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The distribution of free charges within fluids or plasma is often modeled using linearized Poisson-
Boltzmann equation (PBE). However, this author has recently shown that the usual boundary
conditions (BC), namely the Dirichlet condition and the Neumann condition cannot be used to
solve the PBE due to some physical reasons. This author has used the BC of ‘mixed’ type to
obtain the physical solution to the 1-D PBE and derived the charged density distribution ρe within
rectangular and cylindrical geometries before. Here the 1-D formulae of ρe (i) within, (ii) between
and (iii) outside spherical geometries has been derived. The result shows that the electric field is
high at the surface of small objects, immersed in electrolyte solution. These formulae could be very
useful in explaining similar physical situations that are found in nature or made in the laboratories.

PACS numbers: 68.08.-p, 94., 82.45.-h, 52.27.Lw

I. INTRODUCTION

The linearized PBE has been serving as a very impor-
tant formulation since a long time [1] to find free-charge
distribution within ionic solutions or plasma. It is being
applied regularly in various branches of physical, chemi-
cal and biological sciences, from sub-nanometer to astro-
physical scales, e.g. surface chemistry, colloids, micro-
nano-fluidics, fusion devices, astrophysical plasmas, ra-
dio science, structural biology etc. please see Refs. [2–5]
and other references within Ref. [6].

Recently, after some unsuccessful attempts [7, 8] (also
see Ref. [9]), we have shown that the old ways of solving
the PBE using Dirichlet or Neumann type BCs have se-
rious defects; we addressed these problems and derived
new formula for ρe [10, 11]; a minute error in the formula
has been corrected in a review process, see Refs. [12, 13].

In Ref‘. [11] we have derived the expression of ρe for
finite rectangular geometry and laid the main physical
ideas. In Ref. [6] we dervied the expressions of ρe for
various cylindrical geometries; we also considered semi-
infinite rectangular geometry there; we gave an alterna-
tive derivation of ρe for finite rectangular geometry (i.e.
the derivation is different from that in Ref. [11]). Here,
we derive the formulae of ρe for various spherical geome-
tries. In all the above cases (rectangular, cylindrical,
spherical), we analyzed 1-D problems only.

II. SPHERICAL GEOMETRY

See Refs. [14–16] that solved the PBE in spherical ge-
ometries. Unlike them, here we have used different BCs
to solve the PBE.
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In spherical polar coordinate system, a point in space
can be represented in various ways, see Ref. [17]; here
we use (R, θ, φ) i.e. (radial, polar, azimuthal) system,
see section 2.5 of Ref. [18]. The meaning of most of the
other symbols can be found in Ref. ([10]), any exception
will be notified. First we analyse the domain bounded by
two concentric spheres. Then we analyse a pure spherical
domain i.e. where the inner sphere is absent.

We consider the problems that depend only on the ra-
dial coordinate R. We use some suitable scales ‘a’ and ‘ζ’
(both are positive) for distance and electrostatic poten-
tial (ψ) respectively. We re-write a few quantities, which
were defined in Ref. [6]:

r ≡ R

a
; κ ≡

[
λD
a

]−1
; ψ∗ ≡ ψ

ζ
; ρ0 ≡

εκ2ζ

a2
; ρ∗e ≡

ρe
ρ0

(1)

Where, λD is the ‘Debye length’, ε is the permittivity of
the fluid.

A. Charge distribution for a finite domain bounded
between two concentric spheres

The domain is shown in Fig. 1(a); the ‘inner’ and
‘outer’ radii are Ri and Ro, normalized as: ri ≡
Ri/a; ro ≡ Ro/a.

We start with a formula that we derived in Ref. [10]
(within its Supplementary Material).

∴ ρ∗e = −ψ∗ (2)

Now we define a few quantities, which we will use later.
The net charge present in the total domain i.e QTOT is
given by

∫∫∫
ρedV , where dV = R2 sin θ dR dθ dφ. If ρe

depends only upon R, we have,

QTOT =

2π∫
0

dφ

π∫
0

sin θ dθ

Ro∫
Ri

ρeR
2 dR = 4π

∫ Ro

Ri

ρeR
2 dR

(3)
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FIG. 1. (Color online) Electrolytic solution bounded by various spherical geometries: sectional views. (a) Between two
concentric, finite spheres of radii Ri and Ro; the spheres have a potential difference V . (b) Within a single, finite sphere of
radius Ro (c) Outside a single, finite sphere of radius Ri; the fluid domain extends to infinity. For each case, the +ve and −ve
ions shows the corresponding solution domain.

We define a quantity Q1s, then using Eq. (1) we write
its non-dimensional form q1s; the subscript ‘1s’ means an
1-D problem in spherical geometry.

Q1s ≡
QTOT

4π
=

∫ Ro

Ri

ρeR
2 dR = ρ0a

3

∫ ro

ri

ρ∗e r
2 dr (4)

q1s ≡
Q1s

(ρ0a3)
=

∫ ro

ri

ρ∗e r
2 dr = −

∫ ro

ri

ψ∗ r2 dr (5)

Q1s is the net charge present in the fluid within a
solid-angle of unit steradian, between two spherical sur-
faces of radii Ri and Ro; it has dimension of ‘charge’
e.g. Coulomb, unlike in the rectangular geometry
(Coulomb·meter−2, see Ref. [19]) or cylindrical geometry
(Coulomb ·meter−1, see Ref. [6]).

Now, ψ and ρe are also related by Poisson’s equation
in electrostatics (PES), which is given by,

∇2ψ = −ρe
ε

(6)

The expression for ∇2 in spherical polar coordinates can
be found in section 2.5 of Ref. [18]:

∇2 ≡ 1

R2

∂

∂R

(
R2 ∂

∂R

)
+

1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

R2 sin2 θ

∂2

∂φ2

(7)

In the special case, where ψ varies only in the ‘radial’
direction, the PES reduces to,

1

R2

d

dR

(
R2 dψ

dR

)
= −ρe

ε
(8)

using Eq. (1) we first make PES non-dimensional:

1

r2
d

dr

(
r2

dψ∗

dr

)(
ζ

a2

)
= −ρ0

ε
ρ∗e = −

(
εκ2ζ

a2ε

)
ρ∗e

⇒ 1

r2
d

dr

(
r2

dψ∗

dr

)
= −κ2ρ∗e (9)

Using Eq. (2) in Eq. (9) we get non-dimensional PBE in
1-D spherical (radial) coordinates:

1

r2
d

dr

(
r2

dψ∗

dr

)
= κ2ψ∗ (10)

See Ref. [16], the general solution to Eq. (10) is,

ψ∗ = A
exp(+κr)

r
+B

exp(−κr)
r

(11)

We need two conditions to fix the arbitrary constants A
and B. We get one condition by integrating PES i.e.
Eq. (9) and using Eq. (5),

ro∫
ri

[
1

r2
d

dr

(
r2

dψ∗

dr

)]
r2 dr = −κ2

∫ ro

ri

ρ∗e r
2 dr

⇒
(
r2

dψ∗

dr

)∣∣∣∣
r=ro

−
(
r2

dψ∗

dr

)∣∣∣∣
r=ri

= −q1sκ2 (12)

We assume the potential difference (scaled with ζ) be-
tween outer and inner curved boundaries i.e. ‘v’ to be
known,

ψ∗(ro)− ψ∗(ri) = v (13)

We solve PBE i.e. Eq. (10) using two conditions given
by Eq. (12) and Eq. (13).

From Eq. (11) we get,
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dψ∗

dr
= − 1

r2
[A exp(κr) +B exp(−κr)] +

κ

r
[A exp(κr)−B exp(−κr)] (14)

∴ r2
dψ∗

dr
= − [A exp(κr) +B exp(−κr)] + (κr) [A exp(κr)−B exp(−κr)] (15)

= A exp(κr) [κr − 1]−B exp(−κr) [κr + 1] (16)

Below we write the expression for the radial component of electric field, which will be used later:

Er ≡ −
dψ∗

dr
= − 1

r2

[
A exp(κr) {κr − 1} −B exp(−κr) {κr + 1}

]
(17)

From Eq. (12) and Eq. (16) we get,

[exp(κro)(κro − 1)− exp(κri)(κri − 1)]A− [exp(−κro)(κro + 1)− exp(−κri)(κri + 1)]B = −q1sκ2 (18)

From Eq. (11) and Eq. (13) we get,[
exp(κro)

ro
− exp(κri)

ri

]
A+

[
exp(−κro)

ro
− exp(−κri)

ri

]
B = v (19)

We write Eq. (18) and Eq. (19) together in a compact, matrix form:(
C11 C12

C21 C22

)(
A
B

)
=

(
d1
d2

)
(20)

Where,

C11 ≡ [exp(κro)(κro − 1)− exp(κri)(κri − 1)] (21)

C12 ≡ (−1)× [exp(−κro)(κro + 1)− exp(−κri)(κri + 1)] (22)

C21 ≡
[

exp(κro)

ro
− exp(κri)

ri

]
(23)

C22 ≡
[

exp(−κro)
ro

− exp(−κri)
ri

]
(24)

d1 ≡ −q1sκ2 (25)

d2 ≡ v (26)

The determinant ∆ of the above 2× 2 matrix is given by,

∆ ≡ C11 · C22 − C12 · C21 (27)

Finally we write A and B in terms of known quantities,

A = (d1 · C22 − d2 · C12)/∆ (28)

B = (−d1 · C21 + d2 · C11)/∆ (29)

With the help of Eq. (28) and Eq. (29), we can use Eq. (11) and Eq. (2) to evaluate ψ∗ and ρ∗e. We
can also use an equivalent formula, which is written explicitly in terms of the pair (q1s, v). In Eq. (11), we plug in
the expressions of A and B given by Eq. (28) and Eq. (29) respectively and rearrange terms; then we use Eq. (25),
Eq. (26):

ψ∗ =
1

∆

[
(d1 · C22 − d2 · C12)

exp(+κr)

r
+ (−d1 · C21 + d2 · C11)

exp(−κr)
r

]
(30)

=
1

∆

[
d1

{
C22

exp(+κr)

r
− C21

exp(−κr)
r

}
+ d2

{
−C12

exp(+κr)

r
+ C11

exp(−κr)
r

}]
(31)

=
1

∆

[
−q1sκ2

{
C22

exp(+κr)

r
− C21

exp(−κr)
r

}
+ v

{
−C12

exp(+κr)

r
+ C11

exp(−κr)
r

}]
(32)

= − 1

∆

[
q1sκ

2

{
C22

exp(+κr)

r
− C21

exp(−κr)
r

}
+ v

{
C12

exp(+κr)

r
− C11

exp(−κr)
r

}]
(33)
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Finally we use Eq. (2) i.e. ρ∗e = −ψ∗,

ρ∗e =
1

∆

[
q1sκ

2

{
C22

exp(+κr)

r
− C21

exp(−κr)
r

}
+ v

{
C12

exp(+κr)

r
− C11

exp(−κr)
r

}]
(34)

B. Charge distribution within a single, finite sphere

We consider the charge distribution within a domain
bounded by a single sphere of radius ro (≡ Ro/a), as
shown in Fig. 1(b). This case cannot be considered as a
spacial case of the two concentric spheres by just assign-
ing ri = 0. Physically they are different as we can still
vary the voltage in the double spherical case, but can-
not do that for a single sphere. It is mathematically not
possible, too, as we cannot assign ri = 0 in Eq. (23) and
Eq. (24), because it leads to division by zero. Hence, we
cannot use Eq. (34) for this case of single sphere. Here
r = 0 is included in our domain of analysis; it needs spe-
cial attention. We re-write the general solution to PBE
i.e. Eq. (11) in a slightly different way:

ψ∗ =
[A exp(+κr) +B exp(−κr)]

r
(35)

The denominator of Eq. (35) tends to zero as r → 0.
However, ρ∗e (and hence, ψ∗) should not blow up as
r → 0, therefore the numerator should also tend to zero
as r → 0; we write,

lim
r→0

[A exp(+κr) +B exp(−κr)] = 0 (36)

which gives us B = −A; hence,

ψ∗ =
A[exp(+κr)− exp(−κr)]

r
= 2A

sinh(κr)

r
(37)

For the special case ri = 0, we write 0q1s instead of q1s.
Using Eq. (5), with ri = 0, we get,∫ ro

0

ψ∗ r2 dr = −0q1s (38)

Using the expression of ψ∗ given by Eq. (37) in Eq. (38),∫ ro

0

ψ∗ r2 dr = 2A

∫ ro

0

r sinh(κr)dr

= 2A

(
r

κ
cosh(κr)− 1

κ2
sinh(κr)

)∣∣∣∣ro
0

=
2A

κ2
[κro cosh(κro)− sinh(κro)] = −0q1s

⇒ A = −
0q1sκ

2

2 [κro cosh(κro)− sinh(κro)]
(39)

We have used the following formula given in Ref. [20]:∫
x sinh(ax) dx =

1

a
x cosh(ax)− 1

a2
sinh(ax) + Const.

(40)

Using Eq. (39) in Eq (37) we get,

ψ∗ = −
[

0q1sκ
2

κro cosh(κro)− sinh(κro)

]
sinh(κr)

r
(41)

Eq. (2) i.e. ρ∗e = −ψ∗ gives,

ρ∗e =

[
0q1sκ

2

κro cosh(κro)− sinh(κro)

]
sinh(κr)

r
(42)

C. Charge distribution outside a single sphere, in a
semi-infinite domain

Here we find the charge distribution outside a single
sphere of radius ri (≡ Ri/a), immersed in an infinite
medium containing free charges; please see Fig. 1(c). In
this case, in order to prevent ψ∗ from blowing up as
r →∞, we must set A = 0 in Eq. (11), that equation
reduces to,

ψ∗ = B
exp(−κr)

r
(43)

For this special case, we set ro = ∞, and write ∞q1s
instead of q1s. Using Eq. (5), with ro =∞, we get,∫ ∞

ri

ψ∗ r2 dr = −∞q1s (44)

We use the expression of ψ∗ given by Eq. (43) in Eq. (44),∫ ∞
ri

ψ∗ r2 dr = B

∫ ∞
ri

r exp(−κr) dr

= B exp(−κr)
(−κr − 1

κ2

)∣∣∣∣∞
ri

=
B

κ2
(κri + 1) exp(−κri) = −∞q1s

⇒ B = −
∞q1sκ

2

(κri + 1) exp(−κri)
(45)

Using the expression of B given by Eq. (45) in Eq (43),

ψ∗ = −
[ ∞q1sκ

2

(κri + 1) exp(−κri)

]
exp(−κr)

r
(46)

Eq. (2) i.e. ρ∗e = −ψ∗ gives,

ρ∗e =

[ ∞q1sκ
2

(κri + 1) exp(−κri)

]
exp(−κr)

r
(47)
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FIG. 2. (Color online) Charge density distribution within a fluid, bounded between two concentric spheres. We vary the
potential difference between the boundaries i.e. ‘v’, keeping other parameters constant e.g. κ = 10.0; q1s = 0.1; (scaled) radii
of iiner and outer spheres are ri = 1 and ro = 2. (a) v = 0; excess charges accumulate near boundaries. (b) v = 0.6; an applied
voltage redistributes charges. (c) v = 1.5; strong voltage segregates negative charges even if q1s > 0. (d) v = 2.5; stronger
voltage makes higher seggregation. Please compare this figure with figure (1) in Ref. [11] and figure (2) in Ref. [6]:

D. Results and discussions

a. Domain bounded between two concentric spheres:
Using Eq. (34) we plot ρ∗e vs r in Fig. (2); to compare
the results, we use the same range for r that was used in
Ref. [6]: [1 ≤ r ≤ 2] i.e. we took a = Ri and Ro = 2Ri,
so that ri = 1, and ro = 2. The description of the plots
are similar to that of the rectangular or the cylindrical
geometry (Ref. [6, 11]); the non-zero net charge in the
domain gather near the two boundaries. The charges dis-
tribute differently when the potential difference between
the boundaries changes; positive and negative charges
move towards the boundaries that minimizes their po-
tential energies. For a given value of q1s, the charged
layers near the inner and the outer boundaries may be of
opposite polarities when the voltage is very high.

0.2 0.4 0.6 0.8
0

5

10

15

20

25

κ = 10.0, q1s = 0.1, v = 0.0, ro = 1.0

ri

−
(d
ψ
/d
r)
| r=

r i

1

FIG. 3. The variation of the electric field at the surface of the
inner sphere when the inner-sphere-radius ri is varied, keeping
the outer-sphere-radius ro fixed; the domain of analysis is
bounded between two concentric spheres of radii ro and ri,
filled with ionic liquids.

Next, using Eq. (17), we plot (−dψ/dr)|r=ri vs. ri in
Fig. (3) for 0.1 ≤ ri ≤ 0.9; other parameters are kept
at constant values: κ = 10, q1s = 0.1, v = 0, ro = 1.
Physically, we keep the size of the bigger sphere fixed
and vary the size of the inner sphere to study how the
electric field on its surface (i.e. at r = ri) varies with
the size. The field is very high for small sphere (e.g.
when ri = 0.1), as we increase ri, the field decreases
monotonically upto quite a large value of ri (∼ 0.75 for
the particular set of parameters that are kept constant),
then started increasing again with ri.

In this context, we mention an analogous case where
the sharp parts of a charged metallic objet are associated
with much higher electric fields than the other parts; see
Feynman et al [21], (pp. 6-13 sec. 6-11, ‘High-voltage
breakdown’); it says that the charges on the surface of
a conductor tend to spread out as much as possible and
hence a significant number of charges accumulate on the
tip of a sharp point, because this tip is farthest from
most part of the surface. Even a small quantity of charge
produces high charge-density due to the small size of the
tip, which causes high electric field just outside this tip.

However, for metallic objects, free charges reside on
its surface, and the charge density at the surface is used
to calculate the electric field; unlike this, in electrolytic
solutions, the charges distribute over a volume, and the
gradient of the charge density is used to calculate the
electric field (in the PB model). However, like the metal-
lic case, a significant number of charges accumulate near
the smaller sphere, because it is the farthest place from
most of the surface available in the domain i.e. the bigger
sphere.

Beyond a certain critical value of ri, the electric field at
the inner surface starts to increase with ri. This happens
because the inner surface is now very close to the outer
one, so that the charges at the outer surface have strong
influence at the inner surface. When the two surfaces
are very close the two layers may overlap and the electric
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filed increases very rapidly with ri.
For the distribution inside a finite, single sphere, see

Sec. II B, when 0q1s = 0, we have ρ∗e = 0 everywhere
according to Eq. (47). When 0q1s 6= 0, we have ρ∗e fi-
nite everywhere, even at the center of the sphere, since
limr→0 (sinh(κr)/r) → 1. However, the magnitude of ρ∗e
is higher near the surface of the sphere than its central
region.

We have derived the distribution outside a single
sphere in a semi-infinite domain in Sec. II C. When
∞q1s = 0, we have ρ∗e = 0 everywhere according to
Eq. (47). When ∞q1s 6= 0, the charges accumulate near
the spherical surface; the magnitude of ρ∗e falls rapidly
with distance.

The above formulae of ρ∗e for different spherical geome-
tries and a few of their consequences will be very much
useful when we design equipments and explain relevant
natural processes.
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