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Abstract: Difficulties with generalizing the swastika shape for N dimensional spaces are discussed. While
distilling the  crucial  general  characteristics  such  as  whether  the  number  of  arms  is  2N or  2N,  a  three
dimensional (3D) swastika is introduced and then a construction algorithm for any natural number N so that
it reproduces the 1D, 2D, and 3D shapes. The 4D hyper swastika and internal surfaces inside its hypercube
envelope are then presented for the first time.
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1 Introduction

Classification belongs to the basis of science. Generalizing shapes to obtain concepts that

are recognizable in spaces of any number of dimensions, such as  N-dimensional cubes

(point, line, square, cube, hypercubes), facilitates understanding of and classification in

multidimensional  topology and geometry,  which are important  to several  branches  of

physics,  for  example  for  string  theories,  which  are  theories  of  multidimensional

membranes  (n-branes)  and  their  shape  transformations,  the  string  being  a  one

dimensional (1D) membrane (1-brane). Also design and art gain from such hyper shapes

and their  projections  into sub-spaces,  sculptures  and paintings  such as  Dali’s  famous

1954 “Corpus Hypercubus” in the Metropolitan Museum New York. It depicts  Dali’s

wife Gala looking up to Jesus Christ fixed at a cross that results from the unfolding of a

hollow hypercube (Fig. 1a) [1].
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Fig. 1: a) Dali’s “Corpus Hypercubus” is one of many examples for art inspired by higher dimensional
shapes.  b)  A 3D  swastika  constructed  on  top  of  a  mountain  in  a  computer  generated  virtual  reality
(Minecraft),  c) seen in its orthogonal projection when looking straight down the vertical (z-axis). The 2D
swastika is not a part inside this shape, but only appears in “one sided” projections. Opposing arms have
complementary colors; certainly also these can count as art inspired by generalization of shapes.

One  very  recognizable  and  widely  used  shape,  in  many  cultures  ancient  and

recent, is the four armed swastika, which is globally the most recognized symbol, beating

the Christian cross and the Flag of the USA. Those who may feel that certain uses of this

shape in its rich history prevent us from discussing its general geometry should consider

that  scientific  description  can  belong  to  a  “reclaiming  of  suppressive/discriminating”

symbols or language, which is increasingly often demanded. In fact, this work completes

previous work which reinterpreted the controversial 2D swastika as a mere “one-sided

projection” of a richer, 3D shape (Fig. 1b) which does not contain the 2D shape anywhere

except for “only in the shadows of certain rigid perspectives” (Fig. 1c) [2].

Since the four arms of the swastika usually lie either along the two coordinate

axes or in the four quadrants of 2D flat space (Fig. 2a), generalizing may seem especially

easy, and in two or more ways. However, the most obvious paths all  soon encounter

hurdles.
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Fig. 2: a) The 2D swastika can be enveloped (red shape) in a hollow 2-square (2-cube) or 2-diamond (2-
octahedron). b) The 1D swastika inside its 1D envelope, a 1-cube or 1-diamond, which are the same shape
(similar to all 0D shapes being a point), just the endpoints of a hollowed out line remain.

In  the  following,  Section  2 starts  with the  most  general  description  of  N-

dimensional  swastikas (N-swastika)  consistent  with  the  trivial  1D  case (Fig.  2b).

Difficulties with 2N arms lead to the general requirement of 2N arms. Section 3 discusses

more difficulties when trying to fix details of the general algorithm that would construct

the desired shape in any number of dimensions. Necessary factors of negative one lead to

over-complicated equations even in 2D. Section 4 presents the only general yet relatively

simple,  natural  solution,  clarifying  the  algorithm in  1D to  3D.  Section 5 applies  the

general algorithm in order to present a 4D hyper-swastika for the first time.

2 Desired N Swastika Description from 1D, 2D, & 3D-Trial Cases

The usual 2D swastika in  N = 2 dimensions has 4 arms, and each arm consists of two

mutually orthogonal, equally long sections. It is a very “space-embracing/hugging”  yet

sturdy seeming  shape. These characteristics should be preserved in  higher dimensions.

The 1D swastika (Fig. 2b), like all 1D shapes (e.g. 1-tetrahedra, 1-cubes, 1-octahedra),

can only be a straight line. It can at most have two arms, and a single section for each of

its two arms, because there is no orthogonal direction into which a second section on the

same arm could reach into. Therefore, the basic requirements are:

Requirement 1: As many arms as there are dimensions (N)
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Requirement 2: Each section is orthogonal to all others on the same arm.

The 3D swastika must therefore have arms with N = 3 sections, and either 6 or 8

arms, depending on whether the arms either always start with the first section along the

main  coordinate  axes, or  whether  they  instead  point  into  the  center  of  each  octant.

Generally speaking: Should the number of arms be 2N, with their first sections pointing at

the corners of a regular N-diamond (N-octahedron) standing on one corner, or 2N instead,

with the symmetry of the corners of an N-square (N-cube)? Six-arm examples do not only

look sturdier.  Moreover,  the  directions  that  the  second  sections  of  each  arm should

proceed in are obvious; they must go along one of the main coordinate  axes that are

orthogonal to the first section of the arm, just like in the solution depicted in Fig. 1b.

With 2N arms, their paths are not well determined. If the first sections of each arm

point into the middle of each side of the N-diamond, the eight arms of the 3D shape will

point into the eight faces of an octahedron. An octahedron has 12 edges and six corners.

There is no natural way in which they guide the directions of the second sections of the

eight arms, especially not so that the prescription naturally applies to the 2D case, let

alone being suggested by it! In 2D, the numbers of sides and corners are the same, both

four. In 2D, there is  also  only one axis of rotation possible at any point, which allows

saying that the second sections of each arm result from a 90 degree rotation of the first

section. In 3D, the rotation axis could point anywhere on a circle around each of the eight

arms’ first sections. We can instead consider that the eight arms’ first sections point into

the corners of a cube,  but this  does also not reveal  an obvious generalization for the

rotations of the second and third sections of each arm. The main reason is that the number

of edges (12) is not a multiple of the number of arms, and the number of faces (6) is less

than eight.  Trial  drafts  of  possible  8-armed solutions  look fragile  and do not  trigger

associating  the  well  recognized,  sturdy 2D  root  shape.  Therefore,  our  last  formal

requirement is:
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Requirement 3: N-swastika have 2N arms, double the number of the dimensions.

This is equivalent to demanding that the first sections of the arms are orthogonal to all

other neighboring ones, which makes for the characteristic sturdy look.

3 Difficulties Finding Construction Algorithms for Odd/Even N

The shape presented in  Fig.  1b was originally obtained with an algorithm that does not

reproduce the 2D swastika. The algorithm starts with the first axis, the positive x-, or +x1

axis. After going one positive step on it [(–1)N–1 = (–1)2 = +1], it turns to draw along the

next orthogonal axis, the x2 axis, but into the negative direction [(–1)N–2 = –1], and so on,

alternating positive and negative steps. After the xN axis, the next axis is x1 again. This

procedure constructs the desired shapes for odd N, but for even N, such as 2D and 4D, the

arms intersect (Fig. 3a).

Fig. 3: a) Algorithms that step through all available dimensions for each arm work well for producing 3D
solutions, but they do not even reproduce the 2D swastika; all arms meet in only two corners.  b) The
general algorithm first defines a new set of 2N vectors sn and starts constructing all arms simultaneously
with them, putting down all the first sections, then the second sections.

It  is  in general  difficult  to ensure that  the  arms  avoid  intersecting  each  other

during construction and that in the final result each arm ideally extends far away from all

others.  When  the  algorithm  during  construction  of  an  arm  turns  into  an  orthogonal

direction along the next coordinate axis, a positive step is usually followed by a negative

one. However, sometimes a positive step follows again, like with the upper arm of the 2D

swastika, where a step increasing x follows after an already positive step along y. Straight

forward algorithms for odd N lead to that with even N, all arms meet in either the corner
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with the coordinates (+1, –1, +1, …, –1 ) or the opposite corner. In 3D, there is really no

alternative to the solution shown in Fig. 1b, but the original algorithm cannot produce the

2D version. We therefore  try modifying that  algorithm so that it keeps reproducing the

same 3D shape. Changing equations for the signs leads to clumsy prescriptions where, for

example, the algorithm takes into account whether numbers are odd or even.  Equations

with modulus values  are  more elegant,  but  such still  feels too contrived;  such is  not

naturally suggested by the 2D case.

4 The General Algorithm

A general  as  well  as  quite  natural  and easily  remembered  algorithm is  suggested  by

observing that if we go around clockwise in the 2D swastika, the second section of each

arm is precisely the first section of the previous arm, the same vector (Fig. 3b). This is

also the case for the found 3D solution, if only  we rotate it so that  the arms  are  in  the

right sequence (Fig. 4).

Fig.  4: a) The 3D swastika constructed on top of a mountain in a virtual reality seen when climbing the
mountain coming from the north (positive y-axis), and b) for an observer hovering in the positive (1, 1, 1)
octant, the positive x-axis being along the 1st section of the green arm. In this orientation, the 2nd section is
along the y (= x2) axis, the 3rd along x3, and the 2nd arm (blue) starts with the 1st arms’ 2nd section, and so on.
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Hence, the general algorithm starts with constructing an ordered set of 2N basic

arm sections sn, the “set of sections”, as follows: The first is the first basis vector, s1 = b1,

for example b1 = (1, 0) in 2D. The second is the negative of the second basis vector, s2 =

– b2, that is s2 = (0, –1) in 2D. We go on like this, alternating between adding the next

basis vector positively or negatively to the set. When the basis vectors have all been used,

we continue with the negative of b1, i.e. sN+1 = – b1, sN+2 = b2, until s2N. Differently put, we

use up the basis (alternating signs) and then add as many vectors sN+n = – sn. These 2N

vectors sn are the first sections of the 2N arms. In 1D, the algorithm is trivial and already

finished with just s1 = (1) and s2 = (–1). In 2D, the vectors shown in Fig. 3b (left) result

clockwise in sequence, the set being {s1 = b1, s2 = – b2, s3 = – b1, s4 = b2}. The 3-swastika

has the sections s1 = (1,0,0), s2 = (0,–1,0), s3 = (0,0,1), and s4,5,6 = –s1,2,3.

The  algorithm continues  by  attaching  to  each  section  sn the  next  section  sn+1,

counting cyclically, s1 following s2N. The second and later sections are all added like this.

Each round starts at the first arm and attaches to the stump sn the vector sn+1 as the next

section. It then proceeds with the next arm, always drawing from the end of the arm as it

was already painted in the previous round. After the  Nth round, all arms each have  N

sections. Each arm An is a sequence of sections sn, s(n+1), … . The 2D example renders the

generalization obvious: A1 = s1-2, A2 = s2-3, A3 = s3-4, and A4 = s4-1. Since s3 = – s1 etc., A3

and A4 are –A1 and –A2, respectively. In 3D, the first three arms are s1-2-3, s2-3-4, and s3-4-5,

and the last three arms A4,5,6 are all equal to –A1,2,3, respectively.

Drawing the 3D and 4D shapes needs the coordinates of the sections’ endpoints

along the arms. The 2-swastika’s first arm has coordinates [s1,s1+s2] = [(1,0), (1,–1)], the

second [s2, s2+s3] = [(0,–1), (–1,–1)]. The last N arms have always the negative of the first

N arms’ coordinates. With the 3D sections and arms as stated above, the coordinates of

the first N arms are:

[s1, s1+s2, s1+s2+s3] = [(1, 0, 0), (1,–1, 0), (1,–1, 1)]

[s2, s2+s3, s2+s3+s4] = [(0,–1, 0), (0,–1, 1), (–1,–1, 1)]

[s3, s3+s4, s3+s4+s5] = [(0, 0, 1), (–1, 0, 1), (–1, 1, 1)]
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Thinking of an observer “looking north” onto the coordinate origin, the front face

of the enveloping cube is a large square that has all x2 coordinates equal –1.  We then

draw the back face (x2 = 1) as a smaller square into the larger one, slightly shifted into the

outer square’s lower left corner. This avoids that the middle will become too cluttered. It

seems as if we stand in that corner of the cube, gazing back and up (Fig. 5a).

Fig.  5: a) The 3D swastika in its enveloping cube (red), which is drawn with a small square in a larger
square for the front and back faces, then connecting corners before drawing arms (first sections black, later
sections  blue).  b)  The  4D hyper  swastika  in  an  equivalent  construction,  starting  with  the  enveloping
hypercube “faces” being a small cube inside a larger cube. For clarity, the 2nd sections of the 4th and 8th

arms are green.

5 The 4D Hyper Swastika (4-Swastika)

The 4D hyper swastika is now presented in almost precisely the same way. The sections

are s1 = (1,0,0,0), s2 = (0,–1,0,0), s3 = (0,0,1,0), s4 = (0,0,0,–1), and s5,6,7,8 = –s1,2,3,4. The

arms are A1 = s1-2-3-4, A2 = s2-3-4-5, and so on. The coordinates therefore include those for

the fourth section, such as s1 + s2 + s3 + s4 = (1,–1, 1,–1). The first four arms’ coordinates

are therefore (and the other N arms’ have again the negative values):

[(1, 0, 0, 0), (1,–1, 0, 0), (1,–1, 1, 0), (1,–1, 1,–1)]

[(0,–1, 0, 0), (0,–1, 1, 0), (0,–1, 1,–1), (–1,–1, 1,–1)]

[(0, 0, 1, 0), (0, 0, 1,–1), (–1, 0, 1,–1), (–1, 1, 1,–1)]

[(0, 0, 0,–1), (–1, 0, 0,–1), (–1, 1, 0,–1), (–1, 1,–1,–1)]
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The 3D cube has six faces that are all squares (2-cubes). The N-hypercube has 2N

“faces” that are all (N–1)-cubes. Therefore, the required enveloping 4D hypercube has an

outer “skin” made from eight cubes. The cube with all x4 coordinates being equal to –1 is,

similar to the large square in Fig 5a, the “front face”, meaning the largest cube in Fig. 5b.

The “back face” (x4 = 1) is the smaller cube inside. The arms’ last sections always lead

from a  corner  of  the  enveloping  N-cube  along  an  edge  to  the  middle  of  that  edge.

Drawing the  arms  by hand according  to  the  coordinates  is  therefore  far  easier  when

starting with each arm’s last section rather than with the first sections.

6 Concluding Remarks

Another possible generalization obtains the swastika starting from the enveloping shape,

covering all its “faces” half, as is illustrated in Fig. 6a for a 2-cube envelope and in Fig.

6b for a 2-diamond. The possible shapes are now a rich field. Not only the last sections of

the “arms” may be (N – 1) surfaces, but all sections can be also, or (N – 2) surfaces for

instance. However, the obtainable results confirm the already obtained. For example, the

3-diamond (octahedron), although many beautiful 3D shapes can be developed in this

way, does not offer an obvious solution for covering all its faces half (they are triangles).

Generally  speaking,  considering surfaces does not  help finding obvious hyper  shapes

from N-diamond envelopes. The cube envelope  however  has  symmetrically added half-

surfaces  (blue)  meeting  each  other  at  half-edges  (shown  in  green)  which  coincide

precisely with the 3D swastika’s arms’ last sections!
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Fig. 6: The swastika as a general shape that starts with half-filling (blue) the faces of the envelope (red); a)
the cube obtains the already presented geometry again; the lines where the added surfaces meet (green)
reproduce the arms’ last sections. b) The  N-diamond does again not offer a unique solution. c,d) Added
surfaces help understanding the 3D and 4D hyper geometry, for example providing a closed path around
the very outside, although it looks as if partially being inside, especially in d).

Artists interested  in  “reclaiming  symbols”  or  supporting  didactics, developing

visually intuitive representations of 4D hyper geometries, best take the N-cube-envelope

approach;  the  considered  surfaces  still  provide  a  very  rich  source  of  inspiration.  For

instance, Fig. 6c shows the halves of the added surfaces that are in between the arms’ last

sections and another arms second to last section. They line up in a closed path around the

shape.  They are  also in the 4D shape (Fig.  6d), and of course  two more than six. This

helps  understanding  the  shape,  for  example  the  closed  path  is  still around  the  very

outside, or where the eight half-filled cube-“faces” of that shape should be, which are 3D

volumes of course, not just the yellow planes shown.
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