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The electron as a harmonic 
electromagnetic oscillator 

Introduction 
Our particular flavor of the zbw model of an electron takes Einstein’s mass-energy equivalence relation 

(E = m·c2) and equates c to a·ω. We can then use the Planck-Einstein relation (E = ħ·ω) to find the 

Compton radius: 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2
=

ℏ

m ∙ 𝑐
=

λ𝐶

2π
≈ 0.386 × 10−12 m 

In the literature, one will usually find references to the Compton wavelength λC. References to the 

reduced Compton wavelength (λC/2π) are not so common, and the zbw interpretation of it as an 

effective radius (a = λC/2π) of the electron even less so. However, we find ourselves in good company 

here. It is not only authors such as David Hestenes or Alexander Burinskii who associate this length with 

an effective diameter of the electron: even Dirac hinted at it when describing Schrödinger’s discovery of 

the Zitterbewegung. Indeed, we may want to remind ourselves that it was Erwin Schrödinger who 

stumbled upon the idea of the Zitterbewegung when he was exploring solutions to Dirac’s wave 

equation for free electrons. It’s worth quoting Dirac’s summary of it: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

From the context, it is clear that Dirac’s reference to the ‘law of scattering of light by an electron’ is, 

effectively, a reference to Compton scattering and, hence, it is good to say a few words about that. 

Compton scattering involves electron-photon interference: a high-energy photon (the light is X- or 

gamma-rays) will hit an electron and its energy is briefly absorbed before the electron comes back to its 

equilibrium situation by emitting another photon. The wavelength of the emitted photon will be longer. 

The photon has, therefore, less energy, and the difference in the energy of the incoming and the 

outgoing photon gives the electron some linear momentum.  

Because of the interference effect, Compton scattering is referred to as inelastic. In contrast, low-energy 

photons scatter elastically. Elastic scattering experiments yield a much smaller effective radius of the 

electron. It is the so-called classical electron radius, which is also known as the Thomson or Lorentz 

radius, and it is equal to re = α·a  a/137  2.818  10-15 m. The Thomson scattering radius is referred to 
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as elastic because the photon seems to bounce off some hard core: there is no interference. This picture 

is also fully consistent with the Zitterbewegung model of an electron: the hard core is just the pointlike 

charge itself. It is, effectively, pointlike – 10-15 m is the femtometer scale – but, as we can see, pointlike 

does not mean dimensionless. 

The above directly inspires the c = a·ω formula we are using: it is just the formula we’d use for the 

tangential velocity of any object going around in a circle, as illustrated in Figure 1. In our zbw model of 

an electron, we think of the object (the green dot in the illustration) as the pointlike charge. The charge 

itself has zero rest mass: it is just an electric charge, and the mass of the electron as a whole is the 

equivalent mass of the two-dimensional motion of the charge⎯its Zitterbewegung. This hybrid 

description of the electron is Wheeler’s idea of mass without mass: the mass of the electron is the 

equivalent mass of the energy in the oscillation of the pointlike charge.   

Figure 1: c = v = a·ω 

 

What is the nature of the oscillation? 
To keep an object with some momentum in a circular orbit, a centripetal force is needed, as shown in 

Figure 2. 

Figure 2: The Zitterbewegung model of an electron 

 

What is the nature of this force? Because the force can only grab onto the charge, it must be 

electromagnetic. Hestenes, who revived the Zitterbewegung theory in the 1980s and 1990s, thinks that 
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the nature of the zbw current is the same as that of a superconducting current, as illustrated in Figure 3. 

If we have some magnetic field – let us denote it by B0, as in the left-hand side (a) of the illustration 

below – going through a ring made of superconducting material, we can then cool the ring below the 

critical temperature and switch off the field. Lenz’s law – which is nothing but a consequence of 

Faradays’ law of induction – then tells us the change (because of the switch-off) in the magnetic field 

will induce an electromotive force. Hence, we get an induced electric current, and its direction and 

magnitude will be such that the magnetic flux it generates will compensate for the flux change: the 

induced current in the superconducting circuit will just maintain the flux through the ring at the same 

value.  

Figure 3: A perpetual current in a superconducting ring1  

 

This may sound very complicated but it’s just yet another application of Maxwell’s equations. The 

hypothesis gives rise to Hestenes’ interpretation of the zbw model of an electron, which he summarizes 

as follows:  

“The electron is nature's most fundamental superconducting current loop. Electron spin 

designates the orientation of the loop in space. The electron loop is a superconducting LC 

circuit. The mass of the electron is the energy in the electron's electromagnetic field.”2 

The only problem with this interpretation is that, in free space, we do not have any ring to hold and 

guide our charge. We, therefore, need one or more additional hypotheses. Before we think about what 

we could possibly use, let us look at that force again.  

There is no positive charge at the center, so the situation can surely not be compared to an electron 

orbiting a positively charge nucleus. In fact, the force is perpendicular to the direction of motion of the 

charge so, yes, this force must be magnetic only. This hypothesis makes sense in light of the force 

formula for the magnetic force: 

Fmagnetic = q·vB force formula 

 
1 Source: Open University, Superconductivity, https://www.open.edu/openlearn/science-maths-technology/engineering-and-
technology/engineering/superconductivity/content-section-2.2#. The reader who’s interested in the detailed equations proving 
this fact will find them there. 
2 Email from Dr. David Hestenes to the author dated 17 March 2019. 

https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/engineering/superconductivity/content-section-2.2
https://www.open.edu/openlearn/science-maths-technology/engineering-and-technology/engineering/superconductivity/content-section-2.2
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Note that the formula above follows the usual convention, which is that q is some positive charge. 

Figure 3(b) follows the same convention. Our zbw charge will be negative, so we should write F = 

−qe·vB. We may also want to think about the field density here. A constant flux through the ring does 

not mean that the magnetic field remained unchanged. In Figure 3(a), we had a uniform magnetic field 

within the ring, while in Figure 3(b) we have a field that’s produced by the current flowing in the ring 

and, hence, the field density is much larger close to the ring than at its center, even if the total flux has 

the same value. Why is this important? It is important because we will probably want to know, at some 

point in the analysis, where the (field) energy is actually located. 

OK. Back to hypotheses. We used the Planck-Einstein relation (E = ħ·ω) to calculate the radius a = ħ/mc. 

The Planck-Einstein relation can be re-written as E/T = h. T = 1/f is the cycle time in this equation. From 

the  same equation, it is obvious that it is equal to T = h/E Its value is equal to: 

T =
ℎ

E
≈

6.626 × 10−34 J ∙ s

8.187 × 10−14 J
≈ 0.8 × 10−20 s 

That’s very small. The cycle time of short-wave ultraviolet light (UV-C), with photon energies equal to 

10.2 eV is 0.410-15 s, so that gives an idea. It is interesting to note that we can write Planck’s quantum 

of action as the product of the electron’s energy and the cycle time: 

h = E·T = h·f·T 

Hence, we may think of one cycle packing not only the electron’s energy but also as packing one unit of 

h. We can do some more calculations. We can calculate the current:  

I = qe𝑓 = qe

E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 19.8 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

This is huge: a household-level current at the sub-atomic scale. However, this result is consistent with 

the calculation of the magnetic moment, which is equal to the current times the area of the loop and 

which is, therefore, equal to: 

μ = I ∙ π𝑎2 = qe

m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=

qe𝑐

2

ℏ

m𝑐
=

qe

2m
ℏ 

It is also consistent with the presumed angular momentum of an electron, which is that of a spin-1/2 

particle. Here we must make some assumption as to how the effective mass of the electron will be 

spread over the disk. If we assume it is spread uniformly over the whole disk3, then we can use the 1/2 

form factor for the moment of inertia (I). We write: 

L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g (
qe

2m
) 𝐋 ⇔

qe

2m
ℏ = g

qe

2m

ℏ

2
⇔ g = 2 

 
3 This is a very essential point. It is also very deep and philosophical. We say the energy is in the motion, but it’s also in the 
oscillation. It is difficult to capture this in a mathematical formula. In fact, we think this is the key paradox in the model. 
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But why would the mass be spread uniformly over the area of our circle with radius a? In fact, why 

would be think of our electron as some disk? We need some more advanced theory to answer such 

questions. 

What’s the momentum of the pointlike charge? 
Before we try to answer that question, we should think about the momentum vector p in Figure 2. It 

should be relativistic momentum of course, so its magnitude is equal to: 

p = mc = γm0c 

How should we calculate this? The Lorentz factor goes to infinity as the velocity goes to c, and m0 is 

equal to zero. So we are multiplying zero by infinity. What do we get? An online graphing tool shows the 

behavior of the p = γm0v function is quite weird. We used desmos.com to produce the graph in Figure 4, 

which shows what happens with the p = mvv = γm0v for  m = 0.001 and v/c ranging between 0 and 1. 

Figure 4: p = mvv = γm0v for m  → 0 

 

It is quite enlightening: p is (very close to) zero for v/c going from 0 to 1 but then becomes infinity at v/c 

= 1 itself. What can we say about this? Perhaps we should say that the momentum of an object with 

zero rest mass is a nonsensical concept. Let us avoid this for the time being and get back to our analysis 

of the force. Before we do so, we should distinguish between p, px and py. The p is the magnitude of p, 

so that’s p = m·c, while px and py are the horizontal and vertical components of p, and so they are equal 

to px = mvx = γm0vx and py = mvy = γm0vy respectively. 

The force components and the wavefunction 
The force must be electromagnetic and, from its geometry, it is easy to see that the two force 

components can be written as the following functions of the magnitude of the centripetal (F) and the x 

and y coordinates: 

• Fx = F·cos(θ−π) = −F·cos(θ) = −F·x/a   

• Fy = F·sin(θ−π) = −F·sin(θ) = −F·y/a 

We thus get the following formula for the force: 

F = Fx + Fy = −F·cos(θ) − i·F·sin(θ) 
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We use boldface for cos(θ) and for the imaginary unit i here so as to ensure we think of them as vector 

quantities: they have a magnitude, but they also have a direction and – importantly – some origin. 

We know that we can represent the position vector r using the elementary wavefunction: 

r = a·ei = x + i·y = a·cos(θ) + i·a·sin(θ) = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

Hence, we might be tempted to write the force vector as = −F·e−i. However, the origin of the force 

vectors is not the same: the origin moves with the position vector. To be precise, origin is a term that is 

usually reserved to denote the origin of the reference frame. Vectors have an initial and a terminal 

point, and what we are saying here is that the initial point of our velocity, force and acceleration vector 

is not the origin.  

Does this invalidate our earlier interpretation of the real and imaginary part of the wavefunction as the 

horizontal and vertical component of the force? To some extent, it does but, perhaps, not 

fundamentally so: the real and imaginary part of our wavefunction still show us how the horizontal and 

vertical component vary as a function of the position of the pointlike charge. We probably just need to 

think in terms of the force grabbing onto some linear space⎯not just one single point. We will come 

back to this. As for now, let us just try to calculate F and relate it to the radius a as best as we can. 

We can calculate the centripetal acceleration: it’s equal to ac = vt
2/a = a·ω2. This formula is relativistically 

correct. It might be useful to remind ourselves how we get this result. The radius vector a has a 

horizontal and a vertical component: x = a·cos(ωt) and y = a·sin(ωt). We can now calculate the two 

components of the (tangential) velocity vector v = dr/dt as vx = −a·ω·sin(ωt) and vx y = −a· ω·cos(ωt) and, 

in the next step, the components of the (centripetal) acceleration vector ac: ax = −a·ω2·cos(ωt) and ay = 

−a·ω2·sin(ωt). The magnitude of this vector is calculated as follows: 

ac
2 = ax

2 + ay
2 =  a2·ω4·cos2(ωt) + a2·ω4·sin2(ωt) = a2·ω4  ac = a·ω2 = vt

2/a 

Now, the force law tells us that F is equal to F = m·ac = m·a·ω2 but, again, we have this problem of 

determining what the mass of our pointlike charge actually is. The m0 in our m = γm0 is zero ! 

We should find another way. We may note the horizontal and vertical force component behave like the 

restoring force causing linear harmonic oscillation. This restoring force depends linearly on the 

(horizontal or vertical) displacement from the center, and the (linear) proportionality constant is usually 

written as k. In case of a mechanical spring, this constant will be the stiffness of the spring. We don’t 

have a spring here so it is tempting to think it models some elasticity of space itself. However, we should 

probably not engage in such philosophical thought. Let us write down what we have:  

Fx = dpx/dt = –k·x = –k·a·cos(ωt) = −F·cos(ωt) 

Fy = dpy/dt = –k·y = –k·a·sin(ωt) = −F·sin(ωt) 

Now, it is quite straightforward to show that this constant can always be written as: 

k = m·ω2 

We get that from the solution we find for ω when solving the differential equations Fx = dpx/dt = –k·x 

and Fy = dpy/dt = Fy = dpy/dt = –k·y and assuming there is nothing particular about p and m. In other 

words, we assume there is nothing wrong with p = m·v = γm0v relation. So we just don’t think about the 
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weird behavior of that function. It’s a bit like what Dirac did when he defined his rather (in)famous Dirac 

function: the function doesn’t make sense mathematically but it works – i.e. we get the right answers – 

when we use it.  

OK. Let’s move on here. We have the k = m·ω2 equation, but we know m is not the rest mass of our 

electron here. We need to find some innovative way of referring to it. Let’s call it the effective mass of 

our pointlike charge as it’s whizzing around at the speed of light. We need to remember it’s a measure 

of inertia – and we measure that inertia along the horizontal and vertical axis respectively and, hence, 

we should, perhaps, write something like this: m = mγ = mx = my, in line with the distinction we made 

between p, px and py. Why mγ? The notation is just a placeholder: we need to remind ourselves it is a 

relativistic mass concept and so I used γ (the symbol for the Lorentz factor) to remind ourselves of that. 

So let us write this:  

k = mγ·ω2 

From the equations for Fx and Fx, we also know that k·a = F, so k = F/a. Hence, the following equality 

must hold: 

F/a = mγ·ω2   F = mγ·a·ω2  F/a = mγ·a2·ω2 =  F/a·mγ = a2·ω2 

We know the sum of the potential and kinetic energy in a linear oscillator adds up to E = m·a2·ω2/2. We 

have two independent linear oscillations here so we can just add their energies and the ½ factor 

vanishes. We also know that the total energy in this oscillation must be equal to E = m·c2. The mass 

factor here is the rest mass of our electron, so it’s not that weird relativistic mγ concept. However, we did 

equate c to a·ω2. Hence, we can now write the following: 

E = m·c2 = m·a2·ω2 = m·F/a·mγ  

The force is, therefore, equal to: 

F = (mγ/m)·(E/a) 

Now what can we say about the mγ/m ratio? We know mγ is sort of undefined⎯but it shouldn’t be zero 

and it shouldn’t be infinity. It is also quite sensible to think mγ should be smaller than m. It cannot be 

larger because than the energy of the oscillation would be larger than E = mc2. What could it be? 1/2, 

1/2π? Rather than guessing, we may want to remind ourselves that we know the angular momentum: L 

= ħ/2. We calculated it using the L = I·ω formula and using an educated guess for the moment of inertia 

(I = m·a2/2), but we also have the L = r  p formula, of course! The lever arm is the radius here, so we 

can write: 

1. L = ħ/2  p = L/a = (ħ/2)/a = (ħ/2)·mc/ħ = mc/2  

2. p = mγc 

 mγc = mc/2  mγ = m/2 

We found the grand result we expected to find: the effective mass of the pointlike charge – as it whizzes 

around the center of the two-dimensional oscillation that makes up our electron – is half of the (rest) 

mass of the electron. 

We can now calculate the force: 
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F =
1

2

E

𝑎
≈

8.187 × 10−14 J

2
2𝜋 · 2.246 × 10−12 m

≈ 0.115 N 

This force is equivalent to a force that gives a mass of about 115 gram (1 g = 10-3 kg) an acceleration of 1 

m/s per second. This is huge at the sub-atomic scale. Because this is so enormous, we need to think 

about energy densities and, perhaps, wonder if general relativity comes into play. 

Introducing gravity 
We calculated the force, and we found that it was huge. We can also calculate the numerical value of 

the field strength, and we should not be surprised that we get an equally humongous field strength: 

𝐸 =
𝐹

qe
≈

11.5 × 10−2 N

1.6 × 10−19 C
≈ 0.7 × 1018 N/C 

Just as a yardstick to compare, we may note that the most powerful man-made accelerators reach field 

strengths of the order of 109 N/C (1 GV/m) only. This is a billion times more. Hence, we may wonder if 

this value makes any sense at all. To answer that question, we can, perhaps, try to calculate some 

energy density. Using the classical formula, we get: 

𝑢 = 𝜖0𝐸2 ≈ 8.854 × 10−12 ∙ (0.21 × 1018)2
J

m3
= 0.36 × 1024  

J

m3
= 0.63 × 1024  

J

m3
  

This amounts to about 7 kg per mm3 (cubic millimeter). Is this a sensible value? Maybe. Maybe not. The 

rest mass of the electron is tiny, but then the zbw radius of an electron is also exceedingly small. It is 

very interesting to think about what might happen to the curvature of spacetime with such mass 

densities: perhaps our pointlike charge just goes round and round on a geodesic in its own (curved) 

space. We are not well-versed in general relativity and we can, therefore, only offer some general 

remarks here: 

1. If we would pack all of the mass of an electron into a black hole, then the Schwarzschild formula gives 

us a radius that is equal to: 

𝑟𝑠 =
2Gm

𝑐2
≈ 1.35 × 10−57m (𝑚𝑒𝑡𝑒𝑟) 

This exceedingly small number has no relation whatsoever with the Compton radius. In fact, its scale has 

no relation with whatever distance one encounters in physics: it is much beyond the Planck scale, which 

is of the order of 10−35 meter and which, for reasons deep down in relativistic quantum mechanics, 

physicists consider to be the smallest possibly sensible distance scale. 

2. We are intrigued, however, by suggestions that the Schwarzschild formula should not be used as it 

because an electron has angular momentum, a magnetic moment and other properties, perhaps, that 

do not apply when calculating, say, the Schwarzschild radius of the mass of a baseball. To be precise, we 

are particularly intrigued by models that suggest that, when incorporating the above-mentioned 
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properties of an electron, the Compton radius might actually be the radius of an electron-sized black 

hole (Burinskii, 2008, 2016).4  

The integration of gravity into this oscillator model will be our prime focus of research over the coming 

years. We totally concur with Burinskii’s instinct here: the integration of gravity into the model may well 

provide “the true path to unification of gravity with particle physics.”5  

Conclusions 
The most intriguing and interesting aspect of the model is that it yields a realist common-sense 

interpretation of quantum physics. All pieces fall into place: we can understand the real and the 

imaginary part of the wavefunction as an oscillating electric and magnetic field. It is, likewise, possible to 

also analyze Schrödinger’s wave equation as a diffusion equation for electromagnetic energy.6  

The model is simple and nice and should, therefore, be seen as scoring much better on Occam’s Razor 

criterion than the current mainstream interpretation of quantum physics. We hope this model will be 

evaluated somewhat more positively by mainstream academics in the future, especially when 

complemented by more advanced mathematical techniques (such as Hestenes’ geometric calculus) and 

when integrated with gravity (Burinskii’s Kerr-Newman models of an electron, that is).  

The basic results are there: this is a pretty complete realist interpretation of QM. Our manuscript7, for 

example, also explains what photons actually are, and how they interact with electrons. It also provides 

an alternative explanation of electron orbitals or, to be precise, a common-sense physical explanation of 

the wave equation and other so-called mysterious quantum-mechanical phenomena (anomalous 

magnetic moment, Mach-Zehnder interference, etcetera): there is no mystery. It’s all plain physics. The 

Emperor has no clothes. 

To conclude this paper, we join the summary results for the spin-only and the orbital electron that result 

from our zbw electron model (Table 1). We also want to draw the reader’s attention to the interesting 

possibility that the anomalous magnetic moment of an electron might be explained by a very classical 

coupling between the two moments because of the Larmor precession of the electron in the Penning 

trap. It may, therefore, not be anomalous at all, and we shouldn’t need quantum field theory to explain 

it.8  

 
4 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008, https://arxiv.org/abs/hep-th/0507109. A more 
recent article of Mr. Burinskii (New Path to Unification of Gravity with Particle Physics, 2016, https://arxiv.org/abs/1701.01025, 
relates the model to more recent theories – most notably the “supersymmetric Higgs field” and the “Nielsen-Olesen model of 
dual string based on the Landau-Ginzburg (LG) field model.”.  
5 See: Alexander Burinskii, The weakness of gravity as an illusion hiding the true path to unification of gravity with particle 
physics, Essay written for the Gravity Research Foundation, March 30, 2017 
6 See: Jean Louis Van Belle, A Geometric Interpretation of Schrödinger’s Wave Equation, 12 December 2018 
(http://vixra.org/abs/1812.0202) and Jean Louis Van Belle, The Wavefunction as an Energy Propagation Mechanism, 8 June 
2018 (http://vixra.org/abs/1806.0106). While we still adhere to the basic intuition and results in these two papers, we would 
need to update them in light of our more recent updates and corrections to our interpretation. 
7 Jean Louis Van Belle, The Emperor Has No Clothes: A Realist Interpretation of Quantum Mechanics, 21 April 2018, pre-
published on http://vixra.org/abs/1901.0105. 
8 Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018, http://vixra.org/pdf/1812.0233v3.pdf. 

https://arxiv.org/abs/hep-th/0507109
https://arxiv.org/abs/1701.01025
http://vixra.org/abs/1812.0202
http://vixra.org/abs/1806.0106
http://vixra.org/abs/1901.0105
http://vixra.org/pdf/1812.0233v3.pdf
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Table 1: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2 m𝑐2 = −
1

𝑛2 E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛2𝑟B =

𝑛2𝑟C

α
=

𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 ω𝑛 =

𝑣𝑛

𝑟𝑛
=

α2

𝑛3ℏ
m𝑐2 =

1
𝑛2 α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω =
1

2
∙ m ∙ 𝑎2 ∙ ω =

m

2
∙

ℏ2

m2𝑐2

E

ℏ
=

ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe

2m
ℏ μ𝑛 = I ∙ π𝑟𝑛

2 =
qe

2m
𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 
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