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Abstract: In this work we discuss a geometric and topological quantisation of mass by 

extending our work on the principle of least action in which the quantisation of both the 

angular momentum of a Bohr hydrogen atom and the charge of an elementary particle can be 

shown to be quantised from the continuous deformation of a differentiable manifold. Similar 

to the case of the quantisation of charge using the two-dimensional Ricci scalar curvature, we 

show that in the case of three-dimensional differentiable manifolds we can apply the Yamabe 

problem, which states that any Riemannian metric on a compact smooth manifold of 

dimension greater or equal to three is conformal to a metric with constant scalar curvature, to 

show that mass can also be quantised by the deformation of differentiable manifolds. The 

Yamabe problem is a generalisation of the uniformisation theorem for two-dimensional 

differentiable manifolds. We also discuss whether quantum particles can be expressed as 

direct sums of quantum masses when they possess mathematical structures of differentiable 

manifolds, with the quantum masses are considered as prime manifolds. This may be 

regarded as a physical manifestation of an established mathematical proposition in 

differential geometry and topology that states that any compact, connected, and orientable 

differentiable manifold   can be decomposed into prime manifolds and the decomposition is 

unique up to an absorption or emission of 3-spheres   . This process of decomposition of 

differentiable manifolds into prime manifolds and the radiation of 3-spheres is similar to the 

radiation of the quanta of physical fields from a quantum system, such as the radiation of 

photons from a hydrogen atom. Even though our work is highly speculative and suggestive, 

we hope that it may pay way for further rigorous mathematical investigations into whether 

mass is also quantised like charge and other fundamental entities in physics. 

 

Our physical existence as beings endowed with consciousness is so balanced, or rather not 

fully developed, that we are normally unable to perceive physical processes that are 

happening around us but beyond our physical ability. As a consequence, the shortcomings 

due to our limited physical structure may also prevent us from visualising physical 

phenomena that exist in higher spatial dimensions. In the spirit of scientific investigations, 

this poses a challenging problem of how we can possibly devise experiments that can be used 

to verify the existence of a fourth spatial dimension, despite the fact that the three-

dimensional observable universe in which we are living is expanding and, conceivably, such 

an expansion may be seen as a bending of the boundary of a 3-sphere   , which is formed by 

two 3D solid balls, into the fourth spatial dimension, and our observable universe is one of 

the two 3D solid balls. This may also explain why we exist as 3D physical objects [1]. Now 



the most seemingly obvious perception that we take for granted in physical science is that we 

are formed from matter which is a substance that can be identified with mass. But how mass 

exists is a profound epistemological question that still puzzles our conscious mind. In 

physics, mass is a defined property of physical objects that can manifest in different ways 

depending on how it can be related to the dynamics of a physical system. In classical physics, 

mass can simply be perceived as a resistance of a body to its acceleration under an applied 

force, or a measure of the strength of active and passive gravitational attraction, or in a more 

abstract manner, it is considered as an amount of rest energy and is related directly to the 

curvature of spacetime as formulated in Einstein’s theories of relativity. On the other hand, in 

quantum physics, mass manifests as a wave property of a quantum object. Despite the fact 

that mass has played such important role in various formulations of classical and quantum 

physics there is still a distinctive feature that involves with mass that is needed to be clarified. 

That is it is not quantised, even though mass seems to exist in discrete amounts associated 

with elementary particles that form the basis for the construction of all physical objects. In 

this work we will discuss a geometric and topological quantisation of mass by extending our 

work on the principle of least action in which the quantisation of the angular momentum of a 

Bohr hydrogen atom and the charge of an elementary particle can be shown to be quantised 

from a continuous deformation of a differentiable manifold. Similar to the case of the 

quantisation of charge in which the two-dimensional Ricci scalar curvature of surface is 

invoked, we show that in the case of three-dimensional differentiable manifolds we can apply 

the Yamabe problem, which states that any Riemannian metric on a compact smooth 

manifold of dimension greater or equal to three is conformal to a metric with constant scalar 

curvature, to show that mass can also be quantised by the deformation of differentiable 

manifolds. The Yamabe problem is a generalisation of the uniformisation theorem for two-

dimensional differentiable manifolds. As a further discussion, we consider whether quantum 

particles can be expressed as direct sums of quantum masses when they possess the 

mathematical structures of differentiable manifolds with the quantum masses are regarded as 

prime manifolds. This may be regarded as a physical manifestation of an established 

mathematical proposition in differential geometry and topology that states that any compact, 

connected, and orientable differentiable manifold   can be decomposed into prime manifolds 

   as          , and the decomposition is unique up to an absorption or emission of 3-

spheres    [2]. It is interesting to observe that the picture of decomposition of differentiable 

manifolds into prime manifolds and the radiation of 3-spheres is similar to the radiation of the 

quanta of physical fields from a quantum system, such as the radiation of photons from a 

hydrogen atom. However, the main focus in this work is to show that if quantum particles are 

endowed with geometric and topological structures of differentiable manifolds, then their 

physical property manifests as mass can also be quantised. For completeness, we first outline 

how physical entities such as angular momentum and charge can be quantised from a 

deformation of differentiable manifolds [3].  

In the case of the geometric and topological quantisation of angular momentum we consider 

Bohr’s planar model of a hydrogen-like atom. As shown in our work on the principle of least 

action, from the Frenet system of equations in differential geometry, we are able to establish 



a relationship between the momentum   of a quantum particle and the curvature   of its path 

through the relation  

                                                                                                                                                              

The relationship given in Equation (1) can be shown to lead to the Bohr’s postulate of the 

quantisation of angular momentum. According to the canonical formulation of classical 

physics, the particle dynamics is governed by the action principle           . Using 

the relationship      and the expression of the curvature of a path      in a plane, 

                , the action integral        takes the form         

                  . It is shown in the calculus of variations that to extremise the integral 

                  , the function      must satisfy the differential equation [4] 

  

  
 

 

  

  

   
 

  

   
  

    
                                                                                                                      

However, with the functional of the form               , it is straightforward to verify 

that the differential equation (2) is satisfied by any function     . This result may be 

considered as a foundation for the Feynman’s path integral formulation of quantum 

mechanics, which uses all classical trajectories of a particle in order to calculate the transition 

amplitude of a quantum mechanical system. Since any path can be taken by a particle moving 

in a plane, if the orbits of the particle are closed, it is possible to represent each class of paths 

of the fundamental homotopy group of the particle by a circular path, since topologically, any 

path in the same equivalence class can be deformed continuously into a circular path. This 

validates Bohr’s assumption of circular motion for the electron in a hydrogen-like atom. This 

assumption then leads immediately to the Bohr quantum condition 

             
  

 
                                                                                              

The Bohr quantum condition possesses a topological character in the sense that the principal 

quantum number   is identified with the winding number, which is used to represent the 

fundamental homotopy group of paths of the electron in the hydrogen atom. 

In order to formulate a geometric and topological quantisation of charge, we need to extend 

Feynman’s method of sum over random paths to sum over hypersurfaces in higher-

dimensional spaces so that we can formulate physical theories in which the transition 

amplitude between states of a quantum mechanical system can be determined from such sum. 

For the case of two-dimensional differentiable manifolds, the method is simply the sum over 

random surfaces in three-dimensional Euclidean space. Consider a surface defined by the 

relation             in terms of the Cartesian coordinates           . The Gaussian 

curvature is given by                
       

    
    , where           and 

              . Let   be a 3-dimensional physical quantity which plays the role of the 

momentum   in the 2-dimensional space action integral. The quantity   can be identified 

with the surface density of a physical quantity, such as charge. Since the momentum   is 



proportional to the curvature  , which determines the planar path of a particle, it is seen that 

in the 3-dimensional space the quantity   should be proportional to the Gaussian curvature  , 

which is used to characterise a surface. If we consider a surface action integral of the form 

                 , where   is a universal constant, then we have   

                     
        

    
              . According to the calculus of 

variations, similar to the case of path integral, to extremise the action integral   

             
        , the functional             

   must satisfy the differential 

equations [5] 

  

  
 

 

   
  

   
 

  

      
  

    
                                                                                                           

Also as in the case of path integral, it is straightforward to verify that with the functional of 

the form                      
       

    
       the differential equations given by 

Equation (4) are satisfied by any surface. Hence, we can generalise Feynman’s postulate to 

formulate a quantum theory in which  the transition amplitude between states of a quantum 

mechanical system is a sum over random surfaces, provided the functional   in the action 

integral        is taken to be proportional to the Gaussian curvature   of a surface. 

Consider a closed surface and assume that we have many such different surfaces which are 

described by the higher dimensional homotopy groups. As in the case of the fundamental 

homotopy group of paths, we choose from among the homotopy class a representative 

spherical surface, in which case we can write 

               
 

  
                                                                                                         

where    is an element of solid angle. Since     depends on the homotopy class of the 

sphere that it represents, we have        , where   is the topological winding number of 

the higher dimensional homotopy group. This result can be regarded as a generalised Bohr 

quantum condition. From the result obtained in Equation (5), as in the case of Bohr’s theory 

of quantum mechanics, we may consider a quantum process in which a physical entity 

transits from one surface to another with some radiation-like quantum created in the process. 

Since this kind of physical process can be considered as a transition from one homotopy class 

to another, the radiation-like quantum may be the result of a change of the topological 

structure of the physical system, and so it can be regarded as a topological effect. 

Furthermore, it is interesting to note that the action integral            is identical to 

Gauss’s law in electrodynamics. In this case the constant   can be identified with the charge 

of a particle. In this case the charge   represents the topological structure of a physical 

system, and must exist in multiples of  . Hence, the charge of a physical system, such as an 

elementary particle, may depend on the topological structure of the system and is classified 

by the homotopy group of closed surfaces. This result may shed some light on why charge is 

quantised even in classical physics. 

From the outline of the geometric and topological method of quantisation for the angular 

momentum and the charge of an elementary particle, we now extend our discussion to the 



case of quantum particles which are considered as differentiable manifolds and we show that 

masses can also be quantised as a result of a deformation of differentiable manifolds and the 

geometrical object that involves is also the Ricci scalar curvature. We anticipate that if for 

two-dimensional manifolds the Ricci scalar curvature is used to represent the charge of a 

quantum particle then in three-dimensional manifolds it should be associated with mass. In 

fact, a convincing reason for such identification comes from our works on the spacetime 

structures of quantum particles which showed that geometrical substances can also be 

described in terms of the Ricci scalar curvature obtained from the Riemannian tensor defined 

on differentiable manifolds [6-9]. We have shown that the three main dynamical descriptions 

of physical events in classical physics, namely Newton mechanics, Maxwell 

electromagnetism and Einstein gravitation, can be formulated in the same general covariant 

form and they can be represented by the general equation       , where   is a 

mathematical object that represents the corresponding physical system,   is a four-current,   

is a dimensional constant, and   is a covariant derivative. For Newton mechanics, we have 

    
 

 
            

     . For Maxwell electromagnetism,            

     with the four-vector potential         . And for Einstein gravitation      , and 

in this case   can be defined in terms of a metric     and the Ricci scalar curvature as 

   
 

 
      . By comparing this current with the Poisson equation for a potential   in 

classical physics        , we can identify the scalar potential   with the Ricci scalar 

curvature   and then obtain a diffusion equation         . Solutions to the diffusion 

equation can be found to take the form                     
 

      
              . 

The diffusion equation determines the probabilistic distribution of an amount of geometrical 

substance   which is defined via the Ricci scalar curvature   and manifests as observable 

matter. Let   be a dimensional physical quantity which determines the mass of a quantum 

particle then the quantity   should be proportional to the Ricci scalar curvature  , which is 

used to characterise the geometric and topological structure of a three-dimensional 

differentiable manifold associated with the quantum particle. If we consider an action integral 

of the form                          , where   is a constant, then we would 

expect that this integral should be extremised by the method of calculus of variations and  

then it would satisfy the differential equation given in Equation (4) if the Ricci scalar 

curvature could be expressed in terms of a function as               
  . However, in the 

following, instead, we will apply the Yamabe problem on a deformation of Riemannian 

structures on compact manifolds to argue that the present situation should also be established 

similar to the case of using Gaussian curvature to quantise the charge of quantum particles as 

discussed above. Yamabe’s and subsequent works in differential geometry have shown that 

every compact    Riemannian manifold of dimensions greater than or equal to three can be 

deformed conformally to a    Riemannian structure of constant scalar curvature [10-11]. 

Consider a closed hypersurface and assume that we have many such different hypersurfaces 

which are described by the higher dimensional homotopy groups. As in the case of the 

homotopy groups of paths and surfaces, we choose from among the higher dimensional 

homotopy class a representative spherical hypersurface, then the action integral can be 



rewritten as                               , where     is an element of solid 

angle and the integral      depends on the homotopy class of the hyperspheres that it 

represents. It is shown that the solid angle    subtended by the      -dimensional unit 

hypersphere in  -dimensional Euclidean space    is given by the formula    

            , and for the case of     we have       . Then we arrive at the 

quantisation of mass  

                   
 

   
                                                                                            

where   is the topological winding number of the corresponding homotopy group.  

Since quantum particles are considered as differentiable manifolds, which are assumed to be 

formed from mass-points joined together by contact forces, we may suggest that the quantum 

mass   is the amount of mass-points required to form an elementary particle. This leads to a 

further suggestion that the most fundamental mass must be the mass of a mass-point. Another 

feature that is related to mass-points is that although they should be defined in terms of a 

mathematical property of a differentiable manifold, physically it can be seen as an inertial 

property associated with the motion of a physical body in space. Furthermore, if elementary 

particles are endowed with the geometric and topological structures of differentiable 

manifolds then we may also suggest that mass-points join together to form topological 

structures with particular patterns that give rise to the quanta of mass, therefore the problem 

of geometric and topological quantisation of mass reduces to the problem of forming 

quantum geometric and topological structures of differentiable manifolds. Then from these 

quantum masses endowed with prime geometric and topological structures all other quantum 

particles should be expressed as their direct sums. Despite we seem to only have the ability to 

perceive that we exist as three-dimensional physical objects that reside on the boundary, 

which is a 3D solid ball, of a 3-sphere, on the microscopic scale quantum particles could still 

possess the geometric and topological structures of three-dimensional differentiable 

manifolds, therefore we may suggest that quantum particles are formed as direct sums of the 

quantum masses which have the prime geometric and topological structures, including those 

of a 3-sphere. It should be mentioned here that a 3-sphere    can also be topologically 

constructed from two solid tori      , where    is a circle and                  

        [12]. It is interesting to note that the problem of constructing quantum particles 

from the quantum masses may be related to the problem of hypersphere packing to form the 

configuration space for a three-dimensional manifold, and remarkably it may also be related 

to the problem of hypersphere packings in information theory [13-14]. Now, as an example of 

a decomposition of a differentiable manifold into prime manifolds we consider a hydrogen 

atom in four spatial dimensions. We have shown that quanta of the electromagnetic field may 

exist as 4D physical objects, therefore the radiation of such physical objects would require 

physical structures of four spatial dimensions. In particular, the radiation of quanta of the 

electromagnetic field from a four-dimensional hydrogen atom is similar to the decomposition 

of differentiable manifolds into prime manifolds with an absorption or emission of 3-spheres. 

If we regard a hydrogen atom consisting of a proton and an electron as a three-dimensional 



differentiable manifold in which the proton and the electron are observed as two 3D objects 

which form the boundary of the hydrogen manifold then we can use a four-dimensional 

Schrödinger wave equation to describe its quantum dynamics. Since both Bohr model and 

Schrödinger model in spaces of different dimensions use the same form of the potential for 

the hydrogen atom, we may adopt the same form of potential in four-dimensional Euclidean 

space to describe a four-dimensional hydrogen atom. To describe the wave dynamics on a 

hypersurface embedded or immersed in four-dimensional Euclidean space    we need a four-

dimensional time-independent Schrödinger wave equation of the form 

 
  

  
       

   

 
                                                                                                                 

Consider a d-dimensional hypersphere   
  of radius   embedded in the ambient      -

dimensional Euclidean space     . If spherical coordinates                    are defined 

in terms of the Cartesian coordinates                as         ,              ,..., 

                       then the Laplacian  
  
  on the hypersphere   

  is given as 

 
  
                                           

    
    [15]. For the case of 

a 3-sphere    embedded in four-dimensional Euclidean space   , the four-dimensional time-

independent Schrödinger wave equation becomes 

 
  

  
 
 

  
 
  

   
      

 

  
 

 

     
   
     

   

 
                                                            

Even though rigorous solutions to Equation (8) cannot be obtained, we can still discuss the 

possibility to observe the total energy contained in the system. If we consider the four-

dimensional region bounded by the proton and the electron as a 3-sphere of radius   then the 

four-dimensional volume is given as         . As discussed in our work on the Olbers 

paradox, there is a chance that there is trapped energy inside the 3-sphere and this energy, 

even though which cannot be observed and measured because it is associated with the fourth 

dimension, may be required to balance the hydrogen atom as a stable physical system. 

However, when the atom absorbs a photon the system becomes unstable which results in the 

expansion of the 3-sphere, which causes the system to change its stable state in the form of a 

deformation of the region of the manifold associated with the electron. Despite the four-

dimensional trapped energy    cannot be observed or measured, it can be calculated as 

follows. If    is a four-dimensional volume energy density then the trapped energy    stored 

in the 3-sphere is given by       . Let   is the observable energy that is responsible for 

the supposed rate of expansion of the observable atom. However, as in the case of the 

accelerating expansion of the observable universe, if we are able to observe that the rate of 

expansion is greater than the expected rate that caused by the observable energy   then we 

would speculate that there must exist some form of unknown energy resides inside the atom. 

If we let   is the ratio between the unknown energy    and the observed energy  , i.e., 

     , then the total energy would be                   . If   is the radius of 

the 3-sphere that is formed by the hydrogen atom then the four-dimensional energy density 

   is given as 



   
       

    
                                                                                                                                        

The radius   of the 3-sphere    can be determined from a physical theory such as Einstein 

theory of general relativity                                 , together with 

the Robertson-Walker metric                                      

           . Furthermore, if we assume an energy-momentum tensor of the form     

            
    for the Einstein field equations then the radius   can be shown to satisfy 

the following system of equations [16] 
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