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ABSTRACT

Assuming the Riemann Hypothesis to be true, we propose an asymptotic and closed-form formula to
find the imaginary part for non-trivial zeros of the Riemann Zeta Function.
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1 Introduction

For a long time ago the non-trivial zeros of Riemann Zeta Function has been focus of intense investigation, actually
considered the most important unsolved problem in pure mathematics.

Significant efforts to solve the problem have been done in the past, recently notable equation published by Simon
Plouffe [1] returns non-trivial zeros with increasing accuracy at n tends to infinity, as an asymptotic formula.

Inspire by his work we start our present research, finding a closed-form version.
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As stated in his paper, a formula for approximate imaginary part of every non-trivial zeros is:
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Trough Puiseux series expansion at n =∞ from equation (1) we have:

(15/16)π(−1+log n)3((176(−1+log n)(480+60 log8 n2+30 log2(−113+26n)−60 log(−29+28n)−log7 n(120+
497n) + 5 log4(−121 + 568n) + log6 n(929 + 1555n) + 10 log3(233 − 81n + 84n2) − 2 log5(−24 + 1315n +
905n2)))/(60 − 60 log7 n2 − 360 log(1 + n) + 120 log2(5 + 18n) + log6 n(132 + 425n) − 30 log3(16 + 115n +
30n2)+10 log4(14+261n+165n2)− log5(12+925n+1230n2))2−(605(115920+720 log14 n2−5040 log(−135+
152n)−12 log13 n(120+917n)−360 log2(4397+4298n)+12 log12 n(1877+5791n)−3 log11 n(51820+65117n)+
log10(−432+587643n−83325n2)+360 log3(7215+27145n+9422n2)−60 log4(60009+344684n+225528n2)+
24 log7(24693 + 280414n+ 954282n2) + 24 log5(138147 + 1043230n+ 1089935n2) + log9(10908− 1116117n+
2726096n2) − 2 log8(55479 + 86884n + 5336344n2) − 4 log6(455752 + 4495554n + 7668825n2)))/(n(−60 +
60 log7 n2 + 360 log(1 +n)− 120 log2(5 + 18n)− log6 n(132 + 425n) + 30 log3(16 + 115n+ 30n2)− 10 log4(14 +
261n+ 165n2) + log5(12 + 925n+ 1230n2))3)− (128n(−1 + log n))/(60− 60 log(6 + 5n) + 300 log2(−2 + 3n+
2n2)− 30 log3(−16− 35n+ 40n2 + 20n3) + 10 log4(−14− 63n− 63n2 + 90n3 + 30n4) + log6 n(−12− 15n−
20n2 − 30n3 + 60n4) + log5(12 + 155n+ 170n2 + 210n3 − 360n4 − 60n5)))
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This is a closed-form expression that contains only π, log and simple exponentiation. Thus now, we can find the zeros
of Riemann zeta function efficiently computable at n sufficiently large.

Another mathematical expression, also related to equation (1), for non-trivial zeros with improving precision is the
following one:
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Where x ≈ 0.133

Expressed in Mathematica Language as:

2∗ Pi ∗ (100 − 1 1 / ( ( 0 . 1 3 3∗1 1∗ Pi ) /
Log [ 0 . 1 3 3∗E^(1 + 0 .133∗ Pi )∗ Pi ] ) ) /
P roduc tLog [ ( 1 0 0 − 1 1 / ( ( 0 . 1 3 3∗1 1∗ Pi ) /
Log [ 0 . 1 3 3∗E^(1 + 0 .133∗ Pi )∗ Pi ] ) ) / E ]

3 Conclusions

A closed-form and mathematical expressions to obtain every approximated non-trivial zeros of the Riemann zeta
function are given.

Attempting to fix x variable of equation (2), it is possible to get a final formula that allows an arbitrary precision
calculation for every non-trivial zeros.

Our formula can be interpreted as the first one for generating primes. No such formula was known until now.
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