Prime Gap near a Primorial Number

Xuan Zhong Ni, Campbell, CA, USA

(June, 2019)

Abstract

In this article, we use method of sieve of Eratosthenes to prove that there is a larger prime gap near any primorial number.

A primorial number is defined as the product of the first m primes:
$p_{m} \sharp=\prod_{i=1, \ldots, m} p_{i}$,
here p_{i} is the $i^{\text {th }}$ prime number.

By using method of sieve of Eratosthenes up to the first m primes, p_{i}, $\mathrm{i}=1, \ldots \mathrm{~m}$, there are total $K=\prod_{i=1, \ldots, m}\left(1-1 / p_{i}\right) p_{m} \sharp$ numbers of the remaining numbers smaller than $p_{m} \sharp$. Obviously 1 and $p_{m} \sharp-1$ are remainging numbers.
here $K=p_{m} \sharp \prod_{i=1, \ldots, m}\left(\left(p_{i}-1\right) / p_{i}\right)=\prod_{i=1, \ldots, m}\left(p_{i}-1\right)$.
These remaining numbers are symmetric to the number $\frac{p_{m} \sharp}{2}$, so they can be paired up as ($\mathrm{x}, p_{m} \sharp-\mathrm{x}$), here x and $p_{m} \sharp-\mathrm{x}$ are remaining numbers.

Let p_{m+1} be the smallest remaining number, obviously it is a prime number.

There are no remaining numbers in $\left(1, p_{m+1}\right)$, nor in $\left(p_{m} \sharp-p_{m+1}, p_{m} \sharp-1\right)$.

So there is a prime gap larger than, or equal to $p_{m+1}-1$ near the primorial number $p_{m} \sharp$

Equal happens when both numbers, $p_{m} \sharp-p_{m+1}$ and $p_{m} \sharp-1$ are prime numbers.

