Orbital and Spin - Toyi Mechanism - Bohr model with Victoria Equation

Javier Silvestre

ABSTRACT

Bohr model coupled with Victoria Theory proposes that electron is separated into electronic extremes, achieving currently accepted electronic cloud, geometry and probability. Toyi mechanism is centred on movements of electronic extremes (orbital and spin).

KEYWORDS

Spin, orbital, atomic model, Bohr, Victoria Theory.

INTRODUCTION

Atomic model with at least two electronic extremes represents development of Bohr model. First part consists of first nine articles that are dedicated to this new model and are divided into four sections:

a) Radial distribution with two electronic extremes [1]

b) From one dimension (radial distribution) to three dimensions [2]

c) Geometry and probability [3,5]

d) Geometric and probabilistic coupling according to n [6,9]

Excited electron is treated in second part [10,20]. Introduction to behavior of probability coefficients is carried out in the third part [21,24].

Both breaking of electron into electronic extremes joined by birth wavelength divided by division considered as their movements and order of them must be debated to reach maximum consensus with postulates 1 to 44 [1,9]. Toyi mechanism details proposed stages [1,9] in Victoria Theory and is focused on movements of electronic extremes.

P20 Movement between orbits or spin movement [2] indicates that Spin movement is defined as electronic extreme rotation on its axis and, behaving like a screw, allows electronic extreme to approach and away from nucleus. This movement is done by raising and lowering orbits and is called: "electronic extremes swinging" (changes in division of birth wavelength (d)). Movement generated by screw spin implies that A and B electronic extremes first move away and then approach birth or pivot position ($d\rightarrow\infty$). In addition to P20, P21 (P21 Hypothesis of alternating spin movement) proposes that A and B electronic extremes make spin movement alternately. Spin movement allows electronic extreme to aim and perform movement towards next division alternately [2].

This model initially proposed for the spin along with the orbital movement [2] are made without having considered movement of C_{POTI} coefficient that affects orbital circumference since orbital geometry had not yet been included [3,5].

Hypothetical mechanisms of movement considered are:

a) Sweep divisions (Sweep $d = \infty \rightarrow 1 \rightarrow \infty$) for each C_{POTI}. C_{POTI} change is made when division sweep has been completed. That is, division sweeps are performed for each C_{POTI} until C_{POTI} sweep is performed (C_{POTI} sweep = C_{POTI} limit $\rightarrow 0 \rightarrow C_{POTI}$ limit). Geometric change that implies passage to the other lobe (nodal plane) is performed when C_{POTI} is at its limit [8]. This section corresponds to that seen in [2] adding that, after all division sweep, C_{POTI} change is made.

b) Toyi Mechanism: C_{POTI} sweep $(C_{POTI} \text{ sweep} = 0 \rightarrow C_{POTI} \text{ limit } \rightarrow 0)$ for each division. Situation identical to the previous one, but two sweeps are inverted. Division change is made when C_{POTI} sweep has been completed. That is, C_{POTI} sweeps are performed for each division until division sweep is completed (Sweep of $d = \infty \rightarrow 1 \rightarrow \infty$).

c) Joint sweeps of C_{POTI} and division.

TOYI MECHANISM

Toyi mechanism expressly states logical necessity that one of two electronic extremes is alternatively located on axis of orbital circumferences:

1) Electron separation in two electronic extremes EE_A and EE_B [1]. This separation is made with infinite division of birth wavelength. As indicated in P06, initial position ($r_A = r_B$) occurs when $d \rightarrow \infty$ and electronic extremes drift away as d decreases (1).

(1)
$$r_{\rm B} = r_{\rm A} - \frac{\lambda}{d}$$

2) Initial orbital circumference (c_A or c_B) of two electronic extremes has $C_{POTI-GAL-d\to\infty}$ (orbitals d, f, g ...) or $C_{POTI-AL-d\to\infty}$ (s and p orbitals). Therefore, starting point has two electronic extremes together and at point of passage from one lobe to another [3,5] [8]. Geometric change that implies change of sign between lobes is introduced in [8]. This point presents:

 $d \rightarrow \infty$ $r_A = r_B$ $c_A = c_B$ $H_A = H_B$

For example, in specific case of p-type orbital: H_A=H_B=0

Two half-turn positions of orbital circumference with $C_{POTI-AL-d\to\infty}$ for two electronic extremes in orbiting planes of several λ divisions are shown for $2p^5$ Fluorine example (**Figure 1**). Figure 1 is enlarged with several representative C_{POTI} below limit until $C_{POTI} = 0$ (**Figure 2**).

Formula for orbital circumference of external electronic extreme (c_A) is given by (2) [5]. Formula for c_B is similar with change of r_A by r_B [5].

(2)
$$c_{A} = \frac{\hbar C_{POTT} \sqrt{-F - \frac{h\sqrt{-E_{o}}}{dm_{e}^{1/2}} - \sqrt{F^{2} + \frac{h^{2}(-E_{o})}{d^{2}m_{e}}}}{2\sqrt{E_{o}m_{e}fz} \left(2 + \sum_{x=1}^{J} \frac{x^{2} * P * M}{d^{x*P}}\right)}$$

3) From this initial separation point of electron in two electronic extremes (EE_i), both EE_i go towards $C_{POTI} = 0$ with infinite division of birth wavelength (λ). At all times, both EE_i have q/2 for orbital circular movement and from their arrival at $C_{POTI} = 0$ and $d \rightarrow \infty$ alternate whole charge (q) for intrinsic spin movement that allows them to C_{POTI} change. Short sweep time interval of C_{POTI} with $d\rightarrow\infty$ is performed with spin charge equal to q/2 for both electronic extremes because two EE are equal and require spin so that C_{POTI} sweep movement can be performed. This movement, for specific case of infinite division, runs through colour change zone in **Figure 3** (marked with discontinuous arrow) since each colour represents one electronic extreme and the joining point of both electronic extremes is when d is infinite. Curves are approached towards axis when electronic extremes decrease their C_{POTI} .

4) EE_A (EE is electronic extreme, A is extern extreme and B is intern extreme) begins its circular orbital movement increasing its C_{POTI} from 0 to its limit. Therefore, simultaneously with orbital circular movement, EE_A performs spin movement, which continuously directs electronic extreme and thus C_{POTI} sweep can be performed. In each division, movement is initiated in a similar way to that seen in Figure 3, but considering that sense is opposite ($C_{POTI} = 0$ instead of its limit) and in division in which is performing the movement. At the same time that EE_A is performing C_{POTI} sweep in a given division, EE_B is on axis with $C_{POTI} = 0$ and therefore with its probability and orbital circumference equal to 0 ($P_B = 0$ and $c_B = 0$). This fact implies:

* Its wavelength (λ_B) is infinitely compacted and is not observable as a wave.

* The orbital movement provided by q/2 is performed on itself and therefore is equivalent to spin movement. For this reason, all spin electric charge is carried by the electronic extreme that is not in axis (in this first described movement is EE_A).

* This mechanism allows (1) to be fulfilled each time C_{POTI} sweep is initiated (indicated as t_0 for EE_A). (Figure 4). That is, each time the division change is made.

Figure 4 - Two electronic extremes movement

5) EEA returns from its C_{POTI} limit (point 4) to $C_{POTI} = 0$ making division change. Therefore, movement concludes in the same sense as Figure 3, but in considered division.

 EE_B also changes division by moving on axis by means of orbital movement, which, as has been discussed in 4), is equivalent to spin movement because orbital circumference on the axis is equal to 0. Division change must be performed by both EE together as it allows the energy balance.

6) P86 - Principle of movement equality outside axis by radial unit.

Number of times C_{POTI} sweep is performed (C_{POTI} sweep is $0 \rightarrow \text{limit} \rightarrow 0$) in divisions sweep (divisions sweep is $\infty \rightarrow 1 \rightarrow \infty$) by radial unit (distance EE to nucleus) is always the same. Principle of movement equality of C_{POTI} vs. Radial unit implies that EE_A performs movement many times more than EE_B (EE_B spends more time on axis) and, consequently, experimental and accepted probability distribution is allowed. **Figures 5** are radial probability curves (P_i vs r_i) for outer shell: Electronic density maxima are in accordance with references [6,9]

7) C_{POTI} movement for all divisions implies appearance of new associated movement. This C_{POTI} sweep produces new circular movement since C_{POTI} sweep affects orbital circumference c_i (2) and does not modify r_i (circumference equation: $c_i^2 + H_i^2 = r_i^2 =$ constant for a given division). Consequently, there is a c_i variation compensated with H_i that must satisfy that r_i is constant (r_i depends on division and C_{POTI} sweep is performed

for a given division). Circular movement seen in Figure 3 and marked with arrows is shown for the EE_A (**Figure 6**) and EE_B (**Figure 7**) in division 40. Previously, EE goes from $C_{POTI} 0 \rightarrow$ limit for said division 40.

First vector treatment for angular momentum [2] provided possible \hbar value for p orbitals on axial line of lobe location due to two identical contributions with value of $\hbar/2$. These two contributions are provided by orbital angular momentum (turns given in circular orbits of value c_i) (**Figure 8**). C_{POTI} movement can be perpendicular to orbital angular movement and if its value is also equal to $\hbar/2$ for each electronic extreme (EE) and fixed EE in axis also has this movement, making its intrinsic turn to be fixed (all these points are extended and applied to all orbitals with orbital quantum number $1 \ge 1$ in supplementary article dedicated to angular momentum), angular momentum along Z axis ($z = \hbar$ in **Figure 9** and $z = -\hbar$ in **Figure 10**) and total angular momentum due to turns in circumferences c_i and OAMp is the one obtained by C_{POTI} sweep. Sum of both perpendicular vectors equal to \hbar gives the total angular momentum value of $2^{1/2}\hbar$.

Figure 8 - OAM in OPA: two identical contributions

CONCLUSIONS

1) Toyi mechanism is integrated within Victoria Theory of atomic model and its explanation of movement for two electronic extremes starts from the fundamental essence of P20 and P21 to give them a differential nuance compared to that seen in [2] by inclusion of C_{POTI} parameter [3,5].

2) P20 Movement between orbits or spin movement [2]. Toyi mechanism states that spin causes C_{POTI} sweep and once this sweep is made, orbit change (division change of λ) is performed. This fact does not conflict with division change importance enunciated in P20, but C_{POTI} sweep in a given division is established as fundamental movement in Toyi Mechanism.

3) P21 Hypothesis of alternating spin movement. Alternation in spin is also present in Toyi Mechanism. Main difference is spin change moment. Spin is exchanged when C_{POTI} sweep is finished (C_{POTI} sweep = $0 \rightarrow C_{POTI}$ limit $\rightarrow 0$), that is, when $C_{POTI} = 0$, both EE are on orbital circumferences axis, division change has been made and are fulfilled (1) and P86.

4) Spin alternation moment is governed by P86 - Principle of movement equality outside axis by radial unit. Spin alternation moment and probability are closely linked because electronic extreme present on axis and without spin has no probability.

5) Movement due to C_{POTI} sweep provides new movement that, combined with OAM due to rotation in c_i orbits, allows explaining $L_Z = \pm \hbar$ and $L = 2^{1/2} \hbar$ for p_x and p_y orbitals. Development is complemented in article dedicated to angular momentum where L_Z and L are explained for all possible orbitals.

ARTICLES INDEX			
Part	Number	Title	
Part I - Victoria Equation and Feliz Solutions	01	Victoria Equation - The dark side of the electron.	http://vixra.org/abs/1712.0109
	02	Bohr model with Victoria Equation: 3 dimensions. Orbital and Spin.	http://vixra.org/abs/1806.0425
	03	Relations between electronic extremes: Rotation time as probability and Feliz I.	http://vixra.org/abs/1712.0107
	04	Feliz II the prudent: Probability radial closure with high order variable C_F	http://vixra.org/abs/1712.0105
	05	Feliz III The King Major: Orbital filled keeping Probability electronic distribution.	http://vixra.org/abs/1712.0104
	06	Feliz IV Planet Coupling: Probability curves NIN coupling from origin electron.	http://vixra.org/abs/1712.0103
	07	NIN Coupling values in n=2 and Oxygen electronic density.	http://vixra.org/abs/1712.0102
	08	Electron Probability with NIN coupling in n=2.	http://vixra.org/abs/1712.0101
	09	Electron probability with NIN coupling in n>2 and necessary NIN relationships.	http://vixra.org/abs/1712.0099
Part II – Excited electron: Tete Vic and LAN	10	Excited electrons by Torrebotana Central Line: Tete Vic Equation.	http://vixra.org/abs/1712.0156
	11	Excited electrons: LAN plains for Tete Vic Equation.	http://vixra.org/abs/1712.0155
	12	Relation of Riquelme de Gozy: LAN linearity with energy of excited states.	http://vixra.org/abs/1712.0380
	13	Relation of Fly Piep de Garberí: LAN ⁻¹ and Ionization Energy.	http://vixra.org/abs/1712.0153
	14	Relation of Silva de Peral & Alameda: LAN interatomicity with energetic relation.	http://vixra.org/abs/1712.0152
	15	Relation of Silva de Peral & Alameda II: jump from n_s s to ns.	http://vixra.org/abs/1712.0151
	16	SPA III: Mc Flui transform for Silpovgar III and Silpovgar IV.	http://vixra.org/abs/1712.0379
	17	SPA IV: Silpovgar IV with Piepflui. Excess Relativistic: influence in LAN and SPA	http://vixra.org/abs/1712.0148
	18	Feliz Theory of Eo vision - Relativistic II: influence in Riquelme de Gozy	http://vixra.org/abs/1712.0147
	19	Pepliz LAN Empire I: $LAN_{n\to\infty}$ vs. $LAN(P50)$	http://vixra.org/abs/1712.0146
	20	Pepliz LAN Empire II: LAN _{$n\to\infty$} vs. LAN(P50)	http://vixra.org/abs/1712.0145
Part III - NIN: CPEP & CPOTI	21	Electron Probability: PUB C_{PEP} I (Probability Union Between C_{PEP}) - Necessary NIN relations.	http://vixra.org/abs/1712.0144
	22	Electron Probability: PUB C _{PEP} II in "Flui BAR" (Flui (BES A (Global Advance) Region)	http://vixra.org/abs/1712.0143
	23	Orbital capacity by advancement of numbers - Electron Probability: PUB C _{PEP} III: "Flui BAR" II and C _{PEP-i}	http://vixra.org/abs/1712.0142
	24	Electron Probability: 1s electron birth: The last diligence to Poti Rock & Snow Hill Victoria	http://vixra.org/abs/1712.0141

<u>ANEXO</u>

Versión en Español del Mecanismo de Toyi.

MECANISMO DE TOYI

Javier Silvestre

RESUMEN

El modelo de Bohr aunado con la Teoría Victoria propone que el electrón es separado en extremos electrónicos logrando la deslocalización, geometría y probabilidad aceptadas actualmente. El mecanismo Toyi está centrado en los movimientos de los extremos electrónicos (movimiento orbital y spin).

KEYWORDS

Spin, orbital, modelo atómico, Bohr, Teoría Victoria.

INTRODUCCIÓN

El modelo atómico con al menos dos extremos electrónicos representa un desarrollo del modelo de Bohr. La primera parte está conformada por los primeros nueve artículos que están dedicados a este nuevo modelo y están divididos en cuatros secciones:

a) Distribución radial con dos extremos electrónicos [1]

b) Desde una dimensión (distribución radial) a las tres dimensiones [2]

c) Geometría y probabilidad [3,5]

d) Acoplamiento geométrico y probabilístico en función de n [6,9]

El electrón excitado es tratado en la segunda parte [10,20]. Una introducción al comportamiento de los coeficientes de probabilidad es realizada en la tercera parte [21,24].

Tanto la ruptura del electrón en extremos electrónicos unidos por la longitud de onda de nacimiento como los movimientos y el orden de los mismos deben ser debatidos para alcanzar el máximo consenso con los postulados 1 a 44 [1,9]. El mecanismo Toyi detalla las etapas propuestas [1,9] en la Teoría Victoria y está centrado en los movimientos de los extremos electrónicos.

P20 Movement between orbits or spin movement [2] indica que el movimiento de spin es definido como la rotación del extremo electrónico sobre su propio eje y, comportándose como un tornillo, este movimiento le permite acercarse y alejarse del núcleo. Este movimiento es realizado al subir y bajar órbitas en el llamado: "balanceo de los extremos electrónicos" (cambios de división de la longitud de onda de nacimiento (d)). El movimiento generado por el spin-tornillo implica que los extremos electrónicos A y B primero se aleja y después se acercan a la posición de nacimiento o posición pivote $(d\rightarrow\infty)$. Complementariamente a P20, P21 Hypothesis of alternating spin movement, propone que los dos extremos electrónicos realizan el movimiento de spin alternadamente. Este movimiento de spin permite que el extreme electrónico apunte y realice el movimiento hacia la siguiente división de forma alternada [2].

Este modelo propuesto inicialmente para el spin junto con el movimiento orbital [2] son realizados sin haber considerado el movimiento del coeficiente C_{POTI} que afecta a la circunferencia orbital ya que no había sido incluída todavía la geometría orbital [3,5]

Los hipotéticos mecanismos de movimiento considerados son:

a) Barrido de divisiones (Barrido de d = $\infty \rightarrow 1 \rightarrow \infty$) para cada C_{POTI}. El cambio de C_{POTI} es realizado cuando el barrido de divisiones ha sido concluído. Es decir, los barridos de divisiones son realizados para cada C_{POTI} hasta que es realizado el barrido de C_{POTI} (Barrido de C_{POTI} = límite de C_{POTI} \rightarrow C_{POTI} = 0 \rightarrow límite de C_{POTI}). El cambio geométrico que implica el paso al otro lóbulo (plano nodal) se realiza cuando C_{POTI} está en su límite [8]. Este apartado corresponde al visto en [2] añadiendo que, tras todo el barrido de división, el cambio de C_{POTI} es realizado.

b) Mecanismo de Toyi: Barrido de C_{POTI} (Barrido de C_{POTI} = $0 \rightarrow l$ ímite de C_{POTI} $\rightarrow 0$). para cada división. Situación idéntica a la anterior, pero invirtiendo los dos barridos. El cambio de división es realizado cuando el barrido de C_{POTI} ha sido concluído. Es decir, los barridos de C_{POTI} son realizados para cada divisón hasta que es concluído el barrido de división (Barrido de d = $\infty \rightarrow 1 \rightarrow \infty$).

c) Barridos conjuntos de CPOTI y división.

EL MECANISMO DE TOYI

El mecanismo Toyi afirma expresamente la necesidad lógica de que uno de los dos extremos electrónicos alternativamente esté ubicado en el eje de la circunferencias orbitales:

1) Separación del electrón en dos extremos electrónicos EE_A y EE_B [1]. Esta separación es realizada con división infinita de la longitud de onda de nacimiento. Como es indicado en P06, la posición inicial ($r_A = r_B$) ocurre cuando $d \rightarrow \infty$ y los extremos electrónicos son alejados a media que la división de la longitud de onda de nacimiento (d) decrece (1).

(1)
$$r_{\rm B} = r_{\rm A} - \frac{\lambda}{d}$$

2) La circunferencia orbital ($c_A o c_B$) inicial de los dos extremos electrónicos tiene $C_{POTI-GAL-d\to\infty}$ (orbitales d,f,g...) o $C_{POTI-AL-d\to\infty}$ (orbitales s y p). Por tanto, el punto de salida tiene los dos extremos electrónicos conjuntamente y en el punto de paso de un lóbulo a otro. [3,5] [8]. El cambio geométrico que implica el cambio de signo entre lóbulos es introducido en [8]. Este punto presenta:

 $d \rightarrow \infty$ $r_A = r_B$ $c_A = c_B$ $H_A = H_B$

Por ejemplo, en el caso concreto de orbital tipo p: H_A=H_B=0

Las 2 posiciones de semigiro de la circunferencia orbital con $C_{POTI-AL-d\to\infty}$ para los 2 extremos electrónicos en planos de orbitación de varias divisiones de λ son mostradas para el ejemplo de Fluor 2p⁵ (**Figure 1**). La Figure 1 es ampliada para varios C_{POTI} representativos e inferiores al limite hasta $C_{POTI} = 0$ (**Figure 2**).

(2)
$$c_{A} = \frac{\hbar C_{POTT} \sqrt{-F - \frac{h\sqrt{-E_{o}}}{dm_{e}^{1/2}} - \sqrt{F^{2} + \frac{h^{2}(-E_{o})}{d^{2}m_{e}}}}{2\sqrt{E_{o}m_{e}fz} \left(2 + \sum_{x=1}^{J} \frac{x^{2} * P * M}{d^{x*P}}\right)}$$

3) Desde este punto inicial de separación del electrón en dos extremos electrónicos, ambos extremos van hacia $C_{POTI} = 0$ con división infinita de la longitud de onda de nacimiento (λ). En todo momento, ambos extremos electrónicos presentan q/2 para el movimiento circular orbital y a partir de su llegada a $C_{POTI} = 0$ y d $\rightarrow\infty$ alternan toda la carga (q) para el movimiento intrínseco de giro (spin) que les permite cambiar de C_{POTI} . El corto intervalo de tiempo de barrido de C_{POTI} con d $\rightarrow\infty$ es realizado con carga de spin igual a q/2 para ambos extremos electrónicos porque los dos son iguales y requieren del spin para que el movimiento de barrido de C_{POTI} sea realizado.

Este movimiento para el caso concreto de la división infinita discurre por la zona de cambio de color en la **Figura 3** (marcado con flecha discontinúa) ya que cada color

representa un extremo electrónico y la zona de unión de ambos extremos electrónicos es cuando d es infinita. Las curvas son acercadas hacia el eje cuando disminuyen su C_{POTI}.

4) EE_A (EE es extremo electrónico, A es extremo externo y B es interno empieza su movimiento circular orbital aumentando su C_{POTI} desde 0 hasta su límite. Por tanto, simultáneamente al movimiento circular orbital, EE_A realiza el movimiento de spin, el cual dirige continuamente al extremo electrónico para que el barrido de C_{POTI} sea realizado. En cada división, el movimiento es iniciado de forma similar al visto en la Figura 3, pero considerando que el sentido es opuesto ($C_{POTI} = 0$ en lugar de su límite) y en la división en la cual esté realizando el movimiento.

Al mismo tiempo que EE_A está realizando el barrido de C_{POTI} en una división dada, EE_B está en el eje con $C_{POTI} = 0$ y por tanto con su probabilidad y circunferencia orbital iguales a 0 ($P_B = 0$ y $c_B = 0$). Este hecho implica:

* Su longitud de onda (λ_B) está infinitamente compactada y no es observable como onda.

* El movimiento orbital proporcionado por q/2 es realizado sobre sí mismo y por tanto es equivalente al movimiento de spin. Por esta razón, toda la carga de spin

la lleva el extremo electrónico (en este primer movimiento descrito es EE_A) que no está en el eje.

* Este mecanismo permite que (1) sea cumplida cada vez que el barrido de C_{POTI} es iniciado (indicado como t₀ para EE_A). Es decir, cada vez que el cambio de divisón es realizado. (**Figure 4**)

Figure 4 - Two electronic extremes movement

5) EE_A vuelve desde su límite C_{POTI} (punto 4) hasta $C_{POTI}=0$ realizando el cambio de división. Por tanto, el movimiento concluye en el mismo sentido que la Figure 3, pero en la división considerada.

 EE_B también cambia de división subiendo o bajando en el eje mediante el movimiento orbital que, como ha sido comentando en 4), es equivalente a un movimiento de spin porque la circunferencia orbital en el eje es igual a 0. El cambio de división debe ser realizado por ambos EE conjuntamente ya que permite el equilibrio energético.

6) P86 - Principio de igualdad de movimientos fuera del eje por unidad radial.

La cantidad de veces que es realizado el movimiento de $C_{POTI} \to 0$ por unidad radial (distancia EE a núcleo) es siempre la misma. Este principio de igualdad de movimiento de C_{POTI} vs. Unidad radial implica que el EE_A realiza muchas más veces el movimiento que el EE_B (EE_B está más tiempo sobre el eje con probabilidad nula) y, consecuentemente, la aceptada y experimental distribución de probabilidad es permitida. **Figures 5** son curvas de probabilidad radial (P_i vs r_i) para la capa externa. Los máximos de densidad electronic están en concordancia con las referencias [6,8].

7) El movimiento de C_{POTI} para toda división implica la aparición de un nuevo movimiento asociado. Este barrido de C_{POTI} produce un nuevo movimiento circular ya que afecta a la circunferencia orbital c_i (2) y no modifica r_i (ecuación de circunferencia: $c_i^2 + H_i^2 = r_i^2 = constante para una división dada$). Consecuentemente, hay una variación de c_i compensada con H_i que debe cumplir que r_i sea constante (r_i depende de la división y el barrido de C_{POTI} es realizado para una división dada). El movimiento circular visto en la Figura 3 y señalado con flechas es mostrada para el EE_A (**Figure 6**) y EE_B (**Figure** 7) en la división 40. Previamente, el EE va desde de C_{POTI} 0→límite para dicha división 40.

El primer tratamiento vectorial para el momento angular [2] proporcionaba el valor posible de \hbar para orbitales p en la línea axial de ubicación del lóbulo debido a dos contribuciones idénticas con valor de $\hbar/2$. Estas dos contribuciones son proporcionadas por el momento angular orbital (giros dados en órbitas circulares de valor c_i) (**Figure 8**). El movimiento de C_{POTI} puede ser perpendicular al movimiento angular orbital y si su valor es también igual a $\hbar/2$ para cada extremo electrónico y el EE fijo en el eje también tiene dicho movimiento, haciendo giro intrínseco al estar fijo (todos estos puntos son ampliados y aplicados a todos los orbitales con número cuántico orbital ≥ 1 en el artículo complementario dedicado al momento angular), puede ser representado el momento angular en eje Z (z = \hbar en **Figure 9** y z = - \hbar en **Figure 10**) y el momento angular total para los orbitals p_x y p_y . OAMc es el momento angular orbital debido a giros en la circunferencias c_i y OAMp es el obtenido por el barrido de C_{POTI}. La suma de ambos vectores perpendicuales e iguales a \hbar proporciona el valor de momento angular total de $2^{1/2}\hbar$.

Figure 8 - OAM in OPA: two identical contributions

CONCLUSIONES

1) El mecanismo de Toyi está integrado dentro de la Teoría Victoria del modelo atómico y su explicación del movimiento de los dos extremos electrónicos parte de la esencia fundamental de P20 y P21 para darles un matiz diferencial respecto al visto en [2] mediante la inclusión del parámetro C_{POTI} [3,5] que ha sido estudiado posteriormente a [2].

2) P20 Movement between orbits or spin movement [2]. El mecanismo Toyi establece que el spin provoca el barrido de C_{POTI} y una vez realizado, el cambio de órbita (cambio de división de λ) es realizado. No entra en conflicto con la importancia del cambio de división enunciado en P20, pero el barrido de C_{POTI} en una división dada queda instaurado como movimiento fundamental en el Mecanismo de Toyi.

3) P21 Hypothesis of alternating spin movement. La alternancia en el spin también está presente en el Mecanismo de Toyi. La principal diferencia es el momento del cambio de spin. El spin es intercambiado cuando es finalizado el barrido de C_{POTI} (Barrido de C_{POTI} = 0→límite de $C_{POTI} \rightarrow 0$), es decir, cuando C_{POTI} =0, ambos están en el eje de las circunferencias orbitales, se ha realizado el cambio de división y es cumplido (1) y P86. 4) El momento de la alternancia de spin queda regido por el P86 Principio de igualdad de movimientos fuera del eje por unidad radial. El momento de la alternancia del spin y la probabilidad quedan extrechamente ligados ya que el extremo electrónico presente en el eje y sin spin no tiene probabilidad.

5) El movimiento debido al barrido de C_{POTI} proporciona un nuevo movimiento que, combinado con OAM debido al giro en las órbitas c_i, permite explicar $L_Z=\pm\hbar$ y $L=2^{1/2}\hbar$ para los orbitales p_x y p_y . El desarrollo es complementado en artículo dedicado al momento angular donde L_Z y L son explicados para todos los orbitales posibles.