we are done.

References.

[1] Serge Bouc, Burnside rings, Chapter 1, pages 739-804, in Handbook of Algebra, Volume 2, 2000, doi 0.1037/a0028240

https://tinyurl.com/y6trypqv.

[2] The Stacks Project https://stacks.math.columbia.edu/.

Tex file available at

https://tinyurl.com/y5skagjm and https://tinyurl.com/y5jfbv5r

May 5, 2019