Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra

May 15, 2019

James Smith
nitac14b@yahoo.com
https://mx.linkedin.com/in/james-smith-1b195047

Abstract

As a high-school-level application of Geometric Algebra (GA), we show how to solve a simple vector-triangle problem. Our method highlights the use of outer products and inverses of bivectors.

1 Introduction

Solving simple vector-triangle problems efficiently is an important skill to be developed at the pre-university level. The Geometric-Algebra (GA) concepts that we use here are discussed in greater detail in Refs. [1] and [2].

2 Problem Statement

"Given $\hat{\mathbf{a}}, \hat{\mathbf{b}}$, and \mathbf{c} in Fig. 1, find \mathbf{a} and \mathbf{b}."

3 Solution

From Fig. 1 ,

$$
\begin{equation*}
\mathbf{a}+\mathbf{b}=\mathbf{c} \tag{3.1}
\end{equation*}
$$

Figure 1: The vector triangle that we will solve.

We'll start with a. Because we know $\hat{\mathbf{a}}$, we can find \mathbf{a} as $\mathbf{a}=\|\mathbf{a}\| \hat{\mathbf{a}}$. Thus, in order to find $\|\mathbf{a}\|$, we'll rewrite Eq. (3.1) as

$$
\|\mathbf{a}\| \hat{\mathbf{a}}+\mathbf{b}=\mathbf{c}
$$

Next, we'll eliminate \mathbf{b} by taking the outer product of both sides with $\hat{\mathbf{b}}$:

$$
\begin{aligned}
(\|\mathbf{a}\| \hat{\mathbf{a}}+\mathbf{b}) \wedge \hat{\mathbf{b}} & =\mathbf{c} \wedge \hat{\mathbf{b}} \\
\|\mathbf{a}\| \hat{\mathbf{a}} \wedge \hat{\mathbf{b}}+\underbrace{\mathbf{b} \wedge \hat{\mathbf{b}}}_{=0} & =\mathbf{c} \wedge \hat{\mathbf{b}} \\
\|\mathbf{a}\| \hat{\mathbf{a}} \wedge \hat{\mathbf{b}} & =\mathbf{c} \wedge \hat{\mathbf{b}} .
\end{aligned}
$$

Finally, we multiply both sides by the inverse of $\hat{\mathbf{a}} \wedge \hat{\mathbf{b}}$:

$$
\begin{align*}
\|\mathbf{a}\|(\hat{\mathbf{a}} \wedge \hat{\mathbf{b}})(\hat{\mathbf{a}} \wedge \hat{\mathbf{b}})^{-1} & =(\mathbf{c} \wedge \hat{\mathbf{b}})(\hat{\mathbf{a}} \wedge \hat{\mathbf{b}})^{-1} \\
\|\mathbf{a}\| & =(\mathbf{c} \wedge \hat{\mathbf{b}})(\hat{\mathbf{a}} \wedge \hat{\mathbf{b}})^{-1} \tag{3.2}
\end{align*}
$$

To find \mathbf{b}, we proceed similarly, by finding $\|\mathbf{b}\|$:

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =\mathbf{c} \\
\mathbf{a}+\|\mathbf{b}\| \hat{\mathbf{b}} & =\mathbf{c} \\
(\mathbf{a}+\|\mathbf{b}\| \hat{\mathbf{b}}) \wedge \hat{\mathbf{a}} & =\mathbf{c} \wedge \hat{\mathbf{a}} \\
\underbrace{\mathbf{a} \wedge \hat{\mathbf{a}}}_{=0}+\|\mathbf{b}\| \hat{\mathbf{b}} \wedge \hat{\mathbf{a}} & =\mathbf{c} \wedge \hat{\mathbf{a}} \\
\|\mathbf{b}\| \hat{\mathbf{b}} \wedge \hat{\mathbf{a}} & =\mathbf{c} \wedge \hat{\mathbf{a}} \\
\|\mathbf{b}\|(\hat{\mathbf{b}} \wedge \hat{\mathbf{a}})(\hat{\mathbf{b}} \wedge \hat{\mathbf{a}})^{-1} & =(\mathbf{c} \wedge \hat{\mathbf{a}})(\hat{\mathbf{b}} \wedge \hat{\mathbf{a}})^{-1} \\
\|\mathbf{b}\| & =(\mathbf{c} \wedge \hat{\mathbf{a}})(\hat{\mathbf{b}} \wedge \hat{\mathbf{a}})^{-1} .
\end{aligned}
$$

4 Comments

References

[1] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012).
[2] J. Smith, 2016, "Some Solution Strategies for Equations that Arise in Geometric (Clifford) Algebra", http://vixra.org/abs/1610.0054.

