## An Anomaly in the set of Complex Numbers <br> by Jim Rock

Abstract. We exploit some rudimentary facts about the number one: $(-1)(-1)=1,1=\sqrt{ } 1^{2}$, and $1^{2}=1$ to show an anomaly in the set of Complex Numbers.

$$
1=\sqrt{ } 1^{2}, i=\sqrt{ }-1
$$

Since $\boldsymbol{1}^{\mathbf{2}}=\boldsymbol{1}$, we can substitute $\boldsymbol{1}$ for $\boldsymbol{1}^{\mathbf{2}}$ in $\boldsymbol{1}=\sqrt{ } \boldsymbol{1}^{\mathbf{2}}$ to get $\boldsymbol{1}=\sqrt{ } \boldsymbol{1}$

$$
\text { But } 1=\sqrt{ } 1=\sqrt{ }(-1)(-1)=(\sqrt{ }-1)(\sqrt{ }-1)=(i)(i)=i^{2}=-1
$$

Explore set theory anomalies in https://arxiv.org/abs/1002.4433 Addressing mathematical inconsistency: Cantor and Gödel refuted by J. A. Perez.
© 2019 James Edwin Rock. This work is licensed under a Creative Commons AttributionShareAlike 4.0 International License.

