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Abstract

We first find a Hamiltonian Ĥ that has the Hurwitz zeta functions ζ(s, x) as eigenfunctions. Then we continue
constructing an operator Ĝ that is self-adjoint, with appropriate boundary conditions. We will find that the ζ(s, x)-
functions do not meet these boundary conditions, except for the ones where s is a nontrivial zero of the Riemann zeta,
with the real part of s being greater than 1

2
. Finally, we find that these exceptional functions cannot exist, proving the

Riemann hypothesis, that all nontrivial zeros have real part equal to 1
2
.

1 Introduction

The Hurwitz zeta function ζ(s, x) can be represented by a
Newton series representation [2].

ζ(s, x) =
1

s− 1

∞∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(x+ k)1−s (1)

For Re(s) > 1, this function can be expressed as a single
infinite series.

ζ(s, x) =

∞∑
n=0

1

(n+ x)s
(2)

The Riemann zeta function ζ(s, 1) has trivial zeros at the
negative even s-values. The Riemann hypothesis states
that the nontrivial zeros of the Riemann zeta function are
complex numbers with real part 1

2 . In this paper, we will
prove for the first time that the Riemann hypothesis is true.

So now that we know what problem we are solving, lets go
ahead and find a Hamiltonian!

2 Finding the Hamiltonian

Right now, I haven’t even told you what a Hamiltonian is.
But let me explain along the way, because we have a long
journey ahead! First, lets expand the series in (2) and see
what we are working with here.

ζ(s, x) =
1

xs
+

1

(1 + x)s
+

1

(2 + x)s
+

1

(3 + x)s
+ ...

Now this seems like a nice pattern. When we shift x by
one, we almost get the same series.

ζ(s, x+ 1) =
1

(1 + x)s
+

1

(2 + x)s
+

1

(3 + x)s
+ ...

The two series are almost the same, so subtracting might
be a good idea here.

ζ(s, x)− ζ(s, x+ 1) =
1

xs

That leaves us with only one term, instead of infinite many.
That’s good progress so far. If we use the symbol ∆ for
these two operations combined, we’d be saving some ink
and the environment.

∆ζ(s, x) =
1

xs
(3)

This is known as the forward difference. Now what can we
do next? Lets try differentiating.

∂

∂x
∆ζ(s, x) = − s

xs+1

Every new operator that we put in front and on the left,
acts on the function to the right of it.

We now have a different exponent in de denominator.
We can fix this by multiplying by x.

x
∂

∂x
∆ζ(s, x) = − s

xs

This looks good. It looks similar to what we had before
differentiating. We can even get back the infinite series by
inverting the forward difference.

∆−1x
∂

∂x
∆ζ(s, x) = −s

(
1

xs
+

1

(1 + x)s
+ ...

)
=

= −sζ(s, x)

After applying four operators, we got back our ζ-function,
multiplied by −s. We can give this whole sequence of op-
erations a name, Â = ∆−1x ∂

∂x∆.

Âζ(s, x) = −sζ(s, x)

We call ζ(s, x) an eigenfunction of operator Â with eigen-
value −s. For each value of s, we get a different eigenfunc-
tion with a different eigenvalue.

After the forward difference step, we could have also
multiplied by x first, and then differentiate after. With

1
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B̂ = ∆−1 ∂
∂xx∆, the ζ-functions turn out to be eigenfunc-

tions of B̂ as well, but with different eigenvalues 1− s.

B̂ζ(s, x) = (1− s)ζ(s, x)

We can also see that the order of operation can affect the
result. Though some operators commute with each other.
Differentiation commutes with the forward difference.

∂

∂x
∆f(x) = f ′(x)− f ′(x+ 1) = ∆

∂

∂x
f(x)

And differentiation also commutes with the backward dif-
ference ∇.

∂

∂x
∇f(x) = f ′(x)− f ′(x− 1) = ∇ ∂

∂x
f(x)

We can change the order for commuting operators. This
will be important later on.

∂

∂x
∆ = ∆

∂

∂x
(4)

∂

∂x
∇ = ∇ ∂

∂x
(5)

The sum of Â and B̂ looks very symmetrical and it has the
nice property, that the ζ-functions are also eigenfunctions
of Â+ B̂, with eigenvalues 1− 2s.

Â+ B̂ = ∆−1
(
x
∂

∂x
+

∂

∂x
x

)
∆

We’ve now reached a point in our journey that several oth-
ers [1] have reached before. Further along the road, there
has been a lot of struggling. Right now, would be a good
time to pause for a moment and look at some properties of
the operators we have used so far.

In the next section we’ll take some time to discuss the con-
cept of inner products and adjoint operators. After that,
we will continue finding the Hamiltonian and construct a
new operator that is closely related to this Hamiltonian.
The good thing about the new operator will be, that it is
self-adjoint!

3 Inner product and adjoint oper-
ators

Now, you may already be familiar with the concept of an
inner product or a dot product. For two complex functions
f and g, we can use the folowing inner product.

〈f |g〉 =

∫ ∞
−∞

dx f(x) g(x) (6)

It’s good to notice that 〈f |g〉 is usually not the same as
〈g|f〉 for complex functions. Rather, they are each others
complex conjugate.

〈f |g〉 =

∫ ∞
−∞

dx f(x)g(x) =

=

∫ ∞
−∞

dx f(x) g(x) =

= 〈g|f〉

Two functions are said to be orthogonal to each other if
their inner product is zero. The inner product of a nonzero
function with itself is always a positive real number. The
norm of a function is the square root of this number.

‖f‖ =
√
〈f |f〉 (7)

If operator V̂ is the adjoint of operator Ŵ , then the fol-
lowing equality must hold by definition.〈

V̂ f
∣∣∣g〉 =

〈
f
∣∣∣Ŵg

〉
(8)

The position operator x is self-adjoint. Proof of this is very
straightforward.

〈f |xg〉 =

∫ ∞
−∞

dx f(x) xg(x) =

=

∫ ∞
−∞

dx xf(x) g(x) =

= 〈xf |g〉

The differentiation operator ∂
∂x is not self-adjoint.〈

f

∣∣∣∣ ∂∂xg
〉

=

∫ ∞
−∞

dx f(x) g′(x) =

=
[
f(x) g(x)

]∞
−∞

−
∫ ∞
−∞

dx f ′(x) g(x) =

= −
〈
∂

∂x
f

∣∣∣∣g〉 (9)

We’ve used that
[
f(x) g(x)

]∞
−∞

= 0, which is valid under

the following boundary conditions.

lim
x→−∞

f(x) g(x) = 0 (10)

lim
x→∞

f(x) g(x) = 0 (11)

We will want to replace the differentiation operator by the
momentum operator p, which also includes differentiation.

p = −ih̄ ∂

∂x
(12)

Because the momentum operator is self-adjoint, when the
boundary conditions are met.〈

f

∣∣∣∣−ih̄ ∂

∂x
g

〉
=

〈
−ih̄ ∂

∂x
f

∣∣∣∣g〉 (13)

The momentum operator and the reduced Planck constant
h̄ play major roles in quantum physics.

The backward difference operator is the adjoint of the
forward difference operator.

〈f |∆g〉 =

∫ ∞
−∞

dx f(x) (g(x)− g(x+ 1)) =

=

∫ ∞
−∞

dx f(x) g(x)−
∫ ∞
−∞

dx f(x) g(x+ 1) =

=

∫ ∞
−∞

dx f(x) g(x)−
∫ ∞
−∞

dy f(y − 1) g(y) =

=

∫ ∞
−∞

dx (f(x)− f(x− 1))g(x) =

= 〈∇f |g〉 (14)
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Now we are ready to continue with finding the Hamiltonian
and constructing the self-adjoint operator from it.

4 The Hamiltonian

At the end of section 2, we found that the ζ-functions were
eigenfunctions of Â+ B̂, with eigenvalues 1− 2s.(

Â+ B̂
)
ζ(s, x) = ∆−1

(
x
∂

∂x
+

∂

∂x
x

)
∆ ζ(s, x) =

= (1− 2s)ζ(s, x)

Now replacing the differentiation operator by the impulse
operator, gives us a Hamiltonian Ĥ.

Ĥ = ∆−1 (xp+ px) ∆ (15)

It has the same eigenfunctions, but the eigenvalues are
now −ih̄(1 − 2s). In quantum mechanics, the eigenvalues
of a Hamiltonian represent the stable energy levels of a
system. The values for the energy levels are always real
numbers. This has lead researchers to believe that study-
ing this Hamiltonian, could lead to a proof of the Riemann
hypothesis [1], because for Ĥ these eigenvalues can only be
real when Re(s) = 1

2 .

One of the problems in moving forward from here, is that
this Hamiltonian is not self-adjoint. If Ĥ were self-adjoint,
then that would ensure the reality of the eigenvalues. If ϕ is
a normalizable eigenfunction of a self-adjoint Hamiltonian
Ĥ with corresponding eigenvalue λ, then the eigenvalue
has to be real.

λ 〈ϕ|ϕ〉 =
〈
ϕ
∣∣∣Ĥϕ〉 =

〈
Ĥϕ
∣∣∣ϕ〉 =

〈
ϕ
∣∣∣Ĥϕ〉 = λ 〈ϕ|ϕ〉

An eigenfunction ϕ is normalizable if the inner product
〈ϕ|ϕ〉 exists. This normalizability is exactly the second
problem. The eigenfunctions ζ(s, x) have infinite norm for
s < 1.

We solve the first problem by constructing a new and
self-adjoint operator Ĝ. And by using this operater, we
get around the second problem as well. The operator is be
very similar to Ĥ, only that ∆−1 has been replaced by the
backward difference operator ∇.

Ĝ = ∇ (xp+ px) ∆ (16)

But this substitution comes with a cost. The ζ-functions
are not eigenfunctions of Ĝ. But we do have a close rela-
tionship between Ĥ and Ĝ.

Ĝ = ∇ (xp+ px) ∆ =

= ∇∆
(
∆−1 (xp+ px) ∆

)
=

= ∇∆Ĥ (17)

With this new operator, we can go forward and have Ĝ act
on the ζ-functions.

Ĝζ(s, x) = ∇∆Ĥζ(s, x) =

= −ih̄(1− 2s)∇∆ζ(s, x) (18)

Finally, we take the following inner product.〈
ζ(s, x)

∣∣∣Ĝζ(s, x)
〉

= −ih̄(1− 2s) 〈ζ(s, x)|∇∆ζ(s, x)〉 =

= −ih̄(1− 2s) 〈∆ζ(s, x)|∆ζ(s, x)〉 =

= −ih̄(1− 2s)
〈
x−s

∣∣x−s〉 (19)

So the eigenvalues λs of the Hamiltonian Ĥ can be ex-
pressed as follows.

λs = −ih̄(1− 2s) =

〈
ζ(s, x)

∣∣∣Ĝζ(s, x)
〉

〈x−s|x−s〉
(20)

If inner product in the denominator in (20) does not diverge
to infinity, it has to be a positive real number. And assum-
ing that Ḡ is self-adjoint, the numerator in (20) must be
real as well, as it would be equal to its complex conjugate.〈

ζ(s, x)
∣∣∣Ĝζ(s, x)

〉
=
〈
Ĝζ(s, x)

∣∣∣ζ(s, x)
〉

=

=
〈
ζ(s, x)

∣∣∣Ĝζ(s, x)
〉

(21)

Then we would have found proof that the eigenvalues of
Ĥ are real for the values of s that meet the boundary con-
ditions. But in general, the ζ(s, x)-functions do not obey
the boundary conditions.

In the next section we will find out what the boundary
conditions are exactly and use it to prove the Riemann
hypothesis. So lets move on to the endgame and determine
boundary conditions for which Ĝ is self-adjoint.

5 Boundary conditions

We are at the final steps of proving the Riemann hypothe-
sis. 160 years after the publishing of Riemann’s Manuscript
in 1859, the moment is here and now. So lets get onto it!

We need conditions on the ζ-functions for which Ĝ is
self-adjoint. We first define another operator w. We will
see why very soon.

w = ∇x∆ (22)

The operator w is self-adjoint. We prove this by using (8)
three times.

〈f |wg〉 = 〈f |∇x∆g〉 =

= 〈∆f |x∆g〉 =

= 〈x∆f |∆g〉 =

= 〈∇x∆f |g〉 =

= 〈wf |g〉 (23)

The operator Ĝ can be split into a sum of two operators.

Ĝ = ∇ (xp+ px) ∆ =

= ∇xp∆ +∇px∆ =

= ∇x∆p+ p∇x∆

= wp+ pw (24)
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We let operator w act on the ζ-function.

wζ(s, x) = ∇x∆ζ(s, x) =

= ∇x
(
x−s

)
=

= ∇
(
x1−s

)
=

= x1−s − (x− 1)1−s (25)

Now, lets find pwζ(s, x). We will use it to determine the
domain for the ζ-functions.

pwζ(s, x) = −ih̄
(
x1−s − (x− 1)1−s

)
=

= −ih̄(1− s)
(
x−s − (x− 1)−s

)
It’s important to notice here, that pwζ(s, x) is continuous
on the domain [1,∞). If we start the domain at any value
lower than 1, there would be a discontinuity at x = 1 for
Re(s) > 0 and the formula for integration in (9) would not
work.

Lets consider the following inner product.

〈ζ(s, x)|pwζ(s, x)〉 (26)

The same ζ-function appears on both sides of the inner
product. If we used two different ζ-functions, it would not
contribute at all to proving the reality of the eigenvalues.

The momentum operator p is self-adjoint, if the follow-
ing condition applies at the left boundary of x = 1 and for
x→∞.

ζ(s, x) w ζ(s, x) = 0

With (25), this becomes:

ζ(s, x)
(
x1−s − (x− 1)1−s

)
= 0

The two boundary conditions are then as follows.

ζ(s, 1) = 0 (27)

lim
x→∞

ζ(s, x)
(
x1−s − (x− 1)1−s

)
= 0 (28)

The first boundary condition, requires that s is a zero of
the Riemann zeta. Now for the second boundary condition,
we need to find out how this expression

ζ(s, x)
(
x1−s − (x− 1)1−s

)
behaves for large values of x.

For the first factor ζ(s, x), we can use ζ(s, x)−ζ(s, x+1) =
x−s. Because the forward difference of ζ(s, x) is x−s, we
can expect ζ(s, x) to grow like x1−s/(1 − s). But this is
an important part of the proof and we don’t want to leave
any doubts. So here are the more rigorous steps, using
calculus.

−ζ(s, 1) = 0

ζ(s, 1)− ζ(s, 2) = 1−s

ζ(s, 2)− ζ(s, 3) = 2−s

ζ(s, 3)− ζ(s, 4) = 3−s

...

If we use the first n equations above, take the sum of the
left hand sides, then it must be equal to the sum of the
right hand sides.

−ζ(s, n) = 1−s + 2−s + 3−s + ...+ (n− 1)−s =

=

n−1∑
k=1

k−s

For some of the following steps, we’re assuming that the
real part of s lies between 0 and 1. It has already been well
proven that there are no nontrivial zeros of the Riemann
zeta function outside of this critical strip.

The norm of ζ(s, x) is bounded by 1
1−Re(s) (x− 1)1−Re(s).

‖ζ(s, n)‖ =

∥∥∥∥∥
n−1∑
k=1

k−s

∥∥∥∥∥ ≤
≤

n−1∑
k=1

∥∥k−s∥∥ =

=
n−1∑
k=1

k−Re(s) ≤

≤
∫ n−1

0

dx x−Re(s) =

=
1

1−Re(s)

[
x1−Re(s)

]n−1
0

=

≤ 1

1−Re(s)
(n− 1)1−Re(s)

We expect the second factor x1−s − (x− 1)1−s to decrease
like x−s/(1− s). We show that our calculus also agrees.

∥∥x1−s − (x− 1)1−s
∥∥ =

∥∥∥[y1−s]x
x−1

∥∥∥ =

=

∥∥∥∥ 1

1− s

∫ x

x−1
dy y−s

∥∥∥∥ ≤
≤
∥∥∥∥ 1

1− s

∥∥∥∥∫ x

x−1
dy
∥∥y−s∥∥ ≤

≤ 1

1−Re(s)

∫ x

x−1
dy y−Re(s) ≤

≤ 1

1−Re(s)
(x− 1)−Re(s)

Now, with the two factors combined, we can see if the sec-
ond boundary condition can be satisfied.

∥∥∥ζ(s, x)
(
x1−s − (x− 1)1−s

)∥∥∥ ≤ (x− 1)1−2Re(s)

(1−Re(s))2

Will this go to zero for x → ∞? Yes, for Re(s) > 1
2 , it

definitely will!

With the two boundary conditions, we know now that
a ζ(s, x)-function obeys these conditions when s is a zero
of the Riemann zeta function with real part of s greater
than 1

2 .
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6 Riemann hypothesis is true!

When the boundary conditions have been met for a ζ-
function, then wp is the adjoint of pw.

〈ζ(s, x)|pwζ(s, x)〉 = 〈pζ(s, x)|wζ(s, x)〉 =

= 〈wpζ(s, x)|ζ(s, x)〉 (29)

Then Ĝ is self-adjoint.〈
ζ(s, x)

∣∣∣Ĝζ(s, x)
〉

= 〈ζ(s, x) | (wp+ pw)ζ(s, x)〉 =

= 〈(pw + wp)ζ(s, x) | ζ(s, x)〉 =

=
〈
Ĝζ(s, x)

∣∣∣ζ(s, x)
〉

(30)

In section 4 we found the equation for the eigenvalues and
the eigenfunctions ζ(s, x) of the Hamiltonian H̄.

λs = −ih̄(1− 2s) =

〈
ζ(s, x)

∣∣∣Ĝζ(s, x)
〉

〈x−s|x−s〉

The denominator converges to a real number for Re(s) > 1
2 .

〈
x−s

∣∣x−s〉 =

∫ ∞
1

dx x−2Re(s) =

=
1

2Re(s)− 1

[
x1−2Re(s)

]∞
1

=

=
1

2Re(s)− 1

For s being a zero of the Riemann zeta function with real
part of s greater than 1

2 , the boundary conditions are sat-
isfied. Then the numerator is real and the eigenvalue has
to be real. But that’s not possible for Re(s) > 1

2 . So we
can only conclude that the Riemann zeta has no zeros with
real part greater than 1

2 .

To make the proof complete, we have the functional equa-
tion [3], which relates ζ(s, 1) to ζ(1− s, 1).

ζ(s, 1) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s, 1) (31)

It follows from this equation that, if there are no zeros
with real part between 1

2 and 1, there can be no zeros

with real part between 0 and 1
2 either. All nontrivial ze-

ros must have real part 1
2 . The Riemann hypothesis is true!
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