The Burnside \mathbb{Q}-algebras of a monoid

Pierre-Yves Gaillard

To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q}-algebras, and ask: Is B flat over A ? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

In this text " \mathbb{Q}-algebra" means "associative commutative \mathbb{Q}-algebra with one".
To each monoid M we attach an inclusion $A \hookrightarrow B$ of \mathbb{Q}-algebras, and ask: Is B flat over A ? If our monoid M is a group, A is von Neumann regular, and the answer is trivially Yes in this case.

Let us define A.
Say that an M-set X is indecomposable if $X \neq \varnothing$ and if X is not a disjoint union of two nonempty sub- M-sets.
Let Ξ be a set of finite indecomposable M-sets such that any finite indecomposable M-set is isomorphic to a unique $X \in \Xi$.

If X, Y are in Ξ, then their product $X \times Y$ is a disjoint union $Z_{1} \sqcup \cdots \sqcup Z_{n}$ of finite indecomposable M-sets. Moreover, if $Z \in \Xi$, then the number of i such that $Z_{i} \simeq Z$ is a nonnegative integer $m(X, Y, Z)$ which depends only on the isomorphism classes of X, Y and Z.

We define A as the \mathbb{Q}-vector space with basis Ξ and multiplication given by

$$
X Y:=\sum_{Z \in \Xi} m(X, Y, Z) Z .
$$

In particular A is a \mathbb{Q}-algebra.
We temporarily denote A by $A(M)$ and Ξ by $\Xi(M)$ to emphasize the dependence on M.

Theorem 1. The \mathbb{Q}-algebra $A(G)$ of a group G is von Neumann regular.

Proof. If b is in $A(G)$, then there is a largest finite index normal subgroup N of G such that $b \in A(G / N)$. Let $\phi_{G / N}: A(G / N) \rightarrow \mathbb{Q}^{\Xi(G / N)}$ be the \mathbb{Q}-algebra isomorphism defined in Section 3.3 of [1], and define $b^{\prime} \in A(G / N) \subset A(G)$ by

$$
b^{\prime}=\left(\phi_{G / N}\right)^{-1}\left(w \circ\left(\phi_{G / N}(b)\right),\right.
$$

where $w: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by $w(\lambda)=\frac{1}{\lambda}$ if $\lambda \neq 0$ and $w(0)=0$ (that is, w is a witness to the von Neumann regularity of \mathbb{Q}), so that we have $b^{2} b^{\prime}=b$ in $A(G)$, which shows that $A(G)$ is von Neumann regular. (Here $X \subset Y$ means " X is a (not necessarily proper) subset of $Y^{\prime \prime}$.)

We denote again by Ξ and A (instead of $\Xi(M)$ and $A(M)$) the set and the \mathbb{Q}-algebra defined above.

Let us define B.
Proposition 2. For any $Z \in \Xi$ there are only finitely $(X, Y) \in \Xi^{2}$ such that $m(X, Y, Z)$ is nonzero.

Proof. It suffices to show that, for $X, Y \in \Xi$ and Z an indecomposable component of $X \times Y$, the projection $p: X \times Y \rightarrow X$ maps Z onto X. (Indeed, up to isomorphism, there are only finitely many quotients of Z.)

Let us fix an element a of M. Say that a point of an M-set is periodic if it is a fixed point of a^{n} for some $n \geq 1$.

The following facts are clear:
(a) If v is a periodic point of an M-set U and n is a nonnegative integer, then $v=a^{n} u$ for some $u \in U$.
(b) If u is a point of a finite M-set, then $a^{n} u$ is periodic for n large enough.

Let $p: X \times Y \rightarrow X$ be the projection, and assume by contradiction that $p(Z)$ is a proper subset of X. Then there is a tuple (a, x_{1}, x_{2}, y_{2}) with

$$
a \in M ; x_{1}, x_{2} \in X ; x_{1} \notin p(Z) ; a x_{1}=x_{2} ; y_{2} \in Y ;\left(x_{2}, y_{2}\right) \in Z .
$$

It suffices to show $x_{1} \in p(Z)$. By (b) we can pick an $n \in \mathbb{N}$ such that $a^{n}\left(x_{2}, y_{2}\right) \in Z$ is periodic. Set

$$
x_{3}:=a^{n} x_{2}=a^{n+1} x_{1}, y_{3}:=a^{n} y_{2} .
$$

By (a) there is a $y_{1} \in Y$ such that $a^{n+1} y_{1}=y_{3}$, and we get

$$
a^{n+1}\left(x_{1}, y_{1}\right)=\left(x_{3}, y_{3}\right) \in Z,
$$

which implies $\left(x_{1}, y_{1}\right) \in Z$ and thus $x_{1} \in p(Z)$, contradiction. This completes the proof.

Proposition 2 implies that the multiplication we defined above on A extends to the Q-vector space of all expressions of the form

$$
\sum_{X \in \Xi} a_{X} X
$$

with $a_{X} \in \mathbb{Q}$. We denote by B the \mathbb{Q}-algebra obtained by this process.
Question 3. Is B flat over A ?
Beside the case of groups, there is only one case where I know that the answer is Yes. It is the case of the monoid $M:=\{0,1\}$ with the obvious multiplication. In the post
https://math.stackexchange.com/a/3154240/660

Eric Wofsey shows the isomorphism $A \simeq \mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$, where the x_{i} are indeterminates, and it is clear that we have $B \simeq \mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$.

Proposition 4. The ring $\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ is flat over $\mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$.
The poof of Proposition 4 will use two lemmas:
Lemma 5. If A is a commutative ring with one, if $\left(M_{i}\right)_{i \in I}$ is a filtered inductive system of A-modules, and if $N \rightarrow P$ is a morphism of A-modules, then the natural morphisms $\operatorname{colim} \operatorname{Ker}\left(M_{i} \otimes_{A} N \rightarrow M_{i} \otimes_{A} P\right)$

$$
\begin{aligned}
& \rightarrow \operatorname{Ker}\left(\operatorname{colim}\left(M_{i} \otimes_{A} N\right) \rightarrow \operatorname{colim}\left(M_{i} \otimes_{A} N\right)\right) \\
& \rightarrow \operatorname{Ker}\left(\left(\operatorname{colim} M_{i}\right) \otimes_{A} N \rightarrow\left(\operatorname{colim} M_{i}\right) \otimes_{A} N\right)
\end{aligned}
$$

are bijective.
Proof. This follows respectively from Lemmas 4.19.2
https://stacks.math.columbia.edu/tag/oo2W
and 10.11.9
https://stacks.math.columbia.edu/tag/ooDD
of [2].
Lemma 6. Filtered colimits preserve flatness. More precisely, if A and $\left(M_{i}\right)_{i \in I}$ are as above, and if in addition M_{i} is flat for all i, then colim M_{i} is flat.

Proof. This follows immediately from Lemma 5 .
Proof of Proposition 4. We claim:
(a) $\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ is flat over $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
(b) Claim (a) implies the proposition.

Proof of (b). Set

$$
A_{n}:=\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right] \otimes_{\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]} \mathbb{Q}\left[x_{1}, x_{2}, \ldots\right] .
$$

The ring A_{n} being flat over $\mathbb{Q}\left[x_{1}, x_{2}, \ldots\right]$ and $\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ being the colimit of the A_{n}, Claim (b) follows from Lemma 6.

Proof of (a). The ring $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ being noetherian by Lemma 10.30.2
https://stacks.math.columbia.edu/tag/o3o6
of $[2]$, and flat over $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by Lemma 10.96.2(1)
https://stacks.math.columbia.edu/tag/ooMB
of $[2]$, it is enough to verify that $\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ is flat over $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.
But, since $\mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$, viewed as an $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$-module, is just a product of copies of $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, it is flat over $\mathbb{Q}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ by Lemma 10.89.5
https://stacks.math.columbia.edu/tag/05CY
and Proposition 10.89. 6
https://stacks.math.columbia.edu/tag/o5CZ
of [2], we are done.

References.

[1] Serge Bouc, Burnside rings, Chapter 1, pages 739-804, in Handbook of Algebra, Volume 2, 2000, doi 0.1037/a0028240
https://tinyurl.com/y6trypqv.
[2] The Stacks Project https://stacks.math.columbia.edu/.

Tex file available at
https://tinyurl.com/y5skagjm and https://tinyurl.com/y 5jf $^{\text {fiv }} 5 \mathrm{r}$
May 5, 2019

