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Abstract 
There is a plethora of Artificial Intelligence (AI) tools that are being developed 
around the world aiming at either speeding up or improving the accuracy of 
radiologists. It is essential for radiologists to work with the developers of such 
algorithms to determine true clinical utility and risks associated with these 
algorithms. We present a framework, called an Algorithmic Audit, for working 
with the developers of such algorithms to test and improve the performance of 
the algorithms. The framework includes concepts of true independent validation 
on data that the algorithm has not seen before, curating datasets for such 
testing, deep examination of false positives and false negatives (to examine 
implications of such errors) and real-world deployment and testing of algorithms. 

 

Introduction 
Artificial Intelligence (AI), today, refers to the ability of machines to perform ‘human-like’ tasks. In 

the context of radiology, and for purposes of this paper, we restrict AI-based tools to those that 

replicate the visual and cognitive part of the radiology workflow, i.e. detection of findings and 

interpretation of those findings. There are several research groups, comprising of academic centres, 

large healthcare companies and startups, focused on developing Artificial Intelligence (AI) based 

tools to automate these tasks. We classify all such groups into the category of “Vendors”. These 

tools are either in the domain of image acquisition, post-processing, triaging or radiology report 

creation.  

 

We present, based on our experience of working with more than 20 such vendors, an ‘Algorithmic 

Audit’ methodology which can be used by radiologists to evaluate the performance of an AI 

algorithm, and share relevant feedback with vendors in order to help them improve the 

performance of the algorithms. The proposed method includes preparing datasets especially focused 

on validation of algorithms, examining failed cases post testing of AI on these validation images, and 

a series of other steps which are described further in more detail.  

 

Prerequisites to the Algorithmic Audit 
The Algorithmic Audit thrives on two essential components – data availability and clinical expertise. 

The availability of heterogeneous large datasets is essential for conducting of an Algorithmic Audit 

since testing on rare, but clinically relevant cases is paramount to determine how the algorithm 



performs in such situations. Clinical expertise is required to derive insights about the functioning of 

an algorithm – in many instances, given the black-box nature1 of many AI algorithms, it is very hard 

to determine why an algorithm may have failed in a particular instance. In such cases, the ability of 

subspecialist radiologists to analyse failed cases and frame hypothesis around failure, is critical.  

 

Truly Independent Validation 
Lack of generalizability of AI algorithms is a major hindrance to the adoption of such tools in clinical 

practice. Kim et al found that as of 17th August 2018, only 6% of the 516 studies published on 

radiology AI did external or truly independent validation2, an essential component of the Algorithmic 

Audit. To understand the nuance behind true independent validation, one must understand how a 

deep learning algorithm is developed and validated. We take the example of MRNet, an algorithm to 

automatically detect tears of the anterior cruciate ligament on knee MRIs, developed by Rajpurkar et 

al3. The authors first obtained a dataset of 1,370 knee MRIs along with their corresponding reports. 

These 1,370 MRIs were broken into 3 separate datasets – one training set of 1,130 MRIs, one tuning 

set of 120 MRIs and one validation set of another 120 MRIs. Note that all three sets are subsets of 

the larger dataset of 1,370 MRIs all of which have been obtained from the same hospital – Stanford 

University Hospital. The training set was used to create the deep learning algorithm, the tuning set 

used to fine-tune the parameters of the deep learning algorithm and finally the validation set was 

used to determine the performance of the algorithm. The algorithm was also tested on an external 

validation dataset from Stajduhar et al4 of 917 MRIs, from a different country altogether. MRNet 

gave an impressive Area Under Curve (AUC) of 0.96 on the Stanford Hospital validation dataset, 

which dropped to 0.82 on the Stajduhar et al dataset – the truly independent dataset, thereby 

demonstrating the problem of generalizability of AI algorithms across datasets. The problem of 

generalisability is well documented in research but as such no concrete metric exists to measure 

both generalisability, or the lack of it.5,6 

 

Another example of true independent validation comes from Chilamkurthy et al7 where a deep 

learning algorithm that automatically detects critical findings in head CT scans was validated on a 

dataset from multiple hospitals from where no data was used to train the algorithm. This was one of 

the first peer-reviewed studies of an AI algorithm giving area-under curve (AUC) of more than .90 for 

all its findings on an external test set, comprising of data obtained from clinical sites outside of 

where the algorithm was trained on.  

 

Such results make the case for true independent external validation of AI algorithms before putting 

them to use in clinical environments. Since the performance of AI algorithms is typically much better 

on data sourced from sites it was trained on, as a radiologist or a radiology manager wanting to work 

with vendors to develop or validate AI algorithms, it is important to think through whether one 

would like to contribute data for the development of algorithms, or would one like to use their data 

exclusively for validation. Developing and validating an algorithm on data from the same clinical site 

may not give the true picture of the performance of algorithms.  

 

Making Data Usable 
Depending on what position one takes, with respect to assisting with developing and validating AI 

algorithms, the next step is to ‘convert’ one’s data from crude unstructured data, to refined data 

with very strong ‘ground truth’. Consider the validation study of a high-sensitivity deep learning 

algorithm (by Singh et al8) that classifies chest X-Rays into normal and abnormal9. The algorithm was 



not trained on images from the test sites and hence all the test data was ‘unseen’ by the algorithm. 

To test the performance of the algorithm, a dataset of 430 chest X-Rays from different radiology 

clinics, comprising of different X-Ray machines (CR, DR and retrofit DR), was assembled. 

Subsequently, the 430 scans were read by multiple radiologists to develop consensus around 

whether the findings truly exist in the scans – the ground truth for validating the AI. Once ground 

truth was established, it was a matter of running the algorithm on the X-Rays and comparing the 

results of the AI to the said ground truth. The algorithm delivered a sensitivity of 97% in this true 

independent validation setting giving confidence to use the algorithm in the real world. The process 

of defining ground truth is a painstaking one but as far as conducting validation studies is concerned, 

it is the most important piece – our group is now working on datasets that have objective ground 

truth, for example, chest X-Rays with corresponding chest CT scans, or CT scans with corresponding 

biopsies. 

 

Choosing the right data mix 
Once a test dataset with corresponding ground truth has been assembled, it is important to 

determine the mix of cases required to aptly validate the AI algorithm. Generally, there are two 

types of algorithmic errors one is looking for – false positives and false negatives. False positives are 

cases which the AI calls out to be positive, but they in fact are negative (for the finding under 

question). To check for an algorithms false positive rate, it is important to have a dataset that 

comprises heavily of cases without many positives – this gives the validator a chance to see how 

frequently the AI calls a truly negative case as positive and is only possible when there are a high 

number of negatives. The same is true for false negatives, which are cases where in fact there is a 

finding but the algorithm misses it. For this, a dataset comprising heavily of positive cases is required 

to determine whether (and to what extent) AI misses positive cases. This is especially important in 

today’s scenario when AI is being pegged as a tool for either triaging10 or for automatically 

identifying normal cases9,11 with a high degree of confidence.  

 

Deep examination of false positives and negatives 
Now that a dataset has been assembled, the algorithm under validation has been run on the test 

data, and results of the algorithm have been compared to ground truth, the most important part of 

the algorithmic audit begins – a deep examination of false positives and negatives. There is no easy 

way to do this – a radiologist and a data scientist need to sit together for hours at end and read 

every case where the AI failed. There are two independent approaches to this, and both are equally 

important. First, one must examine the implications of AI going wrong – for example, a chest X-ray 

algorithm that misses broncho-pulmonary markings is significantly less dangerous than one that 

misses massive pneumothoraces, even if the summary statistics in the former may be better than 

the latter.  

 

Second, one must attempt to examine reasons for AI failure. For example, our group helped GE 

Healthcare build an algorithm to automatically detect pneumothorax12 on chest X-Rays done on a 

portable X-Ray system13. This algorithm used rich annotation information, i.e. pixel level annotation 

of pneumothorax done by multiple radiologists, to drive very high algorithm performance14. During 

validation of this algorithm, we were provided several false positive and false negative scans, along 

with Class Activation Maps or heat maps of areas on the chest X-ray the algorithm gave ‘importance’ 

to while determining whether pneumothorax was present in the scans. We examined each false 

positive and false negative in an attempt to develop hypothesis around why the algorithm made the 



decision regarding presence of pneumothorax in the image. Eventually, patterns such as cases with 

mach bands and chest tubes falsely being labelled as pneumothorax, emerged. Once these patterns 

were confirmed on more test images, the algorithm was retrained to ignore these findings, and 

results of the algorithm improved to a great degree. Such insight can only be obtained by diving 

deep into failures and attempting to decipher why an algorithm fails. It is important to note that 

such insight can only be derived by deep collaboration between data scientists and radiologists and 

links back to the ready availability of clinical expertise as a prerequisite to successful collaboration. 

 

Far North and Far South Cases 
As a clinical group conducting an audit of AI algorithms, another concept we describe is that of Far 

North and Far South cases. Most often, the output of an AI algorithm is a probability or abnormality 

score using which the decision of whether an abnormality is present or not is taken. Such a score is a 

measure of the ‘certainty’ with which an AI algorithm is giving a particular output. Typically, 

developers of algorithms determine a ‘threshold’ beyond which a finding is taken to be present, and 

below which a finding is determined to be not present.  

 

These concepts are best understood using an example - let us take the hypothetical case of a deep 

learning algorithm for detection of fractures in an X-ray. Assume that the algorithm gives a 

probability estimate of whether a fracture is present in an X-Ray on a scale of 0% to 100%, with a 

threshold of 50% - a probability of >50% implies the presence of a fracture, and less than 50% means 

no fracture. Let us further assume we have 6 test images (1-6) out of which images 1, 2 and 3 are 

normal (no fracture), and images 4,5 and 6 have fractures. The AI algorithm gives a probability 

estimate of 25% for image 1, 60% for image 2, 90% for image 3, 75% for image 4, 40% for image 5 

and 10% for image 6, implying that the algorithm is most ‘certain’ about the presence of a fracture in 

image 3, then image 4 and then image 2. Note that image 1 is hence a true negative and image 4 is a 

true positive, and rest of the images are situations where the algorithm was wrong based on the 

threshold of 50% for positivity.  

 

Now, while one would not be wrong in clubbing images 2 and 3 into false positives, and images 5 

and 6 into false negatives, it would be wrong to equate the ‘extent of falseness’. The algorithm was 

90% certain that image 3 has a fracture and 60% certain that image 2 has a fracture, whereas both 

do not have fractures. It is important to understand that the error made by the algorithm in image 3 

was much ‘worse’ than image 2 since it is an error that cannot be fixed by simply adjusting the 

threshold of the probability. Similarly, algorithm was very certain that image 6 does not have a 

fracture (10% estimate) and fairly certain that image 5 does not have a fracture (40%), whereas both 

in reality had fractures, but again the mistake made by the algorithm in image 6 is much worse than 

image 5. Such cases are dubbed as Far North (high probability false positives) and Far South (low 

probability false negatives) by our group. 

 

It is essential to monitor and test algorithms from point of view of identifying far north and far south 

cases because they demonstrate fundamental issues in algorithms’ ability to understand an image 

and make a prediction. A radiologist, in contrast, is able to say ‘I am not sure’ and hence seek 

appropriate guidance in cases where help is needed. In order for AI to be a reliable companion to 

radiologists, the probability estimates given by AI need to be less divergent in terms of correlating 

with the ground truth. 



 

Real World Deployment and Testing 
The litmus test for any medical imaging AI algorithm is whether radiologists use it or not, how 

frequently radiologists need to change the findings of the algorithm and how long they take to ‘trust’ 

it. Unfortunately, there is hardly any published literature around real-world deployments and testing 

of algorithms. From our experience of deploying AI algorithms that automatically classify chest X-

Rays into normal or abnormal and that automatically detect and characterize lung nodules on chest 

CT scans, we understood that it is important to present the findings of the AI algorithm in the most 

radiologist-friendly way possible. This insight comes from two main reasons – one, most radiologists 

use workstations which are ‘locked’, i.e. additional software cannot be loaded on them, limiting the 

ways in which AI results can be displayed t them. Second, and possibly more importantly, it is very 

difficult to toggle between viewers for specific cases, and such toggling negatively impacts adoption 

of new software and solutions. To counter this, we suggest either HL715 integration with the 

radiology reporting software, or, in situations where the AI generates an image / segmentation, 

simply ‘writing’ no raw dicom images like a ‘screensaved’ image.   

 

One successful implementation strategy for AI that automatically classifies chest X-rays into normal 

or abnormal, in the workflow, is the following – first, chest X-rays are automatically pulled from 

PACS using DCM4CHEE16 based tools every 2 minutes to process them in real-time; next, the AI 

algorithm is run on the chest X-Ray and if the AI is unable to find an abnormality in the image, a 

‘normal’ report template is automatically sent to the reporting software using an HL7 message such 

that the radiologist simply has to approve the report after looking at the chest X-Ray. The radiologist 

has full freedom to change the report and such changes are measured in real time to determine 

accuracy of the algorithm, displayed through a real-time dashboard. Such prospective validation 

studies, akin to phase 4 clinical trials for drugs, will help in improving algorithms in the long term and 

are the only way to realistically measure the impact of such algorithms in real clinical practice.  

 

Another real-world deployment strategy for AI algorithms is an AI-enabled retrospective quality 

audit. In this quality audit, several hundreds or thousands of chest X-rays that are deemed ‘normal’ 

based on their previous radiology reports, are read by an AI algorithm at once. Subsequently, 

abnormality scores (probability of each X-ray having an abnormality) are determined and images 

having high abnormalities are re-read by a 2nd arbitration radiologist. It is highly likely that the AI 

finds ‘missed’ findings which either the radiologists did not pick up on, or did not feel the need to 

comment on – either way, the AI algorithm gives a low-risk method to pick mistakes and improve 

the quality of radiology reporting in general.  

 

Improving the algorithm 
The outcome of an algorithmic audit should ideally be solutions or suggestions using which vendors 

can improve the functioning of the algorithm. There are two possible solutions, in our experience. 

The first possible solution may be to retrain the model using false positives and false negatives found 

during the audit, especially the far north and far south cases. Such retraining can also be done 

locally, i.e. at the deployment site using a technique called federated learning17 where data does not 

need to leave the premises of the hospital/healthcare provider. The second possible solution is to 

use ‘Dynamic Thresholds’. A dynamic threshold refers to a threshold value (for determining presence 

or absence of an abnormality, as discussed earlier) that changes based on the given clinical context.  

Although not published in literature, preliminary work done by our group demonstrates the ability of 



dynamic thresholds to significantly reduce the error rate of algorithms by adding a layer of ‘clinical 

sense’ into the output of AI algorithms. It is intuitive and can be explained using an example - a 

patient who has come for a screening chest X-Ray for a routine health check should have a very high 

threshold for detecting pneumothorax, as opposed to one who is in the intensive care unit with a 

falling oxygen saturation. Adding a simple checkbox to determine the patient’s clinical context 

(screening, trauma, fever, cough, intensive care, etc.) can aid in improving AI’s accuracy and making 

it more accessible. 

 

In conclusion, one should keep the following in mind while working with vendors to validate 

algorithms:  

• Develop strong ground truth - whether it is by individual or group consensus or by finding 

objective measures such as chest CT for chest X-Rays; 

• Datasets should ideally be from sites the algorithm has not been trained on; 

• Develop a good test dataset – case mix of positives and negatives is very important and 

depends on the use-case of AI under test; 

• Focus on the cases that failed - what the implications of failure, and build hypothesis around 

why AI might have failed; 

• Focus on Far North and Far South cases – these will limit trust that doctors can bestow on AI; 

• Aim for real-world deployment and testing; 

• Stay in constant communication with developers of AI – help them determine how 

algorithms can be improved.   
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