The Complexity of NonSwapClique

Anisse Ismaili

Abstract

Problem NonSwapClique: Given an undirected graph $G=(V, E)$, does it contain a clique $S \subseteq V$ of size k, such that you cannot obtain another clique of the same size by swapping a pair of vertices? In this note, I settle the complexity of this problem as NP-complete, by a reduction from problem 1-IN-3-SAT.

KEYWORDS

NonSwapClique; Complexity

1 RESULT

Definition 1.1. Decision problem NonSwapClique, given an unoriented graph $G=(V, E)$ and an integer k, asks whether there exists a clique $S \subseteq V$ of size k, such that there is no pair of vertices $v \in S$ and $v^{\prime} \in V \backslash S$ such that $S \backslash\{v\} \cup\left\{v^{\prime}\right\}$ is also a clique of size k. Such a clique is called a non-swap clique. Removing a vertex from S to add a new one is called swapping.

Definition 1.2. Decision problem 1-IN-3-SAT, given a 3CNF formula $F=C_{1} \wedge \ldots \wedge C_{m}$ on binary variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$, asks whether there exists an instantiation $\tau: X \rightarrow\{0,1\}$ such that in every clause $C_{i}=\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}$, exactly one literal is true and two are false.

Theorem 1.3. NonSwapClique is NP-complete.

Proof. An instance of NonSwapCliQue, if a non-swap clique $S \subseteq V$ of size k is given, can be verified true in time $O\left(|V|^{2}|E|\right)$. Therefore, problem NonSwapCligue is in class NP.

We show NP-hardness by a many-one polynomial-time reduction from problem 1-IN-3-SAT. Let 3CNF formula $F=C_{1} \wedge \ldots \wedge C_{m}$ and binary variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be an instance of 1-IN-3SAT, that we reduce to the following NonSwapClique instances. For every clause $C_{i} \in F$, we introduce a subset V_{i} of three disconnected vertices $V_{i}=\left\{v_{i, 1}, v_{i, 2}, v_{i, 3}\right\}$ that represent the literals of the clause. For every binary variable $x_{j} \in X$, we introduce a subset V_{m+j} of two disconnected vertices $V_{m+j}=\left\{v_{m+j, 0}, v_{m+j, 1}\right\}$ that represent the two possible literals on variable x_{j}, hence its two possible instantiations. The set of $3 m+2 n$ vertices is:

$$
W=V_{1} \cup \ldots \cup V_{m} \quad \cup \quad V_{m+1} \cup \ldots \cup V_{m+n}
$$

Edges only exist between two different subsets. Given any two different subsets V and V^{\prime}, there exists an edge between nodes $v \in V$ and $v^{\prime} \in V^{\prime}$ if and only if the corresponding literals are compatible. In other words, an edge is missing between v and v^{\prime} if and only if the corresponding literals negate each other. We ask whether a non-swap clique of size $k=m+n$ exists in this graph. Since there are no edges inside subsets V, it amounts to ask whether there exists a clique $S \subseteq W$ with exactly one vertex v in each subset V, such that swapping to an other vertex $v^{\prime} \in V \backslash\{v\}$ will induce
some missing edges between v^{\prime} and some vertex $u \in S \cap V^{\prime}$ in some other subset V^{\prime}.
(yes \Rightarrow yes) Assume there exists an instantiation $\tau: X \rightarrow\{0,1\}$ that one-in-three satisfies formula $C_{1} \wedge \ldots \wedge C_{m}$. Then we have the following non-swap clique $S \subseteq W$ of size $m+n$: in every subset V, take the vertex which corresponding literal is set true by the instantiation. Since an instantiation is a function and does not contradict itself, S is clearly a clique of size $n+m$. Also, in sets V_{m+1}, \ldots, V_{m+n}, it contains vertices that fully encode instantiation τ. In any subset from V_{1}, \ldots, V_{m}, swapping from a vertex v to a vertex v^{\prime}, which corresponding literal on variable x_{j} was set to false by 1 -in- 3 satisfying instantiation τ, would contradict the instantiation; hence, $S \backslash\{v\} \cup\left\{v^{\prime}\right\}$ would miss an edge between v^{\prime} and V_{m+j}. Similarly, every variable appears at least once in formula $C_{1} \wedge \ldots \wedge C_{m}$, e.g. in corresponding vertex $v^{\prime \prime} \in V_{i}$. Therefore, in any subset V_{m+j}, swapping from a vertex v to a vertex v^{\prime}, which corresponds to swapping the instantiation of variable x_{j}, would contradict $v^{\prime \prime}$; hence, $S \backslash\{v\} \cup\left\{v^{\prime}\right\}$ would miss an edge between v^{\prime} and $v^{\prime \prime} \in V_{i}$.
(yes \Leftarrow yes) Assume there exists a non-swap clique $S \subseteq W$ of size $n+m$. It fully defines an instantiation τ_{S}, since the clique is also defined on $V_{m+1} \ldots V_{m+n}$. The vertices of the clique correspond to the literals set to true in the formula. Then, in any subset V, swapping from $v \in S \cap V$ to $v^{\prime} \in V \backslash\{v\}$ has some missing edge in $S \backslash\{v\} \cup\left\{v^{\prime}\right\}$. It means that v^{\prime} contradicts a literal set to true (a vertex in set $S \backslash\{v\}$). Therefore, the literal corresponding to v^{\prime} must be set to an opposite value in τ_{S} or F. Hence, $\tau_{S} 1$-in-3 satisfies the formula.

[^0]
[^0]: © 2019 -

