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Abstract

The Feynman integral is generalised so as to involve the
random fluctuations of vacuum, from this integral the generalized
Schrödinger equation is derived and the energy spectrum for the
Coulomb potential determined.

1 Introduction

The purpose of this paper is to generalize the Feynman integral over
paths in the case, where we consider random fluctuations of vacuum, and
to derive the generalized Schrödinger equation. The article is the improved
version of the author article (Pardy, 1973), where the Henstock-Kurzweil
integral (Henstock, 1946; Morales, et al., 2017) is not involved in it.
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First, let us remember Feynman’s fictitious experiment by means of
which he arrives at the integral over paths (Feynman & Hibbs, 1965). A
source of electrons is considered in this experiment and a movable detector
is fixed at a certain distance from the source. Between the source and
the detector is put a screen with two holes, 1 and 2, in it. Now, we
investigate the probability that an electron will arrive in the detector at
various vertical distances x from the source. If we block hole 2, the particle
will pass through hole 1, and if we block hole 1 the particle will go through
hole 2. The probability P1(x) to find a particle at point x will be given in
the first case like this:

P1(x) = |ϕ1(x)|2, (1)

where ϕ1(x) is the complex function called the probability amplitude
corresponding to the path going through hole 1 in the detector. In the
second case the probability to find a particle at point x is P2(x) and it
holds good:

P2(x) = |ϕ2(x)|2, (2)

where ϕ2(x) is the probability amplitude corresponding to the path going
through hole 2 in the detector.

If we leave open both holes, the probability of finding a particle at point
x will be given like this:

P (x) = |ϕ1(x) + ϕ2(x)|2. (3)

Now, let us consider that there is not only one screen between the source
and the detector but that there are N screens, each of them havingM holes,
with width ∆(Ai, Bi)j, where Ai, Bi are x-coordinates of the borders of the
holes, j being an index belonging to the jth screen, j = 1, 2, · · · , N and
i being an index belonging to the ith hole, i = 1, 2, · · ·, M ; ∆ denotes
the length of the interval ( , ). We can say that the trajectory of the
particle rises in such a way that the particle goes through interval (a1, b1)
at the time t1 , through the interval (a2, b2) at the time t2 · · · , through the
interval (an, bn) at the time tn, where (ai, bi) are intervals from the set of
intervals (Ai, Bi)j. According to Feynman, the probability amplitude ϕ(x)
belongs to this trajectory. If we choose another set of numbers tk, (ak, bk),
we get other alternative path of the particle.

It is obvious that there are a great many of these alternative trajectories,
and therefore the total amplitude for the process is the sum of the
amplitudes for each route considered separately. For the case N → ∞,
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M → ∞, all trajectories will be continuous functions of the time t, and
the total probability amplitude for the transition of a particle from point
a to point b is as follows:

U(b, a) =
∑
a→b

ϕ[x(t)], (4)

where a → b in
∑

means summation over all trajectories from a to b and
x(t) is the x-coordinate of a path. The amplitude is postulated as follows:

ϕ[x(t)] =
1

A
exp{(i/h̄)S[x(t)]}, (5)

where

S =
∫ tb

ta
L[ẋ(t);x(t)]dt (6)

is the classical Hamilton-Jacobi action function and L is the Lagrange
function.

Feynman & Hibbs (1965) have shown that the probability amplitude
U(x, x0) concerning the transition of the particle from point x0 to point x
satisfies the integral equation

U(x, x0) =
∫
U(x, x1)U(x1, x0)dx1. (7)

If we put U(x, x0) = ψ(x), U(x1, x0) = ψ(x1), we get

ψ(x) =
∫
U(x, x1)ψ(x1)dx1, (8a)

or, generally

ψ(x, t) =
∫
U(x, t;x1, t1)ψ(x1, t1)dx1 (8b)

and the function ψ(x, t) may be interpreted as the wave function of
quantum mechanics.

For an infinitesimal transition from point xk and time kk in point xk+1

and time tk+1, we can write (Blokhintsev, 1966):

U(xk+1, kk+1;xk, tk) =
1

A
exp{(i/h̄)S[xk+1, xk,∆t]}, (9)

where

S[xk+1, xk,∆t] =

[
m

2

(
xk+1 − xk

∆t

)
− V (xk+1)∆t

]
∆t, (10)

where ∆t = tk+1 − tk, tk+1 > tk.
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2 Random fluctuations of the Vacuum in the integral

over paths

Let us notice term eq. (4)

U(x1, x0) =
∑

x0→x
ϕ[x(t)]. (11)

We can see that all amplitudes exp (i/h̄)S[x(t)] are multiplied only by
a constant 1/A. In other words, the Feynman sum is constructed in such
a way that all trajectories are considered equivalent and therefore equally
probable.

The question arises, as to how the formulation of the problem must be
changed if we include the random fluctuations of the vacuum. It is obvious
that these fluctuations cause perturbations of the considered trajectories
and, no doubt, in such a way that some trajectories will be less probable
and others more probable. We arrive at this conclusion because it is obvious
from the viewpoint of statistical mechanics that the particle will perform
the Brownian motion as a result of accidental collisions.

This motion is described by the Wiener measure µ (Gelfand & Yaglom,
1956):

µ =
∫ b1

a1

∫ b2

a2
· · ·

∫ bn

an
×

exp
{
− (x1−x0)

4D(t1−t0)
− (x2−x1)

4D(t2−t1)
− · · · − (xn−xn−1)

4D(tn−tn−1)

}
[(4πD)n(t1 − t0)(t2 − t1) · · · (tn − tn−1)]1/2

dx1dx2 · · · dxn, (12)

the physical meaning of measure µ being as follows: measure µ determines
the probability that the particle goes through the interval (a1, b1) at the
time t1, through the interval (a2, b2) at the time t2, · · ·, through the interval
(an, bn) at the time tn, t1 < t2 < t3 < · · · < tn,. The constant D in the
formula (12) is the so-called coefficient of diffusion, and it involves size,
mass, etc. of the elementary particle.

In consideration of what was said, we are forced to make an ”intuitive”
assumption that the amplitude U(x, x0) will involve the effect of fluctua-
tions after multiplying term [exp(i/h̄)S]/A by µ, where µ is given by eq.
(12). For the infinitesimal transition from point xk to point xk+1 we can
write (Montroll, 1952):

µ(xk+1, xk) =
1

(4πD∆t)1/2
exp[−(xk+1 − xk)

2/4D∆t] (13)
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and therefore for U(xk+1, tk+1;xk,tk) we get

U(xk+1, tk+1;xk,tk) →

1

A(4πD∆t)1/2
exp[−(xk+1 − xk)

2

4D∆t
] exp{(i/h̄)S[xk+1, xk,∆t]}. (14)

Now we can arrive at deriving the generalised Schrödinger equation.

3 The Generalised Schrödinger Equation

We have said in the introduction that ψ satisfies the equation

ψ(xk+1, tk+1) =
∫
U(xk+1, tk+1;xk, tk)ψ(xk, tk)dxk. (15)

If we insert eq. (14) into eq. (15) and put

xk+1 − xk = ζ; xk+1 = x; tk = t; tk+1 − tk = δ, (16)

α =
m

2h̄δ
; β =

1

4Dδ
exp[−(i/h̄)V (x)δ] ≈ 1− i

h̄
V (x)δ (17)

we get from eq. (15) the following equation

ψ(x, t+ δ) =
1

A

(
β

π

)1/2
∫ ∞

−∞
exp(iαζ2 − βζ2)

[
1− iδ

h̄
V (x)

]
ψ(x− ζ, t)dζ. (18)

Obviously

ψ(x, t+ δ) = ψ(x, t) + δ
∂ψ

∂t
+ · · · (19a)

ψ(x− ζ, t) = ψ(x, t)− ζ
∂ψ

∂x
+ ζ2

1

2

∂2ψ

∂x2
· · · . (19b)

We can write instead of (18) that

ψ(x, t) + δ
∂ψ

∂t
+ · · · = 1

A

(
β

π

)1/2 ∫ ∞

−∞
exp(iαζ2 − βζ2)

[
ψ(x, t)− ζ

∂ψ

∂x
+
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1

2

∂2ψ

∂x2
ζ2 − iδ

h̄
V (x)ψ +

iδ

h̄
V (x)ζ

∂ψ

∂x
− iδ

h̄
V (x)

1

2

∂2ψ

∂2x
ζ2
 dζ. (20)

After modification of equation (20) we get

ψ(x, t) + δ
∂ψ

∂t
+ · · · =

(
β

π

)1/2
×

×
J1Aψ − J2

A

∂ψ

∂x
+
J3
2A

∂2ψ

∂x2
+
iδJ1
Ah̄

V ψ +
iδJ2
Ah̄

V
∂ψ

∂x
− iδJ3

2Ah̄
V
∂2ψ

∂x2

 . (21)

where

J1 =
∫ ∞

−∞
exp(iαζ2 − βζ2)dζ (22)

J2 =
∫ ∞

−∞
exp(iαζ2 − βζ2)ζdζ (23)

J3 =
∫ ∞

−∞
exp(iαζ2 − βζ2)ζ2dζ (24)

We can see that there is an odd function in J2. Therefore, J2 = 0. For
two remaining integrals we get, according to Gradshtein & Ryzhik (1963):

J1 =

√
π

(α2 + β2)1/4
exp [(i/2) arctan(α/β)] , (25)

J3 =

√
π

2(α2 + β2)3/4
exp [(3i/2) arctan(α/β)] . (26)

We easily find that

J3
J1

= −2iδ

h̄
γ, (27)

γ =
h̄D

[1 + (α/β)2]

[
i− α

β

]
, (28)

and γ is not dependent on δ.
If we put

A = J1

(
β

π

)1/2
, (29)

we can write instead of (21) that
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ψ(x, t) + δ
∂ψ

∂t
+ · · · = ψ −

iδh̄ V ψ − iδ

h̄
γ
∂2

∂x2
− iδ2

h̄2
δ2γ

∂2

∂x2

 . (30)

After comparing the coefficients with δ and modification, we get

ih̄
∂ψ

∂t
= γ

∂2ψ

∂x2
+ V ψ (31)

The last equation is the generalized Schrödinger equation for the one-
dimensional case only. For the case of three dimensions, we can write

ih̄
∂ψ

∂t
= γ∇2ψ + V ψ. (32)

We can easily verify that

lim
D→∞

γ = − h̄2

2m
. (33)

Therefore, equation (32) converges to the Schrödinger equation for
D → ∞.

4 The Energy Spectrum for the Coulomb Potential

Let us look for the solution of equation (32) in the form

ψ = exp[−(i/h̄)εt)φ (34)

After inserting eq. (34) into eq. (31) we get

εφ = γ∇2φ+ V φ (35)

By putting

γ = − h̄2

2m′ (36)

and

m′ = m+ δm, (37)

where

δm =
ih̄

2D
. (38)
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we can write instead of equation (38)

εφ =
h̄2

2m′∇
2φ+ V φ, (39)

where m′ is the complex quantity.
The fact that the mass m′ is the complex quantity we interpret in such

a way that we consider the complex mass as the mathematical notion
suitable for the physical application. We arrive at this interpretation after
comparing it with other authors who use in a similar way the complex
quantities which have no immediate physical content. Popov et al. (1967)
have introduced imaginary time for the description of the quasistationary
processes. The complex potentials for describing the atomic collisions has
been used by Mizuno & Chen (1971). Lee & Wick (1969) have arrived
at the complex mass in the consequence of the indefinite metric, and
Yamamoto & Kudo (1971) have considered the complex mass to be an
integral part of quantum theory of fields. So, if the complex mass is of
physical meaning it means that path integral involving random fluctuation
of vacuum is also of physival meaning.

Now, we can start with the determination of the energy spectrum.
We know from quantum mechanics (Merzbacher, 1970) that the energy

spectrum for the radial equation for equation (35) with the Coulomb
potential

V (r) = −Ze
2

r
(40)

is given by the following expression:

εn = −Z
2m′e4

2n2h̄2
. (41)

By putting

En = −Z
2me4

2n2h̄2
, (42)

where m is the classical mass of the electron, we get with regard to eq.
(37) and eq. (38):

εn = En

(
1 +

ih̄

2D

)
. (43)

In the end we have for the wave function the expression

ψ = exp[−(i/h̄)Ent]. exp[−(Γn/2)t]φ, (44)
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where

Γn = − En

mD
, (45)

that is

Γn =
e4

2n2h̄2D
. (46)

We note that the motion of the electron in the Coulomb potential is not
stationary but quasistationary as a result of the term exp[−(Γn/2)t] in the
wave function.

It is obvious that the random vacuum fluctuations will also effectively
modify the potential V (r) in which the electron moves. The classical
derivation of this effect with the electromagnetic fluctuations was per-
formed by Welton (1948) and energy shift of H-atom electrons due to
Gibbons-Hawking thermal bath was calculated by author (Pardy, 2016)
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