Prime Gap near a Primorial Number

Xuan Zhong Ni, Campbell, CA, USA

(June, 2019)

Abstract

In this article, we use method of sieve of Eratosthenes to prove that there is a larger prime gap near any primorial number.

A primorial number is defined as the product of the first m primes:

 $p_m \sharp = \prod_{i=1,\dots,m} p_i,$

here p_i is the i^{th} prime number.

By using method of sieve of Eratosthenes up to the first m primes, p_i , i=1,...m, there are total $K = \prod_{i=1,...,m} (1-1/p_i) p_m \sharp$ numbers of the remaining numbers smaller than $p_m \sharp$. Obviously 1 and $p_m \sharp$ -1 are remaining numbers.

here
$$K = p_m \sharp \prod_{i=1,...,m} ((p_i - 1)/p_i) = \prod_{i=1,...,m} (p_i - 1).$$

These remaining numbers are symmetric to the number $\frac{p_m \sharp}{2}$, so they can be paired up as (x, $p_m \sharp$ -x), here x and $p_m \sharp$ -x are remaining numbers.

Let p_{m+1} be the smallest remaining number, obviously it is a prime number.

There are no remaining numbers in $(1, p_{m+1})$, nor in $(p_m \sharp p_{m+1}, p_m \sharp 1)$.

So there is a prime gap larger than, or equal to $p_{m+1}-1$ near the primorial number $p_m \sharp$

Equal happens when both numbers, $p_m \sharp p_{m+1}$ and $p_m \sharp 1$ are prime numbers.