Wether or Not the Strong Force is Included in MHCE8S Theory Produces Two Final Values of Ho

George R. Briggs

> Abstract: If the strong force is included in MHCE8S theory a final value of $\mathrm{Ho}=74.03$ brings in the strong force safely energetically (0.86%) to the theory whereas a reduction in Ho from 74.03 to 73.24 excludes the strong force by $\sim 1 / 4 \%$.

Since we as yet had seen no use of the strong force in MHCE8S theory, we had concluded that the strong force is not a part of E8 symmetry. However we have found that an additional ${ }^{1} 545.281 \mathrm{MeV} /$ galaxy-sec will enable the strong force to form the tightest bound nucleus $\mathrm{Ni}^{62}(\mathrm{z}=28, \mathrm{n}=34)$. See pages 10 and 13 of the cited reference. A way to get this energy is to provide another (4th) dimensionless constant to the theory. The constant 1.000055 already ${ }^{2}$ used to signal the 66-million-year-old meteoric extinction event can also be used for this purpose. This constant can bring in $550 \mathrm{MeV} /$ galaxy-sec, which is a factor $550 / 545.281=1.0086542$ more than needed. If we decreased Ho from ${ }^{3} 74.03$ to $73.24(1.0107864)$ we would have $1.0107864 / 1.0086542=1.0021139=0.21139 \%=\sim 1 / 4$ \% less energy than needed for the strong force to be included. Careful measurements of Ho will decide this question.

1. "Nuclear binding energy", Wikipedia, (2019)
2. George R. Briggs, "Peculiar signaling properties of the tau and mu leptons and W and Z bosons and more", ViXra 1809.0598, (2018)
3. Bruce Wallman,"Resolving the tension between Planck Ho=66.93 and Riess et al Ho=73.24", ViXra 1906.0138, (2019)
