A clock paradox in gravity

Karl De Paepe*

Abstract

We consider a static spherically symmetric distribution of matter. Time intervals for a free falling and a stationary clock are compared. This does not agree with that calculated using Newton approximation to gravity and the equivalence principle.

Let there be a static spherically symmetric distribution of matter with centre at the origin. Let U be a clock. Let there be a U always at rest at \mathbf{r} and let t be the time measured by this U. Let τ be the time measured by a free falling U that begins at rest at \mathbf{r}. Define

$$
\begin{equation*}
f(r)=\frac{d \tau}{d t}(\mathbf{r}) \tag{1}
\end{equation*}
$$

A U always at rest at the origin is in free fall hence $f(0)=1$. Also the effects of gavity go to zero as $r \rightarrow \infty$ hence $f(r) \rightarrow 1$ as $r \rightarrow \infty$.

Assuming Newton approximation to gravity and the equivalence principle we have using [1] that $f\left(r_{1}\right)<f\left(r_{2}\right)$ when $r_{1}<r_{2}$. Letting $r_{1}=r$ and $r_{2} \rightarrow \infty$ we have $f(r)<1$. This contradicts $f(0)=1$.

References

[1] A. Einstein, Annalen der Physik, 35 (1911). English translation in The Principle of Relativity translated by W. Perrett and G. B. Jeffery (Dover Publications, 1952).
[2] Physics Essays, December 2015

[^0]
[^0]: *k.depaepe@utoronto.ca

