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Abstract: Using the geodetic coordinates (ϕ, λ, h), we give the expression of the laplacian

∆V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
in these coordinates. A solution of ∆V = 0 of type V = f(λ).g(ϕ, h)

is given. The partial differential equation satisfied by g(ϕ, h) is transformed in an ordinary
differential equation of a new variable u = u(ϕ, h).
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1 Introduction

The Laplace equation plays an important role in physical geodesy. Into geodetic literature,
this equation was resolved in spherical and ellipsoidal coordinates to determine the expression
of the potential. In this paper, we use the geodetic coordinates (ϕ, λ, h) and we will give the
expression of ∆V = 0 in these coordinates. We study the solutions of the expression of ∆V = 0

of the type V = f(λ).g(ϕ, h). A choice of a new variable u = u(ϕ, h) transforms the partial
differential equation satisfied by g(ϕ, h) in an ordinary differential equation of second order.

2 The expression of ∆V in geodetic coordinates

In three dimensional euclidean space (O, x, y, z), the expression of the laplacian of a function
V (x, y, z) enough differentiable is:

∆ =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(2.1)

Let a and e respectively the semi-major axis and the first eccentricity of an ellipsoid of revolu-
tion, to M(x, y, z) we associate the triplet (ϕ, λ, h) determined by the well known relations:

x = (N + h)cosϕcosλ

y = (N + h)cosϕsinλ

z = (N(1− e2) + h)sinϕ

(2.2)

where:
N =

a√
1− e2sin2ϕ

(2.3)
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Differentiating (2.2), we obtain:
dx = −(ρ+ h)sinϕcosλdϕ− (N + h)cosϕsinλdλ+ cosϕcosλdh

dy = −(ρ+ h)sinϕsinλdϕ+ (N + h)cosϕcosλdλ+ cosϕsinλdh

dz = (ρ+ h)cosϕdϕ+ sinϕdh

(2.4)

where:
ρ =

a(1− e2)
(1− e2sin2ϕ)−3/2

(2.5)

We will use often the relation :
d(Ncosϕ) = −ρsinϕdϕ (2.6)

Then we can write:

ds2 = dx2 + dy2 + dz2 = (ρ+ h)2dϕ2 + (N + h)2cos2ϕdλ2 + dh2 (2.7)

= h21dq
2
1 + h22dq

2
2 + h23dq

2
3 with

q1 = ϕ, h1 = (ρ+ h)

q2 = λ, h2 = (N + h)cosϕ

q3 = h, h3 = +1

(2.8)

The expression of the laplacian becomes using the geodetic coordinates (q1, q2, q3) (Heiskanen
and Moritz, [1]):

∆V =
1

h1h2h3

[
∂

∂q1

(
h2h3
h1

∂V

∂q1

)
+

∂

∂q2

(
h3h1
h2

∂V

∂q2

)
+

∂

∂q3

(
h1h2
h3

∂V

∂q3

)]
(2.9)

Using (2.8), we find:

∆V =
1

(ρ+ h)(N + h)cosϕ

[
∂

∂ϕ

(
(N + h)cosϕ

ρ+ h

∂V

∂ϕ

)
+

∂

∂λ

(
ρ+ h

(N + h)cosϕ

∂V

∂λ

)
+

∂

∂h

(
(ρ+ h)(N + h)cosϕ

∂V

∂h

)]
(2.10)

3 The Resolution of ∆V = 0

∆V = 0 gives the equation:

∂

∂ϕ

(
(N + h)cosϕ

ρ+ h

∂V

∂ϕ

)
+

∂

∂λ

(
ρ+ h

(N + h)cosϕ

∂V

∂λ

)
+

∂

∂h

(
(ρ+ h)(N + h)cosϕ

∂V

∂h

)
= 0 (3.1)

To solve (3.1), let us consider solutions of type:

∆V = f(λ).g(ϕ, h) (3.2)

Substituting equation (3.2) in equation (3.1) gives:

f(λ)

[
∂

∂ϕ

(
(N + h)cosϕ

ρ+ h

∂g

∂ϕ

)
+

∂

∂h

(
(ρ+ h)(N + h)cosϕ

∂g

∂h

)]
+

ρ+ h

(N + h)cosϕ
g(ϕ, h).

d2f

dλ2
= 0

(3.3)
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By separating the variables, we obtain:

(N + h)cosϕ

(ρ+ h)g(ϕ, h)

[
∂

∂ϕ

(
(N + h)cosϕ

ρ+ h

∂g

∂ϕ

)
+

∂

∂h

(
(ρ+ h)(N + h)cosϕ

∂g

∂h

)]
= − 1

f(λ)

d2f

dλ2
(3.4)

The term on the left of (3.4) depends only of ϕ and h, the term on right is a function of the
variable λ, it follows that:

− d2f

dλ2
= m2f(λ) (3.5)

and :

(N + h)cosϕ

ρ+ h

∂

∂ϕ

(
(N + h)cosϕ

ρ+ h

∂g

∂ϕ

)
+

(N + h)cosϕ

ρ+ h

∂

∂h

(
(ρ+ h)(N + h)cosϕ

∂g

∂h

)
= m2g(ϕ, λ)

(3.6)
where m is scalar (real or complex). The solutions of (3.5) are:

fm(λ) = αme
imλ + βme

−imλ (3.7)

with αm, βm being constants. To simplify the equation (3.6), we put:

A(ϕ, h) =
(N + h)cosϕ

ρ+ h
, B(ϕ, h) = (ρ+ h)(N + h)cosϕ (3.8)

The equation (3.6) becomes:

A(ϕ, h)
∂

∂ϕ

(
A(ϕ, h)

∂g

∂ϕ

)
+ A(ϕ, h)

∂

∂h

(
B(ϕ, h)

∂g

∂h

)
= m2g(ϕ, λ) (3.9)

4 The change of variables

To solve the equation (3.9), we try to find a change of variables so that the equation (3.9) be-
comes more simple. Our idea is to transform (3.9) in an ordinary differential equation depending
of a new variable u = u(ϕ, h). We also write:

g(ϕ, h) = G(u(ϕ, h)) = G(u) (4.1)

Using the last equation, we obtain the derivatives of g in the equation (3.9):

∂g

∂ϕ
=
dG

du
.
∂u

∂ϕ

∂g

∂h
=
dG

du
.
∂u

∂h

∂2g

∂ϕ2
=
d2G

du2

(
∂u

∂ϕ

)2

+
dG

du
.
∂2u

∂ϕ2

∂2g

∂h2
=
d2G

du2

(
∂u

∂h

)2

+
dG

du
.
∂2u

∂h2

(4.2)
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Substituting the equations (4.2) in the equation (3.9) gives:

A2

((
∂u

∂ϕ

)2

+
B

A

(
∂u

∂h

)2
)
d2G

du2
+ A

dG

du

(
A
∂2u

∂ϕ2
+B

∂2u

∂h2
+
∂A

∂ϕ

∂u

∂ϕ
+
∂B

∂h

∂u

∂h

)
= m2G(u)

(4.3)

The coefficient of
d2G

du2
in (4.3), using the equations (3.8) is:

K(ϕ, h) = A2

((
∂u

∂ϕ

)2

+ (ρ+ h)2
(
∂u

∂h

)2
)

(4.4)

The resolution of (4.3) would been simple if the coefficients of
d2G

du2
and

dG

du
were polynomial

functions and: (
∂u

∂ϕ

)2

= (ρ+ h)2sin2ϕu2p

(
∂u

∂h

)2

= cos2ϕu2p

where p is an integer, so we should have:

K(ϕ, h) =
(N + h)2cos2ϕ

(ρ+ h)2
[
(ρ+ h)2sin2ϕu2p + (ρ+ h)2cos2ϕu2p

]
= (N + h)2cos2ϕu2p (4.5)

Using the above equation, our choice of the new variable is:

u(ϕ, h) = u = (N + h)cosϕ (4.6)

Then we obtain the following relations:
∂u

∂ϕ
= −(ρ+ h)sinϕ,

∂u

∂h
= cosϕ

(4.7)
∂2u

∂u2
= −ρ′(ϕ)sinϕ− (ρ+ h)cosϕ,

∂2u

∂h2
= 0, ρ′ =

dρ

dϕ

The equation (4.4) becomes:
K(ϕ, h) = u2 (4.8)

From the definition of the A and B given by (3.8), we obtain the expressions of
∂A

∂ϕ
and

∂B

∂h
as:

∂A

∂ϕ
= −

(
sinϕ+

ρ′u

(ρ+ h)2

)
(4.9)

∂B

∂h
= u+ (ρ+ h)cosϕ

Substituting the equations (4.7-4.8-4.9) in (4.3) gives:

u2
d2G

du2
+ u

dG

du
−m2G(u) = 0 (4.10)
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5 The resolution of the ordinary differential equation (4.10)

We shall now find the conditions to obtain a particular solution of the equation (4.10) of the
type G(u) = un. We obtain:

n(n− 1)un + nun −m2un = 0 =⇒ (n2 −m2)un = 0

For no trivial solutions, the conditions are:

n = ±m (5.1)

Now, we suppose that n = ±m, general solutions of (4.10) are obtained by putting G(u) =

unψ(u) where ψ is an unknown function.
The equation (4.10) becomes:

un+1

[
u
d2ψ

du2
+ (2n+ 1)

dψ

du

]
= 0 (5.2)

After two integrations, we obtain:

ψ(u) = C1u
−2n + C2 (5.3)

C1, C2 two constants. General solutions of (4.10) are:

G(u) = unψ(u) = C1u
−2n + C2 (5.4)

where n = ±m. Returning to the function g(ϕ, h), we have:

gm(ϕ, h) = Cm(N + h)mcosmϕ+
C−m

(N + h)mcosmϕ
(5.5)

Cm, C−m two constants. We note if we use the variable u =
1

(N + h)cosϕ
in the change of

variables in the equation (4.3), we obtain the same solutions.

6 Expression of V the solutions in geodetic coordinates
(ϕ, λ, h)

To write a solution of ∆V = 0 on the type V = f(λ).g(ϕ, h), we combine the equations (3.7)
and (5.5), we obtain for m a scalar:

V =

[
Cm(N + h)mcosmϕ+

C−m
(N + h)mcosmϕ

] (
αme

imλ + βme
−imλ) (6.1)
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If m ≥ 0 is an integer, we consider two expressions of the solutions of ∆V = 0, by writing:

V m = V m(ϕ, λ, h) = (N + h)mcosmϕ(Amcosmλ+Bmsinmλ) (6.2)

Vm = Vm(ϕ, λ, h) =
1

(N + h)mcosmϕ
(A′mcosmλ+B′msinmλ) (6.3)

Am, Bm, A
′
m, B

′
m being constants.

We can write that:

V1 =
+∞∑
m=0

(N + h)mcosmϕ(Amcosmλ+Bmsinmλ)

(6.4)

V2 =
+∞∑
m=0

1

(N + h)mcosmϕ
(A′mcosmλ+B′msinmλ)

are also solutions of Laplace’s equation ∆V = 0.
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