Central Limit Theorems for Other Types of Means

It is relatively easy to transform the standard version of the Central Limit Theorem for other types of means.

Take the standard (arithmetic) Central Limit Theorem:

For
$$S_n = X_1 + X_2 + ... + X_n$$

$$\Pr\left(\frac{S_n - \mu}{\frac{\sigma}{\sqrt{n}}} < \beta\right) \to \Phi(\beta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\beta} \exp(-t^2/2) dt$$

For Geometric means, let:

$$P_n = X_1 * X_2 * ... * X_n$$

Rewrite:

$$\frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} < \beta \quad as \quad \frac{S_n}{n} < \mu_X + \beta \frac{\sigma_X}{\sqrt{n}}$$

Replace x with ln(x) (x>0), hence:

$$\mu_X$$
 becomes $\mu_{\ln(X)} = E(\ln(X))$ and
$$\sigma_X becomes \ \sigma_{\ln(X)} = \sqrt{E(\ln(X)^2) - \left[E(\ln(X))\right]^2}$$

And thus in the above inequality:

$$\frac{\ln(X_1) + \ln(X_2) + \dots + \ln(X_n)}{n} < \mu_{\ln(X)} + \beta \frac{\sigma_{\ln(X)}}{\sqrt{n}}$$

Which implies:

$$\exp(\frac{\ln(P_n)}{n}) < \exp(\mu_{\ln(X)} + \beta \frac{\sigma_{\ln(X)}}{\sqrt{n}})$$

That is:

$$P^{1/n} < \exp(\mu_{\ln(X)} + \beta \frac{\sigma_{\ln(X)}}{\sqrt{n}})$$

But:

$$\exp(\mu_{\ln(X)}) = \exp(E(\ln(X))$$

$$= \exp(\int \ln(X) pr(X) dx)$$

$$= \prod_{x \in \mathbb{R}} x^{pr(x)dx}$$

where the product is a "Product Integral" (a continuous product) – see the Wikipedia article "Product Integral"

So:

$$\Pr\left(P^{1/n} < \exp(\beta \frac{\sigma_{\ln(X)}}{\sqrt{n}}) * \prod_{x \in \mathbb{R}} x^{pr(x)dx}\right) \to \Phi(\beta) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\beta} \exp(-t^2/2) dt$$

as $n \rightarrow \infty$

Set beta=0 and you see that:

$$median(P^{1/n}) \to \prod_{x \in \mathbb{R}} x^{pr(x)dx}$$

For a Harmonic Mean CLT:

Replace x with 1/x. - hence:

$$\mu_X$$
 becomes $\mu_{1/X} = E(1/X)$ and σ_X becomes $\sigma_{1/X} = \sqrt{E(1/X^2) - [E(1/X)]^2}$

Then

$$\frac{\frac{S_{n}-\mu}{n} < \beta \quad becomes \quad \frac{\frac{1/X_{1}+1/X_{2}+...+1/X_{n}}{n}-\mu_{1/X}}{\left(\frac{\sigma_{1/X}}{\sqrt{n}}\right)} < \beta$$

Or:

$$\frac{n}{1/X_1 + 1/X_2 + \dots + 1/X_n} > \frac{1}{\mu_{1/X} + \beta \left(\sigma_{1/X} / \sqrt{n}\right)}$$

Thus

$$\Pr\left[\frac{n}{1/X_1 + 1/X_2 + ... + 1/X_n} > \frac{1}{\mu_{1/X} + \beta\left(\sigma_{1/X}/\sqrt{n}\right)}\right] \to \Phi(\beta) \text{ as } n \to \infty$$

Set beta=0, then $Pr \rightarrow 1/2$, thus:

$$median \left[\frac{n}{1/X_1 + 1/X_2 + ... + 1/X_n} \right] \rightarrow \frac{1}{\mu_{1/X}} as \ n \rightarrow \infty$$

With the above, standard conditions apply (e.g. no division by zero, finite expectations and variance, etc)

In general, replacing x with g(x) should provide expressions for other more generalised means, provided the usual conditions are satisfied.

D Williams everythingflows@hotmail.com